

This work is funded by Gatsby, Royal Scoiety, NERC and BBSRC OpenPlant

Conserved Biochemical Defences Underpin Host Responses to **Oomycete Infection in an Early Divergent Land Plant**

Lineage

Philip Carella¹, Anna Gogleva, David Hoey¹, Anthony Bridgen¹, Sara Christina Stolze², Hirofumi Nakagami², Sebastian Schornack¹ Sebastian.schornack@slcu.cam.ac.uk, twitter: @dromius; ¹University of Cambridge, Sainsbury Laboratory, Cambridge, United Kingdom; ²Max-Planck-Institute for Plant Breeding Research, Cologne, Germany

While host responses to microbial colonization are extensively explored in evolutionarily young land plant lineages like angiosperms, we know relatively little about plant-pathogen interactions in earlier diverging land plants. We studied the response of the early divergent liverwort Marchantia polymorpha to infection with the oomycete pathogen *Phytophthora* palmivora. We uncovered a robust response to oomycete colonization in Marchantia that consists of conserved land plant gene families. Macroevolutionary comparisons of host infection responses in Marchantia and the angiosperm Nicotiana benthamiana revealed a shared set of orthologous microbe-responsive genes that include members of the phenylpropanoid pathway. The Marchantia transcription factor MpMyb14 activates the phenylpropanoid (flavonoid) biosynthesis during oomycete infection. MpMyb14 mediates the accumulation of anthocyanin-like pigments and enhanced resistance to infection.

4. Orthologous phenylpropanoid pathway genes are similarly induced in Nicotiana benthamiana and Marchantia

5. MpMyb14 upregulation coincides with the induction of flavonoid biosynthesis genes and pigment accumulation in *P. palmivora*-colonized Marchantia thalli

7. Over-accumulation of *MpMyb14*-regulated phenylpropanoids enhance resistance to *Phytophthora palmivora*

6. MpMyb14-dependent regulation of flavonoid biosynthesis genes is required for liverwort resistance to oomycete infection

HSP::M	HSP::MpMyb14	
Green tissue	Purnle tissue	

Check out Carella et al. (2019), Curr. Biol. and Carella et al. (2018), PNAS for more details on this cool system