optical interferometric imaging Ready to Go **Improved Sensitivity** **Off Axis Tracking** **Adaptive Optics** **Laser Guide Stars** Considerations for the Future of Optical Interferometry at the VLT Credit: ESO, Huedepohl #### GRAVITY+: Towards faint science, all sky milliarcsecond optical interferometric imaging Considerations for further Upgrades of Optical Interferometry at the VLT R. Genzel¹, F. Eisenhauer¹, O. Pfuhl¹, S. Lacour², S. Gillessen¹, W. Brandner⁸, T. Paumard², K. Perraut³, P. Garcia⁷, G. Perrin², C. Straubmeier⁶, T. de Zeeuw¹, and the GRAVITY Collaboration Co-authors: E. Sturm¹, T. Ott¹, J. Dexter¹, A. Eckart⁶, D. Mourard⁴, P. Kervella², F. Vincent², J.-P. Berger³, P.-O. Petrucci³, J.-B. Le Bouquin³, A. Chiavassa⁴, R. Petrov⁴, A. Matter⁴, F. Soulez⁵, I. Tallon-Bosc⁵, M. Tallon⁵, S. Kraus⁹, G. Weigelt¹⁰, S. Hönig¹¹, J.-U. Pott⁸, H.-W. Rix⁸, ¹ MPE, ² LESIA, ³ IPAG, ⁴ OCA, ⁵ CRAL, ⁶ UoC, ⁷ SIM, ⁸ MPIA, ⁹ UoE, ¹⁰ MPIfR, ¹¹ UoS #### **Executive Summary** GRAVITY and the VLTI have **transformed** optical interferometry with groundbreaking results on the Galactic Center, Active Galactic Nuclei, and Exoplanets. With modest upgrades to *GRAVITY*⁺, the Paranal Observatory will open up the **extragalactic sky** for milliarcsecond resolution interferometric imaging, and give access to **galactic** targets as **faint** as 22 mag. *GRAVITY*⁺ will measure the **black hole masses** of active galactic nuclei **across cosmic times**, establish whether globular clusters harbor **intermediate mass black holes**, and obtain high quality **exo**-**planet** spectra and orbits. The estimated cost of 13 Mio. € for the upgrade of GRAVITY to *GRAVITY*⁺ with off-axis fringe tracking, improved sensitivity, and laser-guide star adaptive optics is relatively modest, and can be divided up into **several phases**. On behalf of a **rapidly growing community**, we propose to conduct in the near future a more detailed study of the feasibility of *GRAVITY*⁺, with a goal of implementation in the early 2020s. Most of the upgrades will be **beneficial to all VLTI instruments**. #### The Harvest of the Last Years # Microlens ## Rotating BLR in 3C273 19+ mag limiting magnitude & polarimetry 3 R_S SgrA* Flare motion at ISCO 2 x 4 milli-arcsec resolution imaging #### **GRAVITY's Firsts** High resolution spectroscopy <50 μas imaging astrometry Micro-arcsec spectral differential astrometry #### Milliarcsecond Imaging "3D" Spectroscopy of η Carinae #### First Resolution of Microlensed Images Credit:ESO Einstein 1936: LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD $\Theta_{\rm E} = 1.85 \pm 0.014 \, {\rm mas}$ #### High Resolution Spectra of Exo-Planets in prep. #### **Galactic Center – Black Hole Paradigm** **Test of General Relativity** **Mass Concentration** **Gravitational redshift Local position invariance** Orbiting with 30% the speed of light near the point of no return #### Active Galactic Nuclei – Rotating BLR in 3C273 #### Active Galactic Nuclei – Rotating BLR in 3C273 #### 1 μas = 500 AU @ 1.8 Billion ly #### **Dynamical Mass** Faint All Sky Milli Arcsecond Imaging and Micro Arcsecond (Spectro) Astrometry #### Active Galactic Nuclei – at Cosmic Noon #### Resolving BLR in Quasars at High-z #### No Problem of Astrometric Signature ## **Ever Larger Line / Continuum Ratio** #### Resolving BLR in Quasars at High-z #### No Problem of Astrometric Signature K-Band ≈ 17.7 mag #### **Supermassive Binary Black Holes – Final Parsec Problem** adapted from Komossa+ 16, going back to Begelman, Blandford, Rees 80 #### **Supermassive Binary Black Holes – Final Parsec Problem** 0402 + 379 #### **Supermassive Binary Black Holes – Final Parsec Problem** #### Towards Faint All Sky Milli Arcsecond Imaging No Problem of Astronfettissignature acking **Laser Guide Stars** **Improved Sensitivity** **Adaptive Optics** **Current Fringe Tracking and Sensitivity Limits** Off Axis Fringe Tracking **Laser Guide Stars** **Improved Sensitivity** **Phased Implementation** **Adaptive Optics** #### **Much Better Grisms and Revolution in IR Detectors** ## **Germanium Grims with Antireflection Coating** Canon Inc. Factor 2-3 higher efficiency Ongoing ### Low Dark Current eAPD Detector **Improved Sensitivity** Factor 2 better noise than HAWAII detectors for long exposures Finger, Baker, Eisenhauer+ 19 #### Taking Advantage of Fantastic Unexplored Infrastructure Off Axis Fringe Tracking **Dual Beam Main Delay Lines** Hogenhuis+ 03 Factor 2 more photons, no splitting of light **Possible** 2019/20 #### **Differential Delay Lines** Pepe+ 08 #### **Star Separators** Nijenhuis+ 08 #### State of the Art Adaptive Optics **Galactic Center** Quasar Phase A this year **Adaptive Optics** Factor 3 – 4 better injection together with laser guide star for faint target resulting in additional Factor 2 – 3 better **Fringe Tracking** Strehl 55% Strehl 15% #### Laser Guide Stars are Key to Sky Coverage #### Factor Hundred Improvement for 3C273 Like Observations #### Off Axis FringeTracking Laser Guide Stars | Where | How much | Improvement | |---|---|----------------------| | Adaptive Optics | Strehl from 15 to 55% | Factor 3.7 | | Fringe Tracking | 550 to 150 nm RMS, corresponding to Visibility 35 to 90% | Factor 2.6 | | Instrument
Throughput | Grism efficiency from 25/50 to 70/90 %, rsp. for R4000/500 | Factor 2.3 | | Low Noise Detector, reduced metrology stray light | Readnoise 6 to 3 e-
Background 1 to 0.1 e ⁻ /s
(60 s exposure) | Factor 2.5 | | Off-axis operation | No light splitting | Factor 2 | | Total | | Factor >100 or 5 mag | **Improved Sensitivity** **Adaptive Optics** What Else – Supernovae as Example for Time Domain Astronomy Asymmetry, Jets, Element- and Dust Formation #### Supernovae #### Asymmetry, Jets, Element- and Dust Formation #### SN IIn / Plateau SN Circumstellar material ionized by UV v = 300000 km/s 1.5 mas @ 18 mag @ 100 Mpc @ 1yr #### What Else – Intermediate Mass Black Holes as Example for Astrometry **Omega Cen** #### What Else – Planet Formation Talks by Michael Ireland and Frantz Martinache #### What Else – Exoplanet Detection and Characterization Talks by Sylvestre Lacour and Denis Defrère What Else – Starformation Talk by Stefan Kraus #### What Else – Serving MATISSE Talk by Roman Petrov and Gerd Weigelt #### **And New Instruments** Talk by Florentin Millour #### **Phased Implementation** | Phase | Description | Hardware Cost | Comment | | |-------|--|---------------------------|--|--| | 1 | CD \\/ITV | MPE
unding
aranteed | cost covered by GRAVITY consortium October 2019 First observations of z=2 Quasars Characterization of outer scale of atmospheric turbulence for off-axis fringe tracking Residual fringe tracking residuals on UTs currently 3x larger than with ATs, corresponding to a sensitivity loss of 1-2 mag | | | 2 | Adaptive optics upgrade with higher order deformable mirror and Pyramid wave-front sensor for all four UTs | | - substantially improved limiting magnitude for faint-object on-
axis operation Applied for description description description deformance for high contrast ets) Applied for deformable DM and 750 k€ per new ensing) | | | 3 | Laser Guide Stars for UT1,2,3 | 6000 k€ | F lasers - Assuming 1 M€ per launch telescope, and 1 M€ per laser | | | 4 | Specialized Instrument | Total ≈ 13 M€ | e.g. nulling-interferometer, next generation fringe tracker | |