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Summary: In estimating the population mean of a study variable y, we can often use a ratio-type
estimator when a related auxiliary variable x, with improved accessibility, is available. In cases
where x is qualitative, or may be categorised, and a double sampling plan is used, we may consider
a two-phase stratified sampling design. Traditionally, it is assumed that the N variables representing
the readings on y are IID within and across strata. In this paper, we relax this assumption to a
judgment of exchangeable sequences within each stratum, while still maintaining the assumption of
independence across strata. This caters for the existence of dependence structures for within-stratum
readings. We propose a methodology for estimating the variance of the ratio estimator under this
scenario. Through an example, we show that this method provides a significantly more conservative
estimate for the sampling variance, as compared to the standard approach.

1. Introduction

When considering the task of estimating the population mean of a study variable y, it is often the
case that information on an auxiliary variable x is readily available for all units in the population. In
such situations, it is common to utilise a ratio- or regression- type estimator to improve the efficiency
in estimation (Cochran, 1977). However, when x is not known over the whole population, but still
easier to obtain than y, we may implement a two-phase, or double, sampling design. The value
of x is observed for a large sample in phase 1 and y is subsequently recorded for a subsample in
phase 2. This can be generalised to cater for multiple auxiliary variables with varying levels of
accessibility and correlation, where several chain-type estimators are proposed (Mukerjee, Rao and
Vijayan, 1987; Singh, Singh and Shukla, 1994; Ahmed, 1998; Bhushan, Pandey and Katara, 2008;
Hamad, Hanif and Haider, 2013).
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As a way to measure how good a sampling estimator is, the estimator variance, or mean square
error in the case of biased estimators, needs to be estimated. These are usually approximated by their
corresponding asymptotic expressions, which commonly assumes IID observations. A way to relax
the IID condition is to take on the Bayesian approach to finite population sampling, which assumes
that the observations are exchangeable (Ericson, 1969; Treder and Sedransk, 1996). However, this
approach also requires formalisation of prior information and known sampling distributions (or at
least estimates of them).

In this paper, we consider the case where x is a stratification variable, which is more easily acces-
sible, and observations for y are obtained through phase 2 sampling from each stratum. We further
assume the judgment of exchangeability within each stratum, while strata are mutually independent.
This corresponds to finite population sampling without replacement. We propose a way to approx-
imate the estimator variance under this scenario, using stationary bootstrapping at different levels
of the sampling process. An example is considered which shows the standard procedure estimate
underestimating the estimator variance, while our method provides an improvement.

2. Multi-phase stratified sampling

Let U = {1,2, . . . ,N} be the index set of a finite population of size N and y be the primary variable
of interest. Suppose x is an auxiliary variable related to y, which is less expensive or is easier to
measure. In this situation, it is common to consider a two-phase sampling design. In the first phase
a large sample S′ ⊂U of size n′ is drawn using SRSWOR and the auxiliary variable x is observed.
Subsequently, a subsample S ⊂ S′ of size n is drawn, using SRSWOR, to observe y. One way of
incorporating the auxiliary information into the estimation of the population mean ȳU , is to use a
ratio estimator

t̄rat =
ȳn

x̄n
x̄n′ ,

where ȳn = n−1
∑i∈S yi, x̄n = n−1

∑i∈S xi and x̄n′ = (n′)−1
∑i∈S′ xi.

Often members of U can be cross-classified into groups based on the auxiliary variable; either
the variable is qualitative in nature (e.g. gender), or may be categorised (e.g. age). This scenario
is classically associated with stratified sampling design, with unknown population stratum sizes.
Suppose that the stratification variable x ∈ {1, . . . ,H} is only observed after phase 1 and samples Sh

(of sizes mh) are subsequently drawn from each stratum using SRSWOR . This results in an estimator
for ȳU as

t̄str =
1
n′

H

∑
h=1

nhȳh ,

where nh is the number of units in S with x = h and ȳh = m−1
h ∑i∈Sh

yi. The variance for this estimator
is given by

V (t̄str) =
(

1− n′

N

)S2
y

n′
+E

[
H

∑
h=1

(nh

n′

)2(
1− mh

nh

) s2
h
′

mh

]
,

where S2
y is the population variance of y and s2

h
′ is the sample variance of y in stratum h, from phase
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1 if we observe them all. This can be estimated by

V̂ (t̄str) =
N−1

N

H

∑
h=1

(nh−1
n′−1

− mh−1
N−1

)nh

n′
s2

h
mh

+
1

n′−1

(
1− n′

N

) H

∑
h=1

nh

n′
(
ȳh− t̄str

)2
,

where s2
h is the sample variance of y in stratum h from phase 2 (Rao, 1973).

3. Exchangeable sequences

Under the model-based approach to sampling, the variance and estimated variance of t̄str are derived
based on the underlying assumption of IID of the random sequence Y1, . . . ,YN (for which y1, . . . ,yN is
a particular realisation) within stratum and between strata. We aim to explore situations where such
assumptions may prove to be too restrictive. Although, it may still often be the case that the order
in which units are chosen is not important. This leads to a natural generalisation to exchangeable
sequences.

An infinite sequence Y1,Y2, . . . is said to be exchangeable if

fY1,...,Yn(y1, . . . ,yn) = fY1,...,Yn(yπ(1), . . . ,yπ(n)) ,

for any subset of Y1,Y2, . . . and any π ∈Π, the set of all finite permutations on {1, . . . ,n} (Kingman,
1978). The assumption of exchangeability is characterised by a representation theorem, which states
that there exists a conditional model fY |θ (y|θ), where θ ∈ Θ is the limit of some function of yi’s as
n→ ∞, such that

fY1,...,Yn(y1, . . . ,yn) =
∫

Θ

n

∏
i=1

fY |θ (yi|θ) fθ (θ)dθ ,

where fθ (θ) represents some prior belief for θ (Bernardo, 1996). This implies that an infinite
exchangeable sequence is a mixture of IID sequences, or, in other words, it is conditionally IID,
given the underlying distributional form. Diaconis (1977) further showed that this result is also
approximately true for finite exchangeable sequences that are extendable (to a large exchangeable
sequence, of size k say), with the error going to zero, at a rate like 1/k.

The above representation can be generalised to multiple sequences, where each sequence is con-
sidered to be exchangeable (i.e., the sequences are partially exchangeable). Suppose that we can
categorise a sequence Y1,Y2, . . . into H disjoint exchangeable subsequences and let Yh denote a finite
subset of those Yi’s that are in subsequence h (with the index subset denoted by Sh). Then, if yh is a
realisation of Yh, we have the following representation

fY1,...,YH (y1, . . . ,yH) =
∫

Θ

H

∏
h=1

∏
i∈Sh

fY |θh
(yi|θh) fθ1,...,θH (θ1, . . . ,θH)dθ1 . . .dθH , (1)

where θh is the set of underlying parameters associated with sequence h. If we further set |Sh|= mh,
then we have a scenario analogous to the two-phase stratified sampling in Section 2. Here, we con-
sider the sequence of observations in individual strata to be exchangeable and dependencies across
strata are characterised by the joint distribution fθ1,...,θH (θ1, . . . ,θH) of the underlying parameter sets.
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Under the above assumptions, it remains mathematically feasible to use the estimator t̄str for
ȳU . However, the calculation and estimation of V (t̄str) may become more cumbersome. Let Zi

be the indicator variable on unit i being selected for the first phase sample and Z = (Z1, . . . ,ZN).
Consequently,

V (t̄str) =V (E[t̄str|Z])+E(V [t̄str|Z])

=V (t̄(1))+E

(
V

[
1
n′

H

∑
h=1

nhȳh|Z

])

=V (t̄(1))+E

(
H

∑
h=1

(nh

n′

)2
V [ȳh|Z]+2 ∑

a<b

nanb

(n′)2 Cov(ȳa, ȳb|Z)

)
, (2)

where t̄(1) is the sample mean from phase 1, assuming we know yi for all i ∈ S′. The first term is the
variance resulted from phase 1 sampling and the second term is the additional variance resulted from
the subsampling in phase 2. Now, assuming Y1, . . . ,YN are still identically distributed with mean µ

and variance σ2, we can write the first term in expression (2) as

V (t̄(1)) = E
[
(t̄(1)− ȳU )

2
]

= E

[( 1
n′ ∑i∈S′

Yi−
1
N ∑

i∈U
Yi

)2
]

= E

(( 1
n′
− 1

N

)
∑
i∈S′

Yi−
1
N ∑

i/∈S′
Yi

)2

= E

(( 1
n′
− 1

N

)
∑
i∈S′

Yi−
1
N ∑

i/∈S′
Yi−

( 1
n′
− 1

N

)
n′µ +

1
N
(N−n′)µ

)2

= E

[( 1
n′
− 1

N

)2
(

∑
i∈S′

Yi−n′µ

)2

+
( 1

N

)2
(

∑
i/∈S′

Yi− (N−n′)µ

)2

−2
( 1

n′
− 1

N

)( 1
N

)(
∑
i∈S′

Yi−n′µ

)(
∑
i/∈S′

Yi− (N−n′)µ

)]

=
( 1

n′
− 1

N

)2[
n′σ2 +2 ∑

i, j∈S′,i< j
Cov(Yi,Yj)

]
+
( 1

N

)2[
(N−n′)σ2

+2 ∑
i, j/∈S′,i< j

Cov(Yi,Yj)
]
−2
( 1

n′
− 1

N

)( 1
N

)
∑

i∈S′, j/∈S′
Cov(Yi,Yj) .

The subsequent problem is in estimating the covariance terms

∑
i, j∈S′,i< j

Cov(Yi,Yj) , ∑
i, j/∈S′,i< j

Cov(Yi,Yj) and ∑
i∈S′, j/∈S′

Cov(Yi,Yj) ,

which incorporates covariances between Yi’s from the same stratum and across stratum. Now, for i
and j in the same stratum, i.e., Yi and Yj are exchangeable, we may write

ρh :=Cov(Yi,Yj)≈V (E(Yi|θ)) =V (E(Yi|FYh)) ,
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where FYh is the limiting empirical distribution of Yi’s in stratum h, if nh is large and mh/nh is
relatively small. We suggest estimating these within-stratum covariance terms using stationary boot-
strapping (Politis and Romano, 1994) in each stratum. This is a generalisation to the standard boot-
strapping, in which data are divided into blocks of random sizes (block sizes following a geometric
distribution) and the blocks are re-sampled to form new samples. For simplicity, we also assume
independence across strata (this can also be motivated practically when one agrees that changes in
one stratum does effect others, or when such effects are considered minimal). Hence, Cov(Yi,Yj) = 0
for any pair i and j, from different strata. This will result in

∑
i, j∈S′,i< j

Cov(Yi,Yj)≈
H

∑
h=1

(
nh

2

)
ρh

∑
i, j/∈S′,i< j

Cov(Yi,Yj)≈
H

∑
h=1

(
dnh(N/n−1)e

2

)
ρh

∑
i∈S′, j/∈S′

Cov(Yi,Yj)≈
H

∑
h=1

nh(dnh(N/n−1)e)ρh

where dnh(N/n−1)e is used to approximate Nh−nh and given that individuals in an exchangeable
sequence behave similarly to each other (allowing us to approximate out-of-sample covariances with
in-sample ones). We will also estimate σ2 using the sample variance of all observed y.

The second term in (2), given independence across strata, is equal to

τ := E

(
H

∑
h=1

(nh

n′

)2
V [ȳh|Z]

)
.

This expectation is taken over all values of Z and cannot be evaluated given only one sample. Con-
sequently, we propose estimating this expression again by using stationary bootstrapping. Although,
the re-sampling here is taken over the union of Sh, i.e., mh may change from re-sample to re-sample,
and within each stratum of the re-sample (allowing the estimations of V [ȳh|Z]). Within each re-
sample, nh is also estimated by mhn′/∑mh.

4. An example

To implement our proposed methodology, we consider a practical example using the Australian
AIDS survival data set2. In all steps where stationary bootstrapping is required, we set the boot-
strapping parameter optimally to p = (n∗)−1/3 (Politis and Romano, 1994), where n∗ is the size of
the sample we are re-sampling from, and the number of bootstrap samples is set to 1000.

The variable of interest y is the age (years) of patients at diagnosis. This is recorded for 2843
patients across Australia. An auxiliary variable x is readily available, which indicates the state of
origin of each patient (NSW = New South Wales, QLD = Queensland, VIC = Victoria, Other = all
other states). For our purpose here, let us assume this is our population and we aim to estimate ȳ, the

2 Data by Australian National Centre in HIV Epidemiology and Clinical Research. Available in R package “MASS".
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average age of those in the study of interest. However, we do not know the population stratum sizes
Nh. Meanwhile, we undertake the judgment that Y1,Y2, . . . are independent across strata (states) and
are exchangeable within stratum (which may not at all be an unreasonable judgment!).

We draw a sample S′ using SRSWOR in phase 1 (and observe readings on x) and subsamples
Sh are drawn from each strata in phase 2 using SRSWOR (and observe readings on y). A summary
of the sample information is given in Table 1. The value of the corresponding two-phase stratified
design estimator is given as t̄str = 37.78714, which can be compared to the true population mean
ȳ = 37.40907. Sample variances seem to significantly vary across strata.

Table 1: Sample information for two-phase sampling on Australian AIDS survival data.

N n′ h nh mh ȳh s2
h t̄str

2843 500

NSW 331 200 38.13 118.2142

37.78714
QLD 40 27 37.7037 218.755
VIC 101 68 37.29412 90.30026

Other 28 19 35.63158 89.80117

Table 2 records the estimated values for ρh and τ . The estimates for ρh are obtained through
re-sampling within each stratum. The value for τ is obtained by both re-sampling the union of Sh

and re-sampling within the resultant strata.

Table 2: Estimated variance and covariance using stationary bootstrapping.

h ρh τ

NSW 0.892956

0.3534294
QLD 3.464333
VIC 1.074241

Other 1.821655

Table 3: Comparing sampling variance for t̄str.

Method/Assumption Variance Std. Dev.
Rao 0.0006403 0.02530365

Simulated 0.9817275 0.9908216
Exchangeable 0.5336707 0.7391561

The value of V̂ (t̄str) (and the corresponding standard deviation), under three different approaches,
are presented in Table 3. The first estimate is obtained using the formula by Rao (1973), as given in
Section 2. The second value is obtained from the population data, by re-calculating t̄str repeatedly
using random samples of size 500 and randomised phase 2 sampling ratio (all samples obtained us-
ing SRSWOR). This calculation is done for 10000 iterations and the sample variance of t̄str across
iterations is obtained. The formula by Rao (1973) clearly underestimates the variance of t̄str, due
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to the assumption of IID observations. Meanwhile, our proposed approach, which caters for within
stratum dependencies, produced an improved estimate for the variance (closer to the simulated vari-
ance from the population data).

5. Limitations to the method

There are several limitations to our approach that may be generalised or improved. Firstly, we
have implemented a very Bayesian-unlike approach, in the sense that we did not specify a prior
distribution for θ , nor a sampling distribution. More precisely, our method tries to capture the
varying effect of θ through the bootstrapped samples. This is of course allowing the data to overtake
any form of subjective prior information we may have for y, apart from the observed x values.
Secondly, we have assumed independence across strata. Consequently, all covariances across strata
were assumed to be zero. Relaxing this would again relate to specifying or estimating the joint
behaviour between θh in expression (1). In addition, the example in Section 4 is based on a singular
sample we have taken3 and further simulation is required to observe the overall performance of
our method. Further work should be done to compare our method to other general approaches to
estimating variance in complex designs (Lohr, 2010).

6. Conclusion

In this paper, we considered a scenario of two-phase stratification sampling design, where observa-
tions within stratum are assumed to be exchangeable and strata are assumed to be mutually inde-
pendent. A method is proposed for estimating the variance of the ratio estimator using stationary
bootstrapping at various levels of the sampling procedure. An example considered here demonstrates
that the standard variance estimate significantly overestimates the performance of the ratio estimator,
while our method provided a more conservative approximation.
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