Logarithmic Space Verifiers on NP-complete

Frank Vega (
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. NP is the complexity class of languages defined by polynomial time verifiers M such that when the input is an element of the language with its certificate, then M outputs a string which belongs to a single language in P . Another major complexity classes are L and NL. The certificate-based definition of NL is based on logarithmic space Turing machine with an additional special read-once input tape: This is called a logarithmic space verifier. NL is the complexity class of languages defined by logarithmic space verifiers M such that when the input is an element of the language with its certificate, then M outputs 1. To attack the P versus NP problem, the NP-completeness is a useful concept. We demonstrate there is an NP-complete language defined by a logarithmic space verifier M such that when the input is an element of the language with its certificate, then M outputs a string which belongs to a single language in L.

2012 ACM Subject Classification Theory of computation \rightarrow Complexity classes; Theory of computation \rightarrow Problems, reductions and completeness

Keywords and phrases Complexity classes, Completeness, Verifier, Reduction, Polynomial time, Logarithmic space

1 Preliminaries

In 1936, Turing developed his theoretical computational model [12]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [12]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [12]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [12].

Let Σ be a finite alphabet with at least two elements, and let Σ^{*} be the set of finite strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each string w in Σ^{*} there is a computation associated with M on input $w[3]$. We say that M accepts w if this computation terminates in the accepting state, that is $M(w)=1$ (when M outputs 1 on the input w) [3]. Note that M fails to accept w either if this computation ends in the rejecting state, that is $M(w)=0$, or if the computation fails to terminate, or the computation ends in the halting state with some output, that is $M(w)=y$ (when M outputs the string y on the input w) [3].

The language accepted by a Turing machine M, denoted $L(M)$, has an associated alphabet Σ and is defined by:

$$
L(M)=\left\{w \in \Sigma^{*}: M(w)=1\right\}
$$

We denote by $t_{M}(w)$ the number of steps in the computation of M on input $w[3]$. For $n \in \mathbb{N}$ we denote by $T_{M}(n)$ the worst case run time of M; that is:

$$
T_{M}(n)=\max \left\{t_{M}(w): w \in \Sigma^{n}\right\}
$$

where Σ^{n} is the set of all strings over Σ of length $n[3]$. We say that M runs in polynomial time if there is a constant k such that for all $n, T_{M}(n) \leq n^{k}+k[3]$. In other words, this means the language $L(M)$ can be decided by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be decided by deterministic Turing machines in polynomial time [5]. A verifier for a language L_{1} is a deterministic Turing machine M, where:

$$
L_{1}=\{w: M(w, c)=1 \text { for some string } c\}
$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of $w[3]$. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L_{1}. This information is called certificate. $N P$ is the complexity class of languages defined by polynomial time verifiers [10].

- Lemma 1. Given a language $L_{1} \in P$, a language L_{2} is in $N P$ if there is a deterministic Turing machine M, where:

$$
L_{2}=\left\{w: M(w, c)=y \text { for some string } c \text { such that } y \in L_{1}\right\}
$$

and M runs in polynomial time in the length of w. In this way, $N P$ is the complexity class of languages defined by polynomial time verifiers M such that when the input is an element of the language with its certificate, then M outputs a string which belongs to a single language in P.

Proof. If L_{1} can be decided by the Turing machine M^{\prime} in polynomial time, then the deterministic Turing machine $M^{\prime \prime}(w, c)=M^{\prime}(M(w, c))$ will output 1 when $w \in L_{2}$. Consequently, $M^{\prime \prime}$ is a polynomial time verifier of L_{2} and thus, L_{2} is in $N P$.

2 Hypothesis

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some deterministic Turing machine M, on every input w, halts in polynomial time with just $f(w)$ on its tape [12]. Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is polynomial time reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{p} L_{2}$, if there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:
$x \in L_{1}$ if and only if $f(x) \in L_{2}$.
An important complexity class is $N P$-complete [8]. A language $L_{1} \subseteq\{0,1\}^{*}$ is $N P$-complete if:

- $L_{1} \in N P$, and
- $L^{\prime} \leq_{p} L_{1}$ for every $L^{\prime} \in N P$.

If L_{1} is a language such that $L^{\prime} \leq_{p} L_{1}$ for some $L^{\prime} \in N P$-complete, then L_{1} is $N P$-hard [5]. Moreover, if $L_{1} \in N P$, then $L_{1} \in N P$-complete [5]. A principal $N P$-complete problem is $S A T$ [6]. An instance of $S A T$ is a Boolean formula ϕ which is composed of:

1. Boolean variables: $x_{1}, x_{2}, \ldots, x_{n}$;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as $\wedge(\mathrm{AND}), \vee(\mathrm{OR}), \rightharpoondown(\mathrm{NOT}), \Rightarrow($ implication $), \Leftrightarrow($ if and only if $) ;$
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A formula with a satisfying truth assignment is a satisfiable formula. The problem $S A T$ asks whether a given Boolean formula is satisfiable [6]. We define a $C N F$ Boolean formula using the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [5]. A Boolean formula is in conjunctive normal form, or $C N F$, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [5]. A Boolean formula is in 3-conjunctive normal form or $3 C N F$, if each clause has exactly three distinct literals [5].

For example, the Boolean formula:

$$
\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge\left(\rightharpoondown x_{1} \vee \rightharpoondown x_{3} \vee \rightharpoondown x_{4}\right)
$$

is in $3 C N F$. The first of its three clauses is $\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right)$, which contains the three literals $x_{1}, \rightharpoondown x_{1}$, and $\rightharpoondown x_{2}$. Another relevant $N P$-complete language is $3 C N F$ satisfiability, or $3 S A T$ [5]. In $3 S A T$, it is asked whether a given Boolean formula ϕ in $3 C N F$ is satisfiable.

A logarithmic space Turing machine has a read-only input tape, a write-only output tape, and read/write work tapes [12]. The work tapes may contain at most $O(\log n)$ symbols [12]. In computational complexity theory, L is the complexity class containing those decision problems that can be decided by a deterministic logarithmic space Turing machine [10]. $N L$ is the complexity class containing the decision problems that can be decided by a nondeterministic logarithmic space Turing machine [10].

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-only output tape, and read/write work tapes [12]. The work tapes must contain at most $O(\log n)$ symbols [12]. A logarithmic space transducer M computes a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where $f(w)$ is the string remaining on the output tape after M halts when it is started with w on its input tape [12]. We call f a logarithmic space computable function [12]. We say that a language $L_{1} \subseteq\{0,1\}^{*}$ is logarithmic space reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{l} L_{2}$, if there exists a logarithmic space computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$,

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

The logarithmic space reduction is frequently used for L and $N L$ [10]. A Boolean formula is in 2-conjunctive normal form, or $2 C N F$, if it is in $C N F$ and each clause has exactly two distinct literals. There is a problem called $2 S A T$, where we asked whether a given Boolean formula ϕ in $2 C N F$ is satisfiable. $2 S A T$ is complete for $N L$ [10]. Another special case is the class of problems where each clause contains $X O R$ (i.e. exclusive or) rather than (plain) $O R$ operators. This is in P, since an $X O R S A T$ formula can also be viewed as a system of linear equations mod 2 , and can be solved in cubic time by Gaussian elimination [9]. We denote the $X O R$ function as \oplus. The $X O R$ 2SAT problem will be equivalent to $X O R S A T$, but the clauses in the formula have exactly two distinct literals. XOR $2 S A T$ is in L [2], [11].

We can give a certificate-based definition for $N L$ [3]. The certificate-based definition of $N L$ assumes that a logarithmic space Turing machine has another separated read-only tape [3]. On each step of the machine the machine's head on that tape can either stay in place or move to the right [3]. In particular, it cannot reread any bit to the left of where the head currently is [3]. For that reason this kind of special tape is called "read once" [3].

- Definition 2. A language L_{1} is in $N L$ if there exists a deterministic logarithmic space Turing machine M with an additional special read-once input tape polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in\{0,1\}^{*}$,

$$
x \in L_{1} \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)} \text { such that } M(x, u)=1
$$

where by $M(x, u)$ we denote the computation of M where x is placed on its input tape and u is placed on its special read-once tape, and M uses at most $O(\log |x|)$ space on its read/write tapes for every input x where $|\ldots|$ is the bit-length function [3]. M is called a logarithmic space verifier [3].

We state the following Hypothesis:

\triangleright Hypothesis 3. Given a language $L_{1} \in L$, there is a language L_{2} in $N P$-complete with a deterministic Turing machine M, where:

$$
L_{2}=\left\{w: M(w, u)=y \text { for some string } u \text { such that } y \in L_{1}\right\}
$$

when M runs in logarithmic space in the length of w, u is placed on the special read-once tape of M, and u is polynomially bounded by w. In this way, there is an $N P$-complete language defined by a logarithmic space verifier M such that when the input is an element of the language with its certificate, then M outputs a string which belongs to a single language in L.

3 Motivation

The P versus $N P$ problem is a major unsolved problem in computer science [4]. This is considered by many to be the most important open problem in the field [4]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US $\$ 1,000,000$ prize for the first correct solution [4]. It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency [1]. However, the precise statement of the $P=N P$ problem was introduced in 1971 by Stephen Cook in a seminal paper [4]. In 2012, a poll of 151 researchers showed that $126(83 \%)$ believed the answer to be no, $12(9 \%)$ believed the answer is yes, $5(3 \%)$ believed the question may be independent of the currently accepted axioms and therefore impossible to prove or disprove, $8(5 \%)$ said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [7]. It is fully expected that $P \neq N P$ [10]. Indeed, if $P=N P$ then there are stunning practical consequences [10]. For that reason, $P=N P$ is considered as a very unlikely event [10]. Certainly, P versus $N P$ is one of the greatest open problems in science and a correct solution for this incognita will have a great impact not only in computer science, but for many other fields as well [1]. Whether $P=N P$ or not is still a controversial and unsolved problem [1]. In this work, we show some results that might help us to solve one of the most important open problems in computer science.

4 Problems

These are the problems that we are going to discuss:

- Definition 4. MONOTONE NAE 3SAT

INSTANCE: A Boolean formula ϕ in $3 C N F$ such that each clause has no negation variables.

QUESTION: Is there a truth assignment for ϕ such that each clause has at least one true literal and at least one false literal?

REMARKS: This is equivalent to the special case of the NP-complete problem known as SET SPLITTING when the sets in the input have exactly three elements and therefore, MONOTONE NAE 3SAT $\in N P$-complete [6].

- Definition 5. MINIMUM EXCLUSIVE-OR 2-SATISFIABILITY

INSTANCE: A positive integer K and a Boolean formula ϕ that is an instance of XOR 2SAT such that each clause has no negation variables.

QUESTION: Is there a truth assignment in ϕ such that at most K clauses are unsatisfiable?

REMARKS: We denote this problem as MIN $\oplus 2 S A T$.

- Definition 6. K EXACT COVER-2

INSTANCE: A positive integer K, a "universe" set U of natural numbers and a family of n sets $S_{i} \subseteq U$ with the property that every element in U appears at most twice in the list $S_{1}, \ldots, S n$.

QUESTION: Is it the case there is a subfamily $S_{1}^{\prime}, \ldots, S_{m}^{\prime}$ with $m \leq n$ after removing K different numbers in U from the whole list $S_{1}, \ldots, S n$, such that $S_{i}^{\prime} \cap S_{j}^{\prime}=\emptyset$ for $1 \leq i \neq j \leq m$ and $S_{1}^{\prime} \cup \ldots \cup S_{m}^{\prime}=U^{\prime}$ where U^{\prime} is equal to the set U without the removed K different numbers?

REMARKS: We denote this problem as KEC-2.

- Definition 7. EXACT SEPARATE COVER-2

INSTANCE: A positive integer m, a "universe" set U and a collection of n pairs $T_{i}=$ $\left(x, S_{i}\right)$ such that x is a positive integer and $S_{i} \subseteq U$ is a set with the property that every element in U appears at most twice in the list $S_{1}, \ldots, S n$ from the pairs $T_{1}, \ldots, T n$. For every pair $T_{j}=\left(x, S_{j}\right)$, the positive integer x appears exactly once in a single pair $T_{i}=\left(x, S_{i}\right)$ for $i \leq m$. We assume the elements in the set S_{i} of each pair T_{i} appear sorted in the input with ascending order. Moreover, a set S_{i} from a pair T_{i} could be equal to the set \emptyset. Furthermore, if we have two pairs $T_{i}=\left(x, S_{i}\right)$ and $T_{j}=\left(y, S_{j}\right)$ such that $x=y, i<j, S_{i} \neq \emptyset$ and $S_{j} \neq \emptyset$, then the minimum element of S_{j} is greater than the maximum element of S_{i}.

QUESTION: Is it the case there is a family of sets $S_{1}^{\prime}, \ldots, S_{n^{\prime}}^{\prime}$ with $n^{\prime} \leq n$, such that $S_{i}^{\prime} \cap S_{j}^{\prime}=\emptyset$ for $1 \leq i \neq j \leq n^{\prime}$ where S_{i}^{\prime} is equal to the union of sets $\bigcup_{j} S_{j}$ for all $T_{j}=\left(y, S_{j}\right)$ when $x=y$ for a single value x and $S_{1}^{\prime} \cup \ldots \cup S_{n^{\prime}}^{\prime}=U$?

REMARKS: We denote this problem as ESC-2.

- Definition 8. EXACT COVER-2

INSTANCE: A "universe" set U and a family of n sets $S_{i} \subseteq U$ with the property that every element in U appears at most twice in the list $S_{1}, \ldots, S n$.

QUESTION: Is it the case there is a subfamily $S_{1}^{\prime}, \ldots, S_{m}^{\prime}$ with $m \leq n$, such that $S_{i}^{\prime} \cap S_{j}^{\prime}=\emptyset$ for $1 \leq i \neq j \leq m$ and $S_{1}^{\prime} \cup \ldots \cup S_{m}^{\prime}=U$?

REMARKS: We denote this problem as EC-2. EC-2 $\in L$ [2], [11].

5 Results

- Theorem 9. MIN $\oplus 2 S A T \in N P$-complete.

Proof. It is trivial to see $M I N \oplus 2 S A T \in N P$ [10]. Given a Boolean formula ϕ in $3 C N F$ with n variables and m clauses such that each clause has no negation variables, we create
three new variables $a_{c_{i}}, b_{c_{i}}$ and $d_{c_{i}}$ for each clause $c_{i}=(x \vee y \vee z)$ in ϕ, where x, y and z are positive literals, in the following formula:

$$
P_{i}=\left(a_{c_{i}} \oplus b_{c_{i}}\right) \wedge\left(b_{c_{i}} \oplus d_{c_{i}}\right) \wedge\left(a_{c_{i}} \oplus d_{c_{i}}\right) \wedge\left(x \oplus a_{c_{i}}\right) \wedge\left(y \oplus b_{c_{i}}\right) \wedge\left(z \oplus d_{c_{i}}\right) .
$$

We can see P_{i} has at most one unsatisfiable clause for some truth assignment if and only if at least one member of $\{x, y, z\}$ is true and at least one member of $\{x, y, z\}$ is false for the same truth assignment. Hence, we can create the Boolean formula ψ as the conjunction of the P_{i} formulas for every clause c_{i} in ϕ, such that $\psi=P_{1} \wedge \ldots \wedge P_{m}$. Finally, we obtain that

$$
\phi \in M O N O T O N E \text { NAE 3SAT if and only if }(\psi, m) \in M I N \oplus 2 S A T \text {. }
$$

Consequently, we prove MONOTONE NAE $3 S A T \leq_{p} M I N \oplus 2 S A T$ where we already know MONOTONE NAE $3 S A T \in N P$-complete [6]. To sum up, we show MIN $\oplus 2 S A T \in N P$-hard and $M I N \oplus 2 S A T \in N P$ and thus, $M I N \oplus 2 S A T \in N P$-complete.

- Theorem 10. KEC-2 $\in N P$-complete.

Proof. It is trivial to see $K E C-2 \in N P$ [10]. Given a Boolean formula ϕ that is an instance of $X O R$ 2SAT with n variables and m clauses such that each clause has no negation variables, we create a new set S_{x} for each variable x in ϕ and we iterate for each clause $c_{i}=(x \oplus y)$ in ϕ from $i=1$ to m, where x and y are positive literals, and modify the following sets: $S_{x}=S_{x} \cup\{i\}$ and $S_{y}=S_{y} \cup\{i\}$. We create the "universe" set U as $\{1, \ldots, m\}$. In this way, we obtain a "universe" set U of natural numbers and a family of n sets $S_{j} \subseteq U$ with the property that every element in U appears at most twice in the list $S_{1}, \ldots, S n$.

We can see if we have a subfamily $S_{1}^{\prime}, \ldots, S_{n^{\prime}}^{\prime}$ with $n^{\prime} \leq n$ after removing K different numbers in U from the whole list $S_{1}, \ldots, S n$, such that $S_{i}^{\prime} \cap S_{j}^{\prime}=\emptyset$ for $1 \leq i \neq j \leq n^{\prime}$ and $S_{1}^{\prime} \cup \ldots \cup S_{n^{\prime}}^{\prime}=U^{\prime}$ where U^{\prime} is equal to the set U without the removed K different numbers, then we obtain exactly $m-K$ satisfiable clauses in ϕ for a truth assignment where the variable x is true if and only if S_{x} belongs to the subfamily $S_{1}^{\prime}, \ldots, S_{n^{\prime}}^{\prime}$. However, this would mean if there are exactly $m-K$ satisfiable clauses in ϕ for a truth assignment, then there are at most K unsatisfiable clauses in ϕ for the same truth assignment. Finally, we obtain that

$$
(\phi, K) \in M I N \oplus 2 S A T \text { if and only if }\left(K, U, S_{1}, \ldots, S n\right) \in K E C-2 .
$$

Consequently, we prove $M I N \oplus 2 S A T \leq{ }_{p} K E C-2$ where we already know $M I N \oplus 2 S A T \in$ $N P$-complete by Theorem 9. To sum up, we show KEC-2 $\in N P$-hard and KEC-2 $\in N P$ and thus, KEC-2 $\in N P$-complete.

- Theorem 11. $E S C-2 \in L$.

Proof. Given a valid instance $m, U, T_{1}, \ldots, T n$ for $E S C-2$, we can create a family of sets $S_{1}, \ldots, S_{m^{\prime}}$ with $m^{\prime} \leq n$ where S_{i} is equal to the union of sets $\bigcup_{j} S_{j}$ for all $T_{j}=\left(y, S_{j}\right)$ when $x=y$ for a single value x. This family of sets $S_{1}, \ldots, S_{m^{\prime}}$ with the same "universe" set U of the instance of $E S C-2$ is actually a valid instance for $E C-2$ since every element in U appears at most twice in the list $S_{1}, \ldots, S m^{\prime}$. Moreover, due to the properties of the acceptance instances of $E S C-2$, we obtain that:

$$
\left(m, U, T_{1}, \ldots, T n\right) \in E S C-2 \text { if and only if }\left(U, S_{1}, \ldots, S m^{\prime}\right) \in E C-2 .
$$

Furthermore, we can make this reduction in logarithmic space since for every pair $T_{j}=\left(x, S_{j}\right)$, the positive integer x appears exactly once in a single pair $T_{i}=\left(x, S_{i}\right)$ for $i \leq m$. Hence, we
only need to iterate from $i=1$ to m on the pairs $T_{i}=\left(x, S_{i}\right)$ and join the sets $S_{i} \cup\left(\bigcup_{j} S_{j}\right)$ for all $T_{j}=\left(y, S_{j}\right)$ when $x=y$ for a single value x and $m<j \leq n$. This logarithmic space reduction will be the Algorithm 1. Certainly, the variables of the Algorithm 1 use at most logarithmic space in relation to the length of the input. If some problem L_{1} is logarithmic space reduced to another problem in L, then $L_{1} \in L$. Consequently, $E S C-2 \in L$ because $E C-2 \in L[2],[11]$.

- Theorem 12. There is a deterministic Turing machine M, where:

$$
K E C-2=\{w: M(w, u)=y \text { for some string } u \text { such that } y \in E S C-2\}
$$

when M runs in logarithmic space in the length of w, u is placed on the special read-once tape of M, and u is polynomially bounded by w.

Proof. Given a valid instance $K, U, S_{1}, \ldots, S m$ for $K E C$-2, we can create a certificate array A which contains the K different natural numbers in U sorted in ascending order that we are going to remove from the instance. We read at once the elements of the array A and we reject whether this is not a valid certificate: That is when the numbers are not sorted in ascending order, or the array A does not contain exactly K elements, or the array A contains a number that is not in U. While we read the elements of the array A, we remove them from the instance $K, U, S_{1}, \ldots, S m$ for $K E C$-2 just creating another instance $m, U^{\prime}, T_{1}, \ldots, T n^{\prime}$ for $E S C$-2 where the "universe" set U^{\prime} is equal to U without the K different numbers in A and m is the number of different sets from the list $S_{1}, \ldots, S m$. The final pairs $T_{i}=\left(x, S_{i}\right)$ will not contain inside of S_{i} any of the K different natural numbers in U. Therefore, we obtain that:

$$
\left(K, U, S_{1}, \ldots, S m\right) \in K E C-2 \text { if and only if }\left(m, U^{\prime}, T_{1}, \ldots, T n^{\prime}\right) \in E S C-2 .
$$

Furthermore, we can make this verification in logarithmic space such that the array A is placed on the special read-once tape, because we read at once the elements in the array A and we remove the K different natural numbers from the output. Hence, we only need to iterate from the elements of the array A to verify whether the array is a valid certificate and also remove all the K different natural numbers from the sets S_{i} in the pairs $T_{i}=\left(x, S_{i}\right)$. This logarithmic space verification will be the Algorithm 2. In this Algorithm we guarantee:

1. Every element in U^{\prime} appears at most twice in the list $S_{1}, \ldots, S n^{\prime}$ from the pairs $T_{1}, \ldots, T n^{\prime}$.
2. For every pair $T_{j}=\left(x, S_{j}\right)$, the positive integer x appears exactly once in a single pair $T_{i}=\left(x, S_{i}\right)$ for $i \leq m$.
3. The elements in the set S_{i} of each pair T_{i} appear sorted in the input with ascending order.
4. A set S_{i} from a pair T_{i} could be equal to the set \emptyset.
5. If we have two pairs $T_{i}=\left(x, S_{i}\right)$ and $T_{j}=\left(y, S_{j}\right)$ such that $x=y, i<j, S_{i} \neq \emptyset$ and $S_{j} \neq \emptyset$, then the minimum element of S_{j} is greater than the maximum element of S_{i}.

Note, in the loop e_{j} from \min to $\max -1$, we do nothing when $\max -1<\min$: Indeed, in that iteration the output pairs $T_{i}=\left(x, S_{i}\right)$ will comply with $S_{i}=\emptyset$. Certainly, the variables of the Algorithm 2 use at most logarithmic space in relation to the length of the input.

- Theorem 13. The Hypothesis 3 is true.

Proof. This is a consequence of Theorems 10, 11 and 12.

```
Algorithm 1 Logarithmic space reduction
    /*A valid instance for \(E S C-2^{*} /\)
    procedure \(R E D U C T I O N\left(m, U, T_{1}, \ldots, T n\right)\)
        /*Output the "universe" set*/
        output \(U\)
        /*Iterate for the first \(m\) pairs*/
        for \(i \leftarrow 1\) to \(m\) do
            /*Initialize the set output*/
            output " \(\{\) "
            \(\left(x, S_{i}\right) \leftarrow T_{i}\)
            /*The first element of the set*/
            initial \(\leftarrow \emptyset\)
            /*Output the elements of \(S_{i}{ }^{*} /\)
            for all \(e_{i} \in S_{i}\) do
                /*The first element has not been printed in the output*/
                if initial \(=\emptyset\) then
                    output " \(e_{i}\) "
                    initial \(\leftarrow\left\{e_{i}\right\}\)
                else
                        output ",\(e_{i}\) "
                end if
            end for
            /*Iterate for the next elements*/
            for \(j \leftarrow m+1\) to \(n\) do
                \(\left(y, S_{j}\right) \leftarrow T_{j}\)
                /*If \(x\) is equal to \(y^{*} /\)
                if \(x=y\) then
                    \(/ *\) Output the elements of \(S_{j}{ }^{*} /\)
                    for all \(e_{j} \in S_{j}\) do
                            if initial \(=\emptyset\) then
                            output " \(e_{j}\) "
                            initial \(\leftarrow\left\{e_{j}\right\}\)
                    else
                            output ",\(e_{j}\) "
                    end if
                    end for
                end if
            end for
            /*Finalize the set output*/
            output "\},"
        end for
    end procedure
```

```
Algorithm 2 Logarithmic space verifier
    /*A valid instance for \(K E C\)-2 with its certificate*/
    procedure \(\operatorname{VERIFIER}\left(\left(K, U, S_{1}, \ldots, S m\right), A\right)\)
        /*Output the value of \(m^{*} /\)
        output \(m\)
        /*Initialize minimum and maximum values*/
        \(\min \leftarrow 1\)
        \(\max \leftarrow 0\)
        /*Iterate for the elements of the certificate array \(A^{*} /\)
        for \(i \leftarrow 1\) to \(K+1\) do
            if \(i=K+1\) then
                /*There exists a \(K+1\) element in the array*/
                    if \(A[i] \neq\) undefined then
                /*Reject the certificate*/
                return 0
            end if
            \(/{ }^{*}\) maximum \((U)\) is equal to the maximum number in \(U^{*} /\)
            \(\max \leftarrow \operatorname{maximum}(U)+1\)
        else if \(A[i]=\) undefined \(\vee A[i] \leq \max \vee A[i] \notin U\) then
            /*Reject the certificate*/
            return 0
        else
            \(\max \leftarrow A[i]\)
        end if
        /*Iterate for the sets \(S_{j}{ }^{*} /\)
        for \(j \leftarrow 1\) to \(m\) do
            /*Initialize the pair output*/
            output " \(j\), , "
            initial \(\leftarrow \emptyset\)
            for \(e_{j} \leftarrow \min\) to \(\max -1\) do
                if \(e_{j} \in S_{j}\) then
                    if initial \(=\emptyset\) then
                                    output " \(e_{j}\) "
                                    initial \(\leftarrow\left\{e_{j}\right\}\)
                                    else
                                    output ",\(e_{j}\) "
                    end if
                end if
            end for
            /*Finalize the pair output*/
            output "\}), "
        end for
        \(\min \leftarrow \max +1\)
        end for
    end procedure
```

\qquad
1 Scott Aaronson. P $\stackrel{?}{=}$ NP. Electronic Colloquium on Computational Complexity, Report No. 4, 2017.

2 Carme Álvarez and Raymond Greenlaw. A Compendium of Problems Complete for Symmetric Logarithmic Space. Computational Complexity, 9(2):123-145, 2000. doi:10.1007/PL00001603.
3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
4 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at http://www.claymath.org/sites/default/files/pvsnp.pdf.
5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.
6 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.
7 William I. Gasarch. Guest column: The second $\mathrm{P} \stackrel{?}{=}$ NP poll. ACM SIGACT News, 43(2):53-77, 2012.

8 Oded Goldreich. P, NP, and NP-Completeness: The basics of computational complexity. Cambridge University Press, 2010.
9 Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press, 2011.

10 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
11 Omer Reingold. Undirected Connectivity in Log-space. J. ACM, 55(4):1-24, September 2008. doi:10.1145/1391289.1391291.
12 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Technology Boston, 2006.

