

optical interferometric imaging

Ready to Go

Improved Sensitivity

Off Axis Tracking

Adaptive Optics

Laser Guide Stars

Considerations for the Future of Optical Interferometry at the VLT

Credit: ESO, Huedepohl

GRAVITY+: Towards faint science, all sky milliarcsecond optical interferometric imaging

Considerations for further Upgrades of Optical Interferometry at the VLT

R. Genzel¹, F. Eisenhauer¹, O. Pfuhl¹, S. Lacour², S. Gillessen¹, W. Brandner⁸, T. Paumard², K. Perraut³, P. Garcia⁷, G. Perrin², C. Straubmeier⁶, T. de Zeeuw¹, and the GRAVITY Collaboration

Co-authors: E. Sturm¹, T. Ott¹, J. Dexter¹, A. Eckart⁶, D. Mourard⁴, P. Kervella², F. Vincent², J.-P. Berger³, P.-O. Petrucci³, J.-B. Le Bouquin³, A. Chiavassa⁴, R. Petrov⁴, A. Matter⁴, F. Soulez⁵, I. Tallon-Bosc⁵, M. Tallon⁵, S. Kraus⁹, G. Weigelt¹⁰, S. Hönig¹¹, J.-U. Pott⁸, H.-W. Rix⁸,

¹ MPE, ² LESIA, ³ IPAG, ⁴ OCA, ⁵ CRAL, ⁶ UoC, ⁷ SIM, ⁸ MPIA, ⁹ UoE, ¹⁰ MPIfR, ¹¹ UoS

Executive Summary

GRAVITY and the VLTI have **transformed** optical interferometry with groundbreaking results on the Galactic Center, Active Galactic Nuclei, and Exoplanets. With modest upgrades to *GRAVITY*⁺, the Paranal Observatory will open up the **extragalactic sky** for milliarcsecond resolution interferometric imaging, and give access to **galactic** targets as **faint** as 22 mag. *GRAVITY*⁺ will measure the **black hole masses** of active galactic nuclei **across cosmic times**, establish whether globular clusters harbor **intermediate mass black holes**, and obtain high quality **exo**-**planet** spectra and orbits. The estimated cost of 13 Mio. € for the upgrade of GRAVITY to *GRAVITY*⁺ with off-axis fringe tracking, improved sensitivity, and laser-guide star adaptive optics is relatively modest, and can be divided up into **several phases**. On behalf of a **rapidly growing community**, we propose to conduct in the near future a more detailed study of the feasibility of *GRAVITY*⁺, with a goal of implementation in the early 2020s. Most of the upgrades will be **beneficial to all VLTI instruments**.

The Harvest of the Last Years

Microlens

Rotating BLR in 3C273

19+ mag limiting magnitude & polarimetry

3 R_S

SgrA* Flare motion at ISCO

2 x 4 milli-arcsec resolution imaging

GRAVITY's Firsts

High resolution spectroscopy

<50 μas imaging astrometry

Micro-arcsec spectral differential astrometry

Milliarcsecond Imaging "3D" Spectroscopy of η Carinae

First Resolution of Microlensed Images

Credit:ESO Einstein 1936:

LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD $\Theta_{\rm E} = 1.85 \pm 0.014 \, {\rm mas}$

High Resolution Spectra of Exo-Planets

in prep.

Galactic Center – Black Hole Paradigm

Test of General Relativity

Mass Concentration

Gravitational redshift Local position invariance

Orbiting with 30% the speed of light near the point of no return

Active Galactic Nuclei – Rotating BLR in 3C273

Active Galactic Nuclei – Rotating BLR in 3C273

1 μas = 500 AU @ 1.8 Billion ly

Dynamical Mass

Faint All Sky Milli Arcsecond Imaging and Micro Arcsecond (Spectro) Astrometry

Active Galactic Nuclei – at Cosmic Noon

Resolving BLR in Quasars at High-z

No Problem of Astrometric Signature

Ever Larger Line / Continuum Ratio

Resolving BLR in Quasars at High-z

No Problem of Astrometric Signature

K-Band ≈ 17.7 mag

Supermassive Binary Black Holes – Final Parsec Problem

adapted from Komossa+ 16, going back to Begelman, Blandford, Rees 80

Supermassive Binary Black Holes – Final Parsec Problem

0402 + 379

Supermassive Binary Black Holes – Final Parsec Problem

Towards Faint All Sky Milli Arcsecond Imaging

No Problem of Astronfettissignature acking

Laser Guide Stars

Improved Sensitivity

Adaptive Optics

Current Fringe Tracking and Sensitivity Limits

Off Axis Fringe Tracking

Laser Guide Stars

Improved Sensitivity

Phased Implementation

Adaptive Optics

Much Better Grisms and Revolution in IR Detectors

Germanium Grims with Antireflection Coating

Canon Inc.

Factor 2-3 higher efficiency

Ongoing

Low Dark Current eAPD Detector

Improved Sensitivity

Factor 2 better
noise than
HAWAII
detectors for
long exposures

Finger, Baker, Eisenhauer+ 19

Taking Advantage of Fantastic Unexplored Infrastructure

Off Axis Fringe Tracking

Dual Beam Main Delay Lines

Hogenhuis+ 03

Factor 2 more photons, no splitting of light **Possible** 2019/20

Differential Delay Lines

Pepe+ 08

Star Separators

Nijenhuis+ 08

State of the Art Adaptive Optics

Galactic Center

Quasar

Phase A this year

Adaptive Optics

Factor 3 – 4 better injection together with laser guide star for faint target resulting in additional Factor 2 – 3 better

Fringe Tracking

Strehl 55% Strehl 15%

Laser Guide Stars are Key to Sky Coverage

Factor Hundred Improvement for 3C273 Like Observations

Off Axis FringeTracking

Laser Guide Stars

Where	How much	Improvement
Adaptive Optics	Strehl from 15 to 55%	Factor 3.7
Fringe Tracking	550 to 150 nm RMS, corresponding to Visibility 35 to 90%	Factor 2.6
Instrument Throughput	Grism efficiency from 25/50 to 70/90 %, rsp. for R4000/500	Factor 2.3
Low Noise Detector, reduced metrology stray light	Readnoise 6 to 3 e- Background 1 to 0.1 e ⁻ /s (60 s exposure)	Factor 2.5
Off-axis operation	No light splitting	Factor 2
Total		Factor >100 or 5 mag

Improved Sensitivity

Adaptive Optics

What Else – Supernovae as Example for Time Domain Astronomy Asymmetry, Jets, Element- and Dust Formation

Supernovae

Asymmetry, Jets, Element- and Dust Formation

SN IIn / Plateau SN

Circumstellar material ionized by UV v = 300000 km/s 1.5 mas @ 18 mag @ 100 Mpc @ 1yr

What Else – Intermediate Mass Black Holes

as Example for Astrometry

Omega Cen

What Else – Planet Formation

Talks by Michael Ireland and Frantz Martinache

What Else – Exoplanet Detection and Characterization

Talks by Sylvestre Lacour and Denis Defrère

What Else – Starformation

Talk by Stefan Kraus

What Else – Serving MATISSE

Talk by Roman Petrov

and Gerd Weigelt

And New Instruments

Talk by Florentin Millour

Phased Implementation

Phase	Description	Hardware Cost	Comment	
1	CD \\/ITV	MPE unding aranteed	 cost covered by GRAVITY consortium October 2019 First observations of z=2 Quasars Characterization of outer scale of atmospheric turbulence for off-axis fringe tracking Residual fringe tracking residuals on UTs currently 3x larger than with ATs, corresponding to a sensitivity loss of 1-2 mag 	
2	Adaptive optics upgrade with higher order deformable mirror and Pyramid wave-front sensor for all four UTs		- substantially improved limiting magnitude for faint-object on- axis operation Applied for description description description deformance for high contrast ets) Applied for deformable DM and 750 k€ per new ensing)	
3	Laser Guide Stars for UT1,2,3	6000 k€	F lasers - Assuming 1 M€ per launch telescope, and 1 M€ per laser	
4	Specialized Instrument	Total ≈ 13 M€	e.g. nulling-interferometer, next generation fringe tracker	

