MAVIS: <u>MCAO-A</u>SSISTED VISIBLE IMAGER AND <u>Spectrograph</u> For the VLT

SHARPER THAN JWST, DEEPER THAN HST

RICHARD MCDERMID, MACQUARIE UNIVERSITY ON BEHALF OF THE MAVIS CONSORTIUM

Instrument Software NGS WFS

Post-focal instrumentation: Imagers, spectrograph, image slicer or fibre pick off Management LGS WFS RTC AQ expertise Australian National University

- Australia joined ESO as strategic partner, July 2017
- Opened opportunities for leading instrumentation projects
- Instrumentation opportunities for Australia limited to La Silla and Paranal, but Adaptive Optics Facility (AOF) newly commissioned
- Key technical components of AOF:
 - Four laser guide stars, 20W each, operating above specifications
 - Deformable secondary mirror with high actuator density
- Currently mainly ground-layer AO (wide field, low Strehl)
- MUSE Narrow Field Mode approaches diffraction limit, but only for bright on-axis guide stars
- Full AOF science potential not being realized
- Led to Phase A call for optical AO imager/spectrograph

INAF

www.mavis-ao.org

nage slicer or fibre

Management LGS WFS RTC, AO expertise

INAF

AO system engineering Opto-mechanics

Instrument Software

SOME REASONS TO UNLOCK THE VISIBLE WITH AO

- Optical wavelengths are information-rich, with many well-understood astrophysical diagnostics
- Sky background is x1,000-10,000 times fainter than IR possible to compete with space ities
- Detectors are larger, lower noise, faster frame rates, and cheaper
- \blacktriangleright 500nm on an 8m gives same angular resolution as 2µm on an ELT

www.mavis-ao.org

nage slicer or fibre

Management LGS WFS RTC, AO expertise

INAF

AO system engineering Opto-mechanics

Instrument Software

SOME REASONS TO UNLOCK THE VISIBLE WITH AO

- Optical wavelengths are information-rich, with many well-understood astrophysical diagnostics
- Sky background is x1,000-10,000 times fainter than IR possible to compete with space in the space in the
- Detectors are larger, lower noise, faster frame rates, and cheaper
- \blacktriangleright 500nm on an 8m gives same angular resolution as 2µm on an ELT

www.mavis-ao.org

STITUTO NAZ

MCAO IN THE OPTICAL - IS IT DOABLE?

SINGLE CONJUGATE AO IN THE VISIBLE

- 650nm images from ForRunner @LBT
 - Adaptive secondary
 - ▶ 0.8" seeing
 - 50% Strehl ratio!
 - 18 milliarcsec FWHM
- Similar examples from:
 - ► SPHERE @VLT
 - MAG-AO @Magellan
 - MUSE Narrow Field Mode
- Visible AO is feasible!

Post-focal instrumenta Imagers, spectrograpi image slicer or fibre p Management LGS WFS RTC, AO expertise

www.mavis-ao.org

INAF

ISTITUTO NAZIONAL DI ASTROFISICA

MCAO IN THE NIR: **GEMS @ GEMINI**

- Facility instrument using MCAO is demonstrated
- MCAO in the optical - is it doable?

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

WHAT IS MAVIS?

Blog: www.mavis-ao.org

What is MAVIS?

MAVIS (MCAO-Assisted Visible Imager & Spectrograph) is a proposed instrument for ESO's VLT Adaptive Optics Facility that will provide near-diffraction limited image quality over a large field of view using Multi-Conjugate Adaptive Optics. MAVIS is an Australian-European project. More information at http://mavis-ao.org/mavis.

ÞAXU

Science with MAVIS

- Star formation histories of the local volume through resolved stellar populations
- Local group internal dynamics via proper motions and crowded field spectroscopy
- Resolving star formation clumps to high redshift
- Dark matter substructure via lensing
 Monitoring solar system bodies

Strawman MAVIS Requirements

Field of view	30"x30"
Angular resolution	FWHM ~ 20mas at V band
Wavelength coverage	VRI, extended to UBz
Strehl ratio	15% at V under median seeing conditions
Sky coverage	> 50% at Galactic Poles
Imager	~ 7mas pixel size. Broad and narrow band filters. Tuneable filters - to be explored
Spectrograph	Fibre + Starbug concepts to be explored: Highly multiplexed point-source capabilities Multiplexed compact IFUs (0.5" FoV) and larger FoV IFUs. R=5,000-10,000. Alternatively, 3"x3" image slicer IFU with 25mas spaxels.

Post-focal instrumenta Imagers, spectrograph image slicer or fibre p Management LGS WFS RTC, AO expertise

Simulations Post-processing AO Control

V4.0 2018/4/6

www.mavis-ao.org

WHAT IS MAVIS?

Blog: www.mavis-ao.org

What is MAVIS?

MAVIS (MCAO-Assisted Visible Imager & Spectrograph) is a proposed instrument for ESO's VLT Adaptive Optics Facility that will provide near-diffraction limited image quality over a large field of view using Multi-Conjugate Adaptive Optics. MAVIS is an Australian-European project.

More information at http://mavis-ao.org/mavis.

Imagers, spectrograp image slicer or fibre p Management LGS WES RTC, AO expertise

Simulations Post-processing AO Control

ISTITUTO NAZIONALE DI ASTROFISICA

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

Angular

resolution Wavelength

coverage Strehl ratio

Imager

Sky coverage

Spectrograph

FWHM ~ 20mas at V band

15% at V under median seeing conditions

~ 7mas pixel size. Broad and narrow band filters. Tuneable filters - to be explored Fibre + Starbug concepts to be explored:

Highly multiplexed point-source capabilities Multiplexed compact IFUs (0.5" FoV) and larger FoV IFUs, R=5.000-10.000. Alternatively, 3"x3" image slicer IFU with

VRI, extended to UBz

> 50% at Galactic Poles

25mas spaxels.

• INAF

V4.0 2018/4/6

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

MAVIS

Deeper than HST, Sharper than JWST

MAVIS OVERVIEW

WHAT IS MAVIS?

Blog: www.mavis-ao.org

Strawman MAVIS Requirements

Field of view	30"x30"	
Angular resolution	FWHM ~ 20mas at V band)
Wavelength coverage	VRI, extended to UBz	
Strehl ratio	15% at V under median seeing conditions	
Sky coverage	> 50% at Galactic Poles	_
Imager	~ 7mas pixel size. Broad and narrow band filters. Tuneable filters - to be explored	_
Spectrograph	Fibre + Starbug concepts to be explored: Highly multiplexed point-source capabilities Multiplexed compact IFUs (0.5" FoV) and larger FoV IFUs. R=5,000-10,000. Alternatively, 3"x3" image slicer IFU with 25mas spaxels.	ng ne be rc .5 0 ve

Post-focal instrumenta Imagers, spectrograp image slicer or fibre p Management LGS WFS RTC, AO expertise

Simulations Post-processing AO Control

FUTURE FACILITIES

- MAVIS operations overlaps well with ELT era
- Overlaps with JWST core (5yr) and goal (10yr) mission
- Will fill the gap left at optical wavelengths in the post-HST era

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

AO system engineering Opto-mechanics Instrument Software NGS WFS

FUTURE FACILITIES

- MAVIS operations overlaps well with ELT era
- Overlaps with JWST core (5yr) and goal (10yr) mission
- Will fill the gap left at optical wavelengths in the post-HST era

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

AO system engineering Opto-mechanics Instrument Software NGS WFS

INAF

ISTITUTO NAZIONAI DI ASTROFISICA

MAVIS will provide comparable sensitivity to JWST and ELTs, but with higher angular resolution

www.mavis-ao.org

INAF

MAVIS will provide comparable sensitivity to JWST and ELTs, but with higher angular resolution

www.mavis-ao.org

www.mavis-ao.org

PROCESS OF BUILDING THE PRE-PHASE A SCIENCE CASE

- March: Consolidate consortium partners in Europe; visited ESO
- April 2018: issued public call for MAVIS White Papers
- Series of MAVIS talks around Australian institutions
- Workshop May 2018 to discuss meshing of science and instrument designs and documentation
- Final White Papers submitted July 2018

PROCESS OF BUILDING THE PRE-PHASE A SCIENCE CASE

- March: Consolidate consortium partners in Europe; visited ESO
- April 2018: issued public call for MAVIS White Papers
- Series of MAVIS talks around Australian institutions
- Workshop May 2018 to discuss meshing of science and instrument designs and documentation
- Final White Papers submitted July 2018

AO system engineering Opto-mechanics

Instrument Softwar

ISTITUTO NAZIONA

Post-focal instrument Imagers, spectrograp image slicer or fibre p Management LGS WFS RTC, AO expertise

- 1. Key Questions
- 2. Open Problems
- 3. Observational Needs
- 4. Instrument Requirements (value and reason)
 - Field of View
 - Image Quality
 - Spectral Range
 - Spectral Resolution
 - Multiplexing Needs

AO system engineering Opto-mechanics

Instrument Softwar

ISTITUTO NAZIONALI DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

PROCESS OF BUILDING THE PRE-PHASE A SCIENCE CASE

- March: Consolidate consortium partners in Europe; visited ESO
- April 2018: issued public call for MAVIS White Papers
- Series of MAVIS talks around Australian institutions
- Workshop May 2018 to discuss meshing of science and instrument designs and documentation
- Final White Papers submitted July 2018

AO system engineering Opto-mechanics

Instrument Software

ISTITUTO NAZIONALI DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

PROCESS OF BUILDING THE PRE-PHASE A SCIENCE CASE

- March: Consolidate consortium partners in Europe; visited ESO
- April 2018: issued public call for MAVIS White Papers
- Series of MAVIS talks around Australian institutions
- Workshop May 2018 to discuss meshing of science and instrument designs and documentation
- Final White Papers submitted July 2018

ISTITUTO NAZIONAL DI ASTROFISICA NATIONAL INSTITUTE

MAVIS SCIENCE CASE

PROCESS OF BUILDING THE PRE-PHASE A SCIENCE CASE

- March: Consolidate consortium partners in Europe; visited ESO
- April 2018: issued public call for MAVIS White Papers
- Series of MAVIS talks around Australian institutions
- Workshop May 2018 to discuss meshing of science and instrument designs and documentation
- Final White Papers submitted July 2018

PROCESS OF BUILDING THE PRE-PHASE A SCIENCE CASE

- March: Consolidate consortium partners in Europe; visited ESO
- April 2018: issued public call for MAVIS White Papers
- Series of MAVIS talks around Australian institutions
- Workshop May 2018 to discuss meshing of science and instrument designs and documentation
- Final White Papers submitted July 2018

AO system engineering Opto-mechanics

Instrument Softwar

ISTITUTO NAZIONA

March: partner

PROCESS OF

MAVIS SCIENCE CASE

- April 20 MAVIS
- Series d Australi
- Worksh meshin designs
- **Final W** 2018

MAVIS White Papers Online

FEBRUARY 5, 2019

Following the successful MAVIS Phase A bid, we are very happy to release the wonderful collection of MAVIS White Papers to the public. Please follow this link to access the individual papers. A HUGE thanks goes to the many scientists from around ...

www.mavis-ao.org

SOLAR SYSTEM

- Ground-based campaigns play an important role in solar system science:
 - Monitoring programs
 - Unexpected events
 - Coordination with ESA
 - See talks by Heike Rauer and Fabio Favata
- MAVIS sky coverage and large field of view well suited to flexible observations of nonsidereal targets

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

WP Grassi et al.

ctrograp or fibre p

INAF

AO system engineering

STITUTO NAZ

SOLAR SYSTEM

- Ground-based campaigns play an important role in solar system science:
 - Monitoring programs
 - Unexpected events
 - Coordination with ESA
 - See talks by Heike Rauer and Fabio Favata
- MAVIS sky coverage and large field of view well suited to flexible observations of nonsidereal targets

eso1910 — Organisation Release

ESO contributes to protecting Earth from dangerous asteroids

VLT observes a passing double asteroid hurtling by Earth at 70 000 km/h

3 June 2019

strumenta

ctrograp

MAVIS SCIENCE CASE HIGHLIGHTS

-♦**۸**۲۷

• INAF

NGS WES

CIRCUMSTELLAR ENVIRONMENTS

INAF

MAVIS SCIENCE CASE HIGHLIGHTS

6D PHASE SPACE OF NEARBY DWARFS AND CLUSTERS

- Combined proper motions and radial velocities in regimes too faint for GAIA, and too crowded for HST
- Intermediate mass black hole detection
- Dark matter constraints

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

er or fibre p

INAF

ISTITUTO NAZ

MAVIS SCIENCE CASE HIGHLIGHTS

6D PHASE SPACE OF NEARBY DWARFS AND CLUSTERS

- Combined proper motions and radial velocities in regimes too faint for GAIA, and too crowded for HST
- Intermediate mass black hole detection
- Dark matter constraints

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

• INAF

AO system engineering

Opto-mechanics Instrument Software NGS WFS

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

MAVIS SCIENCE CASE HIGHLIGHTS

RESOLVING COMPLEXITY IN GALAXIES BEYOND THE LOCAL GROUP

Post-focal instrumenta grap bre p

• INAF

AO system engineering

Opto-mechanics Instrument Software NGS WES

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

MAVIS SCIENCE CASE HIGHLIGHTS

RESOLVING COMPLEXITY IN GALAXIES BEYOND THE LOCAL GROUP

100 pc/pixel 50 pc/pixel sqr. kpc **.**4² LMC at 48Mpc sqr. pc **20**² $\tilde{\mathbf{o}}$ 20″ 0.4 "/pix 0.2 "/pix **Seeing limited** VLT+GLAO

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

st-focal instrumenta rograpi fibre p

tise

www.mavis-ao.org

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE

www.mavis-ao.org

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

WP Tosi et al.

INAF

AO system engineering Opto-mechanics

Instrument Softwar NGS WES

STITUTO NAZ

INSTRUMENT AND SCIENCE SIMULATIONS

KEY SCIENCE SIMULATIONS: RESOLVED STELLAR POPULATIONS

- Run end-to-end simulations including realistic PSF effects, instrument noise, etc.
- Can be used to establish sensitivity limits for different use cases

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

-

→ / / / /

Imagers, spectrograph image slicer or fibre p Management I GS WES

• INAF

AO system engineering Opto-mechanics

Instrument Software

ISTITUTO NAZION, DI ASTROFISICA NATIONAL INSTITU

INSTRUMENT AND SCIENCE SIMULATIONS

KEY SCIENCE SIMULATIONS: RESOLVED STELLAR POPULATIONS

- Run end-to-end simulations including realistic PSF effects, instrument noise, etc.
- Can be used to establish sensitivity limits for different use cases

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

WP McDermid

ISTITUTO NAZIONALE

- ► Key future facilities JWST and ELT are not well-optimized for <1µm
- MAVIS is <u>crucial</u> to provide optical coverage at matched angular resolution to ELT in the IR

Generated using the Advanced Exposure Time Calculator (AETC) http://geode.oapd.inaf.it (Falomo et al. 2011)

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

ACCURATE PROPERTIES OF STAR FORMATION CLUMPS IN DISKS

MAVIS SCIENCE CASE HIGHLIGHTS

M83 datacube @ z=0.05, WP Mendel et al. 8.8 8.6 8.7 8.9 9.0 $12 + \log(O/H)$ [dex]

Disks are much more 'turbulent' at early times

Turbulence? Outflows/winds? Beam smearing?

www.mavis-ao.org

Separating gravitational motion from winds, outflows, shocks, etc. requires moderately high resolution

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

www.mavis-ao.org

8.7

8.6

FORMATION CLUMPS IN DISKS M83 datacube @ z=0.05, WP Mendel et al.

8.8

 $12 + \log(O/H)$ [dex]

8.9

9.0

ACCURATE PROPERTIES OF STAR

MAVIS SCIENCE CASE HIGHLIGHTS

MAVIS SCIENCE CASE HIGHLIGHTS

ACCURATE PROPERTIES OF STAR FORMATION CLUMPS IN DISKS

M83 datacube @ z=0.05, WP Mendel et al.

Simulations

AO Control

Post-processing

AO system engineering

Opto-mechanics Instrument Software NGS WES

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

Tamburello+17, WP Fisher, WP Gullieuszik et al.

MAVIS SCIENCE CASE HIGHLIGHTS

ACCURATE PROPERTIES OF STAR FORMATION CLUMPS IN DISKS

M83 datacube @ z=0.05, WP Mendel et al.

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

Tamburello+17, WP Fisher, WP Gullieuszik et al.

MAVIS SCIENCE CASE HIGHLIGHTS

ACCURATE PROPERTIES OF STAR FORMATION CLUMPS IN DISKS

Imagers, spectrograp image slicer or fibre p Management

LGS WFS RTC, AO expertise

• INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

DETECTING FIRST STAR CLUSTERS AND SPECTRALLY RESOLVING Z>6 GALSAALES VIA LENSING

www.mavis-ao.org

Simulations Post-processing AO Control

INSTRUMENT AND SCIENCE SIMULATIONS

Opto-mechanics

Instrument Software

Imagers, spectrograp image slicer or fibre p Management LGS WFS RTC, AO expertise

KEY SCIENCE SIMULATIONS: HIGH-Z GALAXIES

- First zero-order simulations in progress
- Based on rough guesses of instrument parameters and throughputs

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

WP Mannucci et al.

Simulations Post-processing AO Control

INSTRUMENT AND SCIENCE SIMULATIONS

Instrument Software NGS WFS

Post-focal instrumenta Imagers, spectrograpi image slicer or fibre p Management LGS WFS RTC, AO expertise

KEY SCIENCE SIMULATIONS: HIGH-Z GALAXIES

Sersic profiles

Clumpy galaxies

Galaxy models

WP Mannucci et al.

www.mavis-ao.org

mulations ost-processing

O Control

INAF

AO system engineering Opto-mechanics

Instrument Software

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

INSTRUMENT AND SCIENCE SIMULATIONS

KEY SCIENCE SIMULATIONS: HIGH-Z GALAXIES – IMAGING

600mas z=5 l=25

Post-focal instrumenta Imagers, spectrograpi image slicer or fibre p Management LGS WFS RTC, AO expertise

Pallottini et al 2017:

- M~ 1.6 · 10¹⁰ M⊙
- Re ~ 0.6 kpc ~ 100mas at z=5
- high resolution: ~30pc

 $T_{exp} = 1h$

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

WP Mannucci et al.

www.mavis-ao.org

Imagers, spectrograp image slicer or fibre p Management I GS WES

RTC, AO expertise

INAF

AO system engineering Opto-mechanics

Instrument Software

ISTITUTO NAZIONA DI ASTROFISICA NATIONAL INSTITUT FOR ASTROPHYSIC

- Can derive spatial info for I<24 use this as limiting magnitude</p>
- Typical target density in COSMOS field is ~5 per MAVIS field

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

WP Mannucci et al.

INAF

INSTRUMENT AND SCIENCE SIMULATIONS

KEY SCIENCE SIMULATIONS: BENEFIT OF MULTI-IFU

- M-IFU takes full advantage of the large corrected field
- Unique hi-res follow-up machine for e.g. blind MUSE+GLAO surveys

LAM

University

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

- Similar number of spectroscopy & imaging cases (>50% use <u>both</u>)
- U+B bands useful
- ► 30" FoV adequate

AU system engineering										^ntro
MFN	rs _	Science Theme								-
MENIS – troscopy & e <u>both</u>)		The Birth, Life, and Death of Stars and Their Planets	Star Clusters as Tracers of Galaxy Processes Within the Local Group	Directly Resolving Galaxy Contents Beyond the Local Group	The Evolving Complexity of Galaxy Structure Over 10 Billion Years	Probing the Edge of Reionization	All Science Cases	ESO TLRs	Requirement Goal	instrument. pectrograp er or fibre p ent xpertise
VIS	Imaging	82%	56%	81%	75%	60%	79%		TIR-1	
Ma	Spectroscopy	100%	78%	75%	69%	60%	<mark>83</mark> %			

-

€AX

	s	U	64%	11%	19%	25%	0%	28%		
	pue	В	82%	11%	50%	38%	0%	45%		
	C B	v	82%	56%	75%	63%	40%	72%		TLR-19
	etri	R	82%	44%	69%	69%	60%	72%		
er	E.	1	82%	56%	75%	63%	60%	7 <mark>4%</mark>		
lag	hot	z	9%	11%	19%	38%	20%	23%		
<u>E</u>	4	NB	9%	33%	6%	19%	0%	15%		
	of v	<30"	55%	0%	19%	19%	20%	25%		
	eld /iev	30"	45%	56%	75%	50%	40%	60%		TLR-31b
	ii /	>30"	0%	0%	0%	13%	0%	4%		

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

University

INAF

0%

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

Unit

- Monolithic IFU
- Multiplex desirable
- ► 3" FoV seems adequate

The Birth, Life, 64% 56% 1 Multiplex 11% 2-10 9% 11% 0% 19% 10+ 27% 56%

T								
elc	, of	<3"	55%	44%	25%	25%	40%	38%
ΙFi	eld /iew	3"	18%	22%	44%	50%	20%	38%
l a	Fie	>3"	27%	33%	31%	19%	0%	26%
teg								
<u>l</u>	be	IFU	100%	44%	63%	56%	40%	68%
	_7	Multi-IFU	36%	44%	38%	38%	40%	42%

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

MOS

LAN

l instrumenta spectrograp cer or fibre p

nent expertise

• INAF

AO system engineering

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

- ► Key range: 400-900nm
- R=5,000 satisfies most, but options for 1,000-10,000 desirable

Spectrograph

m st, but ,000 desirable					Science	Theme				
			The Birth, Life, and Death of Stars and Their Planets	Star Clusters as Tracers of Galaxy Processes Within the Local Group	Directly Resolving Galaxy Contents Beyond the Local Group	The Evolving Complexity of Galaxy Structure Over 10 Billion Years	Probing the Edge of Reionization	All Science Cases	ESO TLRs	Requireme Goal
		<400	36%	11%	31%	25%	0%	26%		
	ĉ	400-500	73%	44%	50%	44%	20%	53%		
	E)	500-600	82%	22%	75%	63%	40%	66%		
	gth	600-700	100%	33%	75%	69%	40%	74%		
	len	700-800	91%	33%	63%	69%	60%	70%		11140
	ave	800-900	91%	33%	56%	69%	60%	68%		
	3	900-1000	36%	11%	25%	44%	60%	36%		
		1000+	0%	0%	0%	6%	20%	4%		
				-						
	-	<1000	55%	0%	0%	6%	0%	13%		
	tior	1,000-4,999	36%	22%	6%	38%	40%	28%	_	
	olu	5,000	55%	44%	50%	50%	20%	51%		TLR-39
	Res	5,001-10,000	27%	44%	31%	25%	0%	30%		
		>10,000	36%	33%	13%	0%	0%	17%		

€-XX

www.mavis-ao.org

White Papers demand broad range of requirements – need to down-select Hargements

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

RTC, AO expertise

AO system engineering Opto-mechanics Instrument Software

> Simulations Post-processing AO Control

AO system engineering

Opto-mechanics Instrument Softwar NGS WES

ISTITUTO NAZIONALE

- Scientific Impact: Addressing important and timely science questions?
- Detailed Feasibility: Is the S/N, target density, sky coverage, etc. sufficient?
- Competitiveness: Compare with existing/planned facilities
- MCAO in optical has never been done before need to establish feasibility
 - Sky coverage No compromise approach, test against 'real life' use cases
 - Number of LGS sources May need more than 4 to meet requirements
- MAVIS will be a <u>facility instrument</u>, and so must be:
 - Versatile Maximise sky coverage, rich discovery space, multiple use-cases
 - Sensitive Maximise throughput and sensitivity
 - **Stable** Allow deep-exposures, high repeatability, high-quality astrometry
 - **Robust** Push-button operations, high up-time, minimal modes

www.mavis-ao.org

www.mavis-ao.org

Richard McDermid - MAVIS Overview, VLT 2030, June 2019

Blog: <u>www.mavis-ao.org</u> Email List Signup: <u>bitly.com/join_mavis_list</u> Contact: <u>project-scientist@mavis-ao.org</u>