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Preface

The workshop “Math on the Rocks” took place in Grundsund in the archipelago of western Sweden
during the period July 27th - August 1st, 2015. The workshop was the the third edition of the Shape
Analysis workshops, and it continued with the succesful format used in the earlier workshops in New
Zealand and Austria:

• Math on the Beach - Shape Analysis Workshop in Foxton Beach, New Zealand, 2013
• Math in the Cabin - Shape Analysis Workshop in Bad Gastein, Austria, 2014

The aim of the week was to bring together a group of researchers with diverse backgrounds - ranging
from differential geometry to applied medical image analysis - to discuss questions of common inter-
est, that can be vaguely summarized under the heading “shape analysis”. Topics discussed at the work-
shop included infinite-dimensional Riemannian geometry, shape analysis, image matching, computational
anatomy, and topological hydrodynamics. These Proceedings contain a summary of selected discussions
held during the meeting.
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Schedule

We kept the formal schedule of the week to a minimum, so that the participants would have time to talk
and work with each other. Every day we had two or three talks or discussion sessions led by a participant.
These talks or the resulting discussions are summarized by each participant in the second half of this
report.

Tuesday July 28th
Olivier Verdier: What is equivariance of numerical methods?
Stephen Preston: N/A
Martins Bruveris: How to define Sobolev metrics?

Wednesday July 29th
Gerard Misiolek: Continuity properties of the solution map of the Euler equations in Hölder spaces
Boris Khesin: Invariants of functions on symplectic surfaces and ideal hydrodynamics
Stefan Sommer: Anisotropic distributions on manifolds and most probable paths

Thurday July 30th
François-Xavier Vialard: Generalized optimal transport
Geir Bogfjellmo: Character groups of Hopf algebras are Lie groups

Friday July 31th
Klas Modin: Information geometry and matrix factorizations
Stephen Marsland: Image registration for landmarks with uncertainty
Stig Larsson: N/A
Jakob Møller-Andersen: Geodesics of constant coefficient Sobolev metric on curves

Saturday August 1st
Martin Bauer and Philipp Harms: Metrics with prescribed horizontal bundle on spaces of curves
Peter Michor: Olaf Müller’s “k-safe”-theory of elliptic differential operators with Sobolev coefficients,

and its uses for Laplacians of Sobolev Riemannian metrics

Gothenburg, Copenhagen Klas Modin
November 2015 Stefan Sommer
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Chapter 1
Metrics with prescribed horizontal bundle on spaces of
curves

Martin Bauer and Philipp Harms

Abstract We study metrics on the shape space of curves that induce a prescribed splitting of the tangent
bundle. More specifically, we consider reparametrization invariant metrics G on the space Imm(S1,R2)
of parametrized regular curves. For many metrics the tangent space Tc Imm(S1,R2) at each curve c splits
into vertical and horizontal components (with respect to the projection onto the shape space Bi (S1,R2) =

Imm(S1,R2)/Diff(S1) of unparametrized curves and with respect to the metric G). In a previous article
we characterized all metrics G such that the induced splitting coincides with the natural splitting into
normal and tangential parts. In these notes we extend this analysis to characterize all metrics that induce
any prescribed splitting of the tangent bundle.

1.1 Introduction

Let Imm(S1,R2) be the space of regular planar curves. Our center of attention lies on the shape space of
unparametrized curves, which can be identified with the quotient space

Bi (S1,R2) = Imm(S1,R2)/Diff(S1) .

Here, Diff(S1) denotes the Lie group of all smooth diffeomorphisms on the circle, which acts smoothly
on Imm(S1,R2) via composition from the right:

Imm(S1,R2)×Diff(S1)→ Imm(S1,R2), (c,ϕ) 7→ c ◦ϕ .

The quotient space Bi (S1,R2) is not a manifold, but only an orbifold with isolated singularities (see [6] for
more information). A strong motivation for considering this space – and in particular Riemannian metrics
thereon – comes from the field of shape analysis [8, 9, 13, 14, 15, 2]. See [3] for a recent overview on
various metrics on these spaces.

Given a reparametrization invariant metric G on Imm(S1,R2), we can (under certain conditions) induce
a unique Riemannian metric on the quotient space Bi (S1,R2) such that the projection

Martin Bauer Fakultät für Mathematik und Geoinformation, TU Wien e-mail: bauer.martin@univie.ac.at, ·
Philipp Harms: Department of Mathematics, ETH Zürich e-mail: philipp.harms@math.ethz.ch

* M. Bauer was supported by the European Research Council (ERC), within the project 306445 (Isoperimetric In-
equalities and Integral Geometry) and by the FWF-project P24625 (Geometry of Shape spaces).
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π : Imm(S1,R2)→ Bi (S1,R2) := Imm(S1,R2)/Diff(S1) (1.1)

is a Riemannian submersion. A detailed description of this construction is given in [5, Section 4]. For
many metrics, Tπ induces a splitting of the tangent bundle TImm(S1,R2) into a vertical bundle, which
is defined as the kernel of Tπ, and a horizontal bundle, defined as the G-orthogonal complement of the
vertical bundle:

TImm(S1,R2) = kerTπ ⊕ (kerTπ)⊥,G =: Ver⊕Hor . (1.2)

If one can lift any curve in Bi (S1,R2) to a horizontal curve in Imm(S1,R2), then there is a one-to-one
correspondence between geodesics on shape space Bi (S1,R2) and horizontal geodesics on Imm(S1,R2)
[5, Section 4.8].

In [4] we described all metrics on Imm(S1,R2) such that the splitting (1.2) coincides with the natural
splitting into components that are tangential and normal to the immersed surface. In this article we char-
acterize all metrics that induce an arbitrary given splitting of TImm(S1,R2), generalizing our previous
result.

As an application of our result we investigate a splitting that could be used to develop efficient nu-
merics for the horizontal geodesic equation. The splitting is the decomposition of Tc Imm(S1,R2) into
deformations preserving the speed ‖ċ‖ and a suitable complement.

1.2 The decomposition theorem

1.2.1 Assumptions

Following [5], we now describe the class of metrics that we study in this article. We define all metrics via
a so-called inertia operator L by the formula

GL
c (h,k) =

∫
S1
〈Lch,k〉ds, (1.3)

where ds = |c′ |dθ denotes integration by arc-length. We assume that L is a smooth bundle automorphism
of TImm(S1,R2) such that at every c ∈ Imm(S1,R2), the operator

Lc : Tc Imm(S1,R2)→ Tc Imm(S1,R2)

is a pseudo-differential operator of order 2l which is symmetric and positive with respect to the L2-metric
on Imm(S1,R2). Moreover, we assume that L is invariant under the action of the reparametrization group
Diff(S1) acting on Imm(S1,R2), i.e.,

Lc◦ϕ (h ◦ϕ) = Lc (h) ◦ϕ for all ϕ ∈ Diff(S1) .

These assumptions remain in place throughout this work. Their immediate use is as follows: being sym-
metric and positive, L induces a Sobolev-type metric on the manifold of immersions through equation
(1.3). The Diff(S1)-invariance of L implies the Diff(S1)-invariance of the metric GL . Assuming that the
decomposition in horizontal and vertical bundles exists, there is a unique metric on Bi (S1,R2) such that
the projection (1.1) is a Riemannian submersion (see [5, Thm. 4.7]). Then the resulting geometry of shape
space is mirrored by the “horizontal geometry” on the manifold of immersions.



1.2.2 Splitting into horizontal and vertical subbundles

By definition, the horizontal and vertical bundles are given by

Verc := ker(Tπ) = Tanc ,

Horc := (Verc )⊥,G =
{
h ∈ Tc Imm(S1,R2) : Lch ∈ Norc } .

Note, that Hor⊕Ver might not span all of TImm in this infinite-dimensional setting.

1.2.3 Constructing metrics that induce a prescribed splitting.

We now state our main result.

Theorem 1.1 (Decomposition theorem). Let c ∈ Imm(S1,R2) and let H (c) be any complement of
Tan(c), i.e.,

Tc Imm(S1,R2) = Tan(c) ⊕H (c) . (1.4)

Then the following conditions on a metric GL are equivalent:

(a)The tangent bundle splits into a vertical and horizontal bundle (1.2) and this splitting coincides with
(1.4).

(b)The inertia operator Lc admits a decomposition

Lc = (Ptan)∗ ◦ L̃c ◦Ptan + (PH )∗ ◦ L̃c ◦PH ,

where L̃c : Tc Imm(S1,R2)→ Tc Imm(S1,R2) is an invertible pseudo-differential operator and where ∗

denotes the adjoint with respect to the reparametrization-invariant L2-metric.

The theorem follows directly as a special case of the following lemma by setting K (c) = Tan(c).

Lemma 1.1. Let c ∈ Imm(S1,R2) and let

Tc Imm(S1,R2) = H (c) ⊕K (c) (1.5)

be a given splitting with corresponding projections PH ,PK . Then the following conditions on a metric
GL are equivalent:

(a)The subspace H (c) is GL-orthogonal to K (c).
(b)The operator Lc has a decomposition

Lc = (PH )∗ ◦ L̃c ◦PH + (PK )∗ ◦ L̃c ◦PK ,

where L̃c : Tc Imm(S1,R2)→ Tc Imm(S1,R2) is an invertible pseudo-differential operator and where ∗

denotes the adjoint with respect to the reparametrization-invariant L2-metric.

Proof. Assume (a) and let h = PH (h) + PK (h) := hH + hK . We have

Gc (hH + hK ,kH + kK )

= Gc (hH ,kH ) + Gc (hH ,kK ) + Gc (hK ,kH ) + Gc (hK ,kK )

= Gc (hH ,kH ) + 0 + Gc (hK ,kK ) ,



where the last equality follows from the orthogonality of the splitting with respect to the metric G. Now
the formula for the operator L follows directly.

Conversely, assume (b). To see the orthogonality we calculate

Gc (hH ,kK ) =

∫
S1
〈LhH ,kK 〉ds =

∫
S1
〈0 + (PH )∗(L̃c (hH )),kK 〉ds

=

∫
S1
〈(L̃c (hH ),PH (kK )〉ds = 0 .

1.3 Applications

1.3.1 The splitting into tangential and normal vector fields

In this section, we want to recover the results from [4]. Letting n denote the unit length normal vector
field to the curve c, we define

Nor(c) :=
{
h = a.n : a ∈ C∞(S1)

}
. (1.6)

This yields a splitting
Tc Imm(S1,R2) = Tan(c) ⊕Nor(c) (1.7)

with corresponding projections

(Ptan)∗(h) = Ptan(h) = 〈h,v〉v,

(Pnor)∗(h) = Pnor(h) = 〈h,n〉n .

By Theorem 1.1 the splitting into horizontal and vertical bundles coincides with the above splitting (1.7)
if and only if L can be written as

Lc = (Ptan)∗ ◦ L̃c ◦Ptan + (Ptan)∗ ◦ L̃c ◦Ptan. (1.8)

This is the content of the main theorem of [4].
A particular class of metrics inducing this splitting are almost local metrics [7, 1]. Further examples

of higher order metrics are given in [4].

1.3.2 The splitting into tangential and constant speed preserving vector fields

In this section we consider a different splitting, which is motivated by investigations of Riemannian met-
rics on the space of arc length parametrized curves [10, 11, 12]. In the following lemma we characterize
all tangent vectors that preserve constant speed parametrization.

Lemma 1.2. Let c ∈ Imm(S1,R2) be parametrized by constant speed. Then a tangent vector h ∈ Tc Imm
preserves the parametrization of c if and only if

〈D2
sh,v〉+ κ〈Dsh,n〉 = 0 (1.9)



Here v = c′

|c′ | the unit length tangent vector field, n = iv denotes the unit length normal vector field and κ
the curvature of the curve.

Proof. This follows immediately from the infinitesimal action of h on the volume form ds:

Dc,h (ds) = Dc,h (|c′ |dθ) =
〈c′,h′〉
|c′ |

dθ = 〈v,Dsh〉ds . (1.10)

Equation (1.9) is obtained by setting Ds〈v,Dsh〉 = 0.

We now describe a decomposition of TImm(S1,R2) in a subspace that preserves constant speed and a
complement with values in the tangential bundle.

Lemma 1.3. For each regular curve c the tangent bundle Tc Imm(S1,R2) can be decomposed as

Tc Imm(S1,R2) = Tan(c) ⊕Arc0(c) , (1.11)

where

Tan(c) :=
{
h = f .v : a ∈ C∞(S1)

}
, (1.12)

Arc0(c) :=
{
h = a.n + b.v : D2

sb = Ds (aκ) and b(0) = 0
}
. (1.13)

The corresponding projections onto these subspaces are given by

PArc0
(k) := karc = 〈k,n〉n + bv , (1.14)

PTan(k) := k tan = 〈k,v〉v− bv , (1.15)

where b solves
D2

sb = Ds (〈k,n〉κ) with b(0) = 0 . (1.16)

Proof. We start by showing that the projections take values in the correct spaces. Let a = 〈k,n〉. We
calculate:

〈DsPArc0
(k),n〉 = 〈Ds (an + bv),n〉 = 〈(Dsa + bκ)n + (Dsb− aκ)v,n〉

= Dsa + bκ

〈D2
sPArc0

(k),v〉 = 〈D2
s (an + bv),v〉 = 〈Ds ((Dsa + bκ)n + (Dsb− aκ)v),v〉

= −κ(Dsa + bκ) + D2
sb−Ds (aκ)

Thus we have

〈D2
sh,v〉+ κ〈Dsh,n〉 = −κ(Dsa + bκ) + D2

sb−Ds (aκ) + κ(Dsa + bκ)

= D2
sb−Ds (aκ) .

This shows that PArc0
(k) preserves constant speed parametrization. We choose b(0) = 0 to enforce unique-

ness of the solutions. The mapping PTan takes values in Tan by definition. The projection property for
PArc0

is clear. For PTan we have

(PTan)2(k) = (Id−PArc0
)2(k) = (Id−PArc0

)(k) = PTan(k) .



Note, that this proves also that PTan (resp. PArc0
) are surjective mappings onto Tan (resp. Arc0). As PTan

and PArc0
are continuous mappings, their kernels Arc and Tan are closed subspaces. This shows that

TImm(S1,R2) splits as in (1.11).

Using Theorem 1.1 we can now construct metrics on Imm(S1,R2) such that the horizontal bundle
coincides with Arc0(c). The general formula for these metrics is given by:

Gc (h,k) =

∫
S1
〈Lc (htan),k tan〉ds +

∫
S1
〈Lc (harc),karc〉ds

The simplest example, which corresponds to the identity operator L, is

Gc (h1,h2) =

∫
S1
〈htan

1 ,htan
2 〉ds +

∫
S1
〈harc

1 ,harc
2 〉ds

=

∫
S1
〈h1− b1.v,h2− b2.v〉ds +

∫
S1

b1b2 + a1a2ds

=

∫
S1

2a1a2 + b̃1b̃2− b1b̃2− b̃1b2 + b1b2 ds

with

ai = 〈hi ,n〉, b̃i = 〈hi ,v〉, D2
sbi = Ds (ai κ), bi (0) = 0 .

For h1 = h2 = h this reads as

Gc (h,h) =

∫
S1

2a2 + (b̃− b)2 ds .

On the space of constant-speed parametrized immersions this induces the L2-metric studied in [10, 11].
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Chapter 2
Hörmander’s condition for normal bundles on spaces of
immersions

Martin Bauer and Philipp Harms

Abstract Several representations of geometric shapes involve quotients of mapping spaces. The pro-
jection onto the quotient space defines two sub-bundles of the tangent bundle, called the horizontal and
vertical bundle. We investigate in these notes the sub-Riemannian geometries of these bundles. In partic-
ular, we show for a selection of bundles which naturally occur in applications that they are either bracket
generating or integrable.

2.1 Introduction

Several representations of geometric shapes involve quotients of mapping spaces. Three examples are
presented in the diagram below:

Imm(M,N )

��

Diff(N )

��

Diff(M)

��
Imm(M,N )/Diff(M) Emb(M,N ) Dens(M) = Diff(M)/Diffµ (M)

The first example is the quotient of embeddings modulo reparametrizations. In the second example,
Diff(N ) acts on some fixed “template” element of Emb(M,N ). The third example is Moser’s representa-
tion of densities as diffeomorphisms modulo volume preserving diffeomorphisms [8, 4].

Let us abstract from these examples and consider a submersion π : P→ Q between possibly infinite-
dimensional manifolds. If P is endowed with a (weak) Riemannian metric G, two natural sub-bundles
of T P appear: the vertical bundle Ver is defined as the kernel of Tπ and the horizontal bundle Hor as
the set of tangent vectors in T P which are G-orthogonal to Ver. Note that Ver + Hor might or might not
span all of T P. However, any closed complement of the vertical bundle is the horizontal bundle of some
Riemannian metric, as was recently shown in [1] for the special case of planar curves.

Martin Bauer Fakultät für Mathematik und Geoinformation, TU Wien e-mail: bauer.martin@univie.ac.at, ·
Philipp Harms: Department of Mathematics, ETH Zürich e-mail: philipp.harms@math.ethz.ch

* All participants of the “Math on the Rocks” workshop in Grundsund, Sweden, contributed to the results in these
notes. In particular, Lemma 2.3 in its current form is in large parts due to Olivier Verdier. M. Bauer was supported by the
European Research Council (ERC), within the project 306445 (Isoperimetric Inequalities and Integral Geometry) and by
the FWF-project P24625 (Geometry of Shape spaces).
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While the vertical bundle is always integrable (the integral manifolds are the fibers of the projection),
it is in general not clear whether the horizontal bundles are integrable or, at the other extreme, bracket
generating. This question is interesting for several reasons.

• Integrability of the horizontal bundle is necessary for lifting loops in Q to horizontal loops in P. This
is a natural task in, for example, the analysis of cardiac cycles, which can be represented as loops in
shape space.

• If the horizontal bundle is integrable, then the horizontal geodesic equation can be solved in the lower-
dimensional coordinate system of the integral manifold instead of the higher-dimensional coordinate
system of P.

• If on the other hand the horizontal bundle is bracket generating, then its integral manifold is a dense
subset of P, and any two points in the integral manifold can be connected by a horizontal curve [6, 5].

2.2 Results

Definition 2.1. Let M be a compact manifold and (N,g) a Riemannian manifold. Then the sub-bundles
Tan and Nor of TImm(M,N ) are given at each f ∈ Imm(M,N ) by

Tan f = {T f ◦ X : X ∈ X(M)},
Nor f = {h ∈ Tf Imm(M,N ) : ∀x ∈ M,∀X ∈ Tx M,g(h(x),T f (X )) = 0}.

Remark 2.1. The bundle Tan is the vertical bundle of the projection onto the space of unparametrized
immersions and is integrable. Indeed, the group Diff(M) acts on Imm(M,N ) by composition from the
right and the Diff(M)-orbits are integral manifolds for Tan.

The following theorem shows that Nor is bracket generating and that the first bracket is enough to
generate all of the tangent space.

Theorem 2.1. Let M be compact and dim(N ) = dim(M) + 1. Then

Nor + [Nor,Nor] = TImm(M,N ).

Proof. Assume that a normal vector field n to f ∈ Imm(M,N ) is defined on all of M and locally around f .
Then any functions a,b on M define local vector fields an,bn on Imm(M,N ). Let ∇ denote the covariant
derivative on Imm(M,N ) which is associated to (N,g); see Section 2.3. Then the Lie bracket [an,bn]
can be expressed using covariant derivatives because ∇ is torsion-free by Lemma 2.1. By the variational
formula for the normal vector in Lemma 2.2,

[an,bn] = ∇an (bn)−∇bn (an) = b∇ann− a∇bnn = T f
(
a gradg b− bgradg a

)
= T f

(
g−1(adb− bda)

)
.

(2.1)

By Lemma 2.3, all one-forms on M are linear combinations of one-forms adb− bda. This shows Tan ⊇
[Nor + Nor].

The assumption that n is defined globally on M can be eliminated by localization. Indeed, as M is
compact, any vector field X ∈ X(M) is a finite sum of vector fields supported in domains U such that n
is defined in a neighborhood of U. By Remark 2.3, the functions a,b can be chosen with support in U. It
follows that an,bn are well-defined.



Remark 2.2. If N is a linear space, the covariant derivatives in the proof of Theorem 2.1 can be replaced
by directional derivatives. For example, in the case of planar curves M = S1,N = R2, Equation (2.1)
evaluated at some c ∈ Imm(S1,R2) takes the form

[an,bn]c = Dc,an (bn)−Dc,bn (an) = (aDsb− bDsa)v.

Example 2.1. A further example of an integrable bundle are the arc-length preserving deformations of pla-
nar curves. Let M = S1,N =R2, and define the vector bundle Arc ⊂ TImm(S1,R2) at each c ∈ Imm(S1,R2)
by

Arcc = {h ∈ Tc Imm(S1,R2) : Ds (Dc,hds/ds) = 0}.

Then the bundle Arc is integrable and the collections of curves c whose velocities |∂θc| ∈ C∞(S1) are
multiples of each other are integral manifolds for Arc.

2.3 Covariant derivative on Imm(M,N )

We recall some definitions and results of [2, Section 4.2]. Let ∇ be the Levi-Civita covariant derivative
of the Riemannian manifold (N,g). Then ∇X h : Q→ T N is well-defined for any manifold Q, vector field
X ∈ X(Q), and mapping h : Q→ T N . This covariant derivative can be extended to Imm(M,N ) using the
isomorphism ∧ : C∞(Q,C∞(M,T N ))→C∞(Q×M,T N ) and its inverse ∨. Let h : Q→ TImm(M,N ) and
X ∈ X(Q). Then ∇X h is defined as (∇X×0h∧)∨.

Lemma 2.1. The covariant derivative ∇ on Imm(M,N ) is torsion-free, i.e., ∇XY −∇Y X = [X,Y ] holds
for any X,Y ∈ X(Imm(M,N )).

Proof. Let X,Y be vector fields on a manifold Q and f : Q×M → T N . Then X ×0 and Y ×0 are vector
fields on Q×M and

∇X×0T f (Y ×0)−∇Y×0T f (X ×0) = T f ([X ×0,Y ×0]) = T f ([X,Y ]×0)

because the Levi-Civita covariant derivative on (N,g) is torsion-free [7, Section 22.10]. The statement
of the Lemma follows by setting Q = Imm(M,N ), f (g,x) = g(x) for all g ∈ Imm(M,N ) and x ∈ M , and
noting that T f (X ×0) = X∧.

2.4 Variational formula for the normal vector field

Lemma 2.2. [3, Section 4.11] Let X be a vector field on Imm(M,N ). Then the variation of the normal
vector field n in the direction of X is

∇Xn = −T f
(
LX>) + gradg g(X,n)

)
,

where X = T f ◦ X>+g(X,n)n is the decomposition in tangential and normal components, g = f ∗g is the
pull-back of g to M, and L is the Weingarten map.



2.5 Auxiliary result about one-forms

Lemma 2.3. Let M be compact. Then Ω1(M) = spanR{adb− bda : a,b ∈ C∞(M)}.

Proof. All one-forms f dg with positive f can be generated by elements of the form adb− bda. Indeed,
set a = ( f e−g )1/2,b = ( f eg )1/2 and check that adb− bda = f dg. Moreover, the closed one-form dg can
be generated by setting a = 1,b = g. This allows one to generate all one-forms f dg with f bounded from
below. As every function can be decomposed in a function bounded from below, and one from above, this
allows one to generate all one-forms f dg.

Let U be an open set in M such that there exist functions x1,. . . ,xd defined on all of M providing a
coordinate system on U. Then any one-from α with support in U can be written as α =

∑d
i=1 α(∂xi )dxi ,

showing that α is a linear combination of expressions of the form f dg.
Finally, any one-form on M is a sum of finitely many one-forms supported in open sets U as above.

To see this, note that any point x in M has an open neighborhood U with the above properties. As M
is compact, finitely many such neighborhoods U1,. . . ,Un cover M . Let φ1,. . . ,φn be a partition of unity
subordinate to U1,. . . ,Un . Then any one-form α can be written as α =

∑n
i=1 φiα and φiα is supported in

Ui .

Remark 2.3. If α is a one-form with support in an open set U ⊆ M , then it can be represented as a linear
combination of forms adb− bda with functions a,b supported in U. Indeed, at each step of the proof of
Lemma 2.3, the functions a,b may be multiplied by a bump function which vanishes outside of U and
equals 1 on the support of α.
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Chapter 3
How to define Sobolev metrics?

Martins Bruveris

3.1 Variety of metrics

Take the simple sentence

The geodesic equation of the right-invariant H1-metric on Diff(S1) is the Camassa–Holm equation.

For this sentence to have a mathematical meaning, we have to specify, which H1-metric we mean. In this
case we mean the metric induced by the inner product

〈X,Y 〉H1 =

∫
S1

XY +α2X ′Y ′dx .

But there are other possible inner products, for example

〈X,Y 〉µḢ1 =

∫
S1

X dx
∫
S1

Y dx +

∫
S1

X ′Y ′dx .

However the geodesic equation for this metric is the µ-Hunter–Saxton equation (the name comes from
the averaging operator µ(X ) =

∫
S1 X dx).

3.2 What is the aim?

We want to have a general definition, such that the statement

Let G be a Sobolev metric of order q on X.

has a rigorous mathematical meaning; furthermore this definition should encompass all or most used
examples of Sobolev metrics. At the moment we have a pool of examples; metrics that have been studied,
given names, used in applications; what we are lacking is a classification.

What is X? The two most-studied cases are the diffeomorphism group and the space of curves. Re-
garding the diffeomorphism group, both Diff(M), where M is a compact manifold, as well as DiffA (Rd ),
with A denoting decay conditions, have been considered. The space of curves is Imm(S1,Rd ), although

Brunel University London, UK
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open curves as well as manifold-valued curves are possible as well. An answer should include the space
Imm(M,N ) as the unifying case. The following diagram shows the relations between these spaces.

Imm(M,N ) Diff(M)oo

Imm(S1,N )

??

Imm(M,Rd )

__

Imm(S1,R2) // Imm(S1,Rd )

__ ??

Of course there are other spaces, that we haven’t even touched: the space of Riemannian metrics,
Met(M), the space of densities Dens(M) as well as others.

3.3 Metrics on the space of curves

Let us mention some examples, that we would like to include in a comprehensive definition. The simplest
Sobolev metrics are those with constant coefficients.

Gc (h,k) =

∫
S1

a0〈h,k〉+ · · ·+ an〈Dn
s h,Dn

s k〉ds .

Sometimes we do not want a j to be constants. This is the case for scale-invariant metrics, which have the
form

Gc (h,k) =

∫
S1

a0`
−3
c 〈h,k〉+ · · ·+ an`

2n−3
c 〈Dn

s h,Dn
s k〉ds .

The familiy of elastic metrics, given by

Gc (h,k) =

∫
S1

a〈Dsh,v〉〈Dsk,v〉+ b〈Dsh,n〉〈Dsk,n〉ds ,

require even more general expressions for the coefficients. Then there are metrics, which are constant on
constant-speed curves. They are given by

Gc (h,k) = 〈〈h ◦ψ−1
c ,k ◦ψ−1

c 〉〉 , with ψ ′c =
2π
`c
|c′ | ,

where 〈〈·,·〉〉 is a Sobolev inner product, possibly of fractional order. Fractional order metrics can also be
written directly using powers of the Laplace operator

Gc (h,k) =

∫
S1

〈(
Id−D2

s

)q
h,k

〉
ds .



3.4 The diffeomorphism group

For right-invariant metrics on the diffeomorphism group the situation is a bit simpler, although by no
means trivial. A right-invariant metric is determined by the inner product on the tangent space at the
identity, which can be written using an operator A as

Gϕ (X,Y ) = 〈X ◦ϕ−1,Y ◦ϕ−1〉A =

∫
M

g
(
A

(
X ◦ϕ−1

)
,Y ◦ϕ−1

)
dvol ,

when (M,g) is a Riemannian manifold. What shall A be? A first attempt could be

Let A be a symmetric (w.r.t. L2), positive, elliptic pseudo-differential operator (belonging to some
symbol class) of order 2q.

A slightly different approach would be to start with an operator B and apply it on both sides to ensure
symmetry,

Gϕ (X,Y ) =

∫
M

g(B(X ◦ϕ−1),B(Y ◦ϕ−1)) dvol .

In this case A = B∗B and the question becomes, for which classes of operators do both definitions lead to
the same class of metrics. In other words, given A, can we always find B and given B, does B∗B always
lie in the correct class of operators?

Then again, ellipticity might be too restrictive. For example, the following family of metrics,

GId(X,Y ) =

∫
Rd

〈(
Id−

η2

p
∆

) p
◦

(
Id−

1
ε2∇◦div

)
X,Y

〉
dx .

has been used to approximate Euler equations for incompressible fluids by compressible flow, where
deviation from incompressibility is increasingly penalized. The corresponding operator is not elliptic.

3.5 Why do we bother?

There seems to exist a collection of results in the literature, that seem to depend only on the order of the
metric and to a much lesser extent on its particular form. Examples include

• Smoothness of the geodesic spray on suitable Sobolev completions
• Vanishing and non-vanishing behaviour of the geodesic distance
• Fredholmness properties of the exponential map
• Completeness properties of the metric.

It would be helpful to future researchers to identify or at least conjecture about the “correct” class of
metrics, where these results hold.

There are features for Sobolev metrics, that seem to be quite general. The most striking example is
the fact that the geodesic equation of a Sobolev metric preserves the smoothness of the initial conditions
exactly (within the family of Hq-spaces); this property seems to require only that the Sobolev metric in
question is invariant under reparametrizations (this equals right-invariance in the case of the diffeomor-
phism group).



3.6 An attempt at a definition

We conclude with an attempt at a definition.

A Riemannian metric G on Imm(M,Rd ) is called a Sobolev metric of order q, if G can be extended
to a smooth map

G : Imm(M,Rd )×Hq (M,Rd )×Hq (M,Rd )→ R .

We call G a strong Sobolev metric, if G can be extended to

G : Iq (M,Rd )×Hq (M,Rd )×Hq (M,Rd )→ R .

Whether this is the right definition or not, and if not, how it is to be improved, is left open for debate.
Note however, that somewhere analysis has to come into the picture. One can make the definition easy
to verify, in which case analysis will be needed to prove interesting properties. Or the definition can be
written, such that analysis is necessary to show that a given metrics satisfies the definition. This is the
case with the above definition. For example, showing that a metric of fractional order extends to a smooth
strong metric on the Sobolev completions is usually hard work.



Chapter 4
On the Wasserstein-Fisher-Rao metric

François-Xavier Vialard

Abstract This note gives a summary of the presentation that I gave at the workshop on shape analysis1.
Based on [CSPV15, CPSV15], we present a generalization of optimal transport to measures that have
different total masses. This generalization enjoys most of the properties of standard optimal transport but
we will focus on the geometric formulation of the model. We expect this new metric to have interesting
applications in imaging.

4.1 Motivation and a Dynamical Model

In several contexts of applications including imaging, it is natural to consider data that can be repre-
sented by densities and these densities might have different masses. Often, optimal transport has been
used in these applications (for instance, [HZTA04, AKS15]) since it provides an "easily computable"
(at least, an efficient approximation [Cut13]) distance between probability measures that reflects a ge-
ometric displacement between them. Therefore, the mass constraint on the densities has to be taken
into account and this problem seems to bring renewed interest in the applied mathematics literature
[PR13, PR14, FG10, LM13, MRSS15] although this issue has been addressed since Kantorovich [Gui02].

In the following, we describe a dynamical approach to define optimal transport between general non-
negative Radon measures. We will present the model only in a smooth setting although it is well defined
on the space of Radon measures.

The Benamou-Brenier formulation: In [BB00], the authors formulated the Wasserstein L2 distance
as a convex variational problem, inspired by a fluid dynamic approach. In what follows, M will be a
compact manifold without boundary. Let ρ ∈ C∞(M,R+) be a positive function, note that all the quanti-
ties will be implicitly time dependent. The dynamic formulation of the Wasserstein distance consists in
minimizing

E (v) =
1
2

∫ 1

0

∫
M

|v(t,x) |2ρ(t,x) dx dt , (4.1)

subject to the constraints ρ̇+∇ · (vρ) = 0 and initial condition ρ(0) = ρ0 and final condition ρ(1) = ρ1.
Equivalently, following [BB00], a convex reformulation using the momentum m = ρv reads

Université Paris-Dauphine, France
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E (m) =
1
2

∫ 1

0

∫
M

|m(t,x) |2

ρ(t,x)
dx dt , (4.2)

subject to the constraints ρ̇+∇ ·m = 0 and initial condition ρ(0) = ρ0 and final condition ρ(1) = ρ1. Let
us underline that the functional (4.2) is convex in ρ,m and the constraint is linear.

The Wasserstein-Fisher-Rao metric: The continuity equation enforces the mass conservation prop-
erty. In view of the optimal transport generalization, this constraint needs to be relaxed, for instance by
introducing a source term µ ∈ C∞(M,R),

ρ̇ = −∇ · (vρ) + µ . (4.3)

For a given variation of the density ρ̇, there exist a priori many couples (v, µ) that reproduce this variation.
Following [TY05], it can be determined via the minimization of a norm of (v, µ) for an arbitrary choice
of the norm. The penalization of µ was chosen in [MRSS15] as the L2 norm but a natural choice is rather
the Fisher-Rao metric

FR(µ) =
1
2

∫
M

µ(t,x)2

ρ(t,x)
dx dt

since (1) it is 1-homogeneous with respect to the couple (µ, ρ) and (2) it is parametrization invariant
[MBM14]. The first point is important for convex analysis properties in order to define the model on
singular measures and the second point is natural from a modeling point of view if one thinks that µ
represents a growth term. Thus, the action functional becomes:

W F (m, µ) =
1
2

∫ 1

0

∫
M

|m(t,x) |2

ρ(t,x)
dx +

1
2

∫ 1

0

∫
M

µ(t,x)2

ρ(t,x)
dx dt , (4.4)

subject to the constraints ρ̇+∇·m = µ and initial condition ρ(0) = ρ0 and final condition ρ(1) = ρ1. This
dynamical formulation enjoys most of the analytical properties of the initial Benamou-Brenier formula-
tion (4.1) and especially convexity. An important consequence is the existence of optimal paths in the
space of time-dependent measures [CSPV15].

4.2 A Geometric Point of View

Not only analytical properties are conserved but also some interesting geometrical properties of standard
optimal transport such as the Riemannian submersion of Otto [Ott01]. Namely, for a fixed reference
measure ρ0, the map ϕ 7→ ϕ∗(ρ0) from the group of diffeomorphisms of M with the L2(ρ0) metric into
the space of densities with the Wasserstein L2 metric. See the appendix of [KW08] for more details.
This property is simply proved by passing from the Eulerian point of view of the formulation (4.1) to a
Lagrangian formulation. In this section, we extend this property to the generalized model.

A cone metric: Let us first discuss informally what happens for a particle of mass m(t) at a spatial
position x(t) in a Riemannian manifold (M,g) under the generalized continuity constraint (4.3). The
system reads




ẋ(t) = v(x(t))
ṁ(t) = α(x(t))m(t)

(4.5)

where α def.
=

µ
ρ is the growth rate. The action associated with the functional defined in (4.4) is

∫ 1
0 |v(x(t)) |2m(t)+

ṁ(t )2

m(t ) dt. Thus, considering the particle as a point in M ×R∗+, the Riemannian metric seen by the particle

is mg+ dm2

m . Using the change of variable r =
√

m, we get r2g+ 4dr2 which is known under the name



of cone metric in Riemannian geometry. Note that if M = R, a local isometry with the Euclidean space is
given by (x,m) 7→

√
mei x/2 ∈ C. The distance on M ×R∗+ is explicit in terms of the distance on M with a

Riemannian metric g,

1
4

d((x1,m1),(x2,m2))2 = m2 + m1−2
√

m1m2 cos
(

1
2

dM (x1,x2)∧ π
)
. (4.6)

This implies that mass can appear and disappear at a finite cost. In other words, the cone metric is not
complete but adding the vertex of the cone, which represents M × {0}, to M ×R∗+ turns it into a complete
metric space.

Note that this distance squared is 1-homogeneous in (m1,m2).

A semi-direct product of groups: Going from Eulerian to Lagrangian coordinates in this new model
is properly done by introducing a semi-direct product of group that extends the group of diffeomorphisms
by introducing an action on mass that can be described as pointwise multiplication with a positive function
on M . Working in a smooth context, we define Λ(M) def.

= {λ ∈ C∞(M,R) : λ > 0}. It is a group under
pointwise multiplication. We will also denote the same space as Dens(M) to represent densities, that are
smooth and positive L1 function w.r.t. a reference measure ν. We define the semi-direct product of group
between Diff(M) and Λ(M) in order to turn the map π defined by

π : (Diff(M)nΨΛ(M))×Dens(M) 7→ Dens(M)

π ((ϕ,λ), ρ) def.
= ϕ · λ ϕ∗ρ = ϕ∗(λρ)

into a left-action of the group Diff(M) nΨ Λ(M) on the space of (generalized) densities. The group
composition law is defined by:

(ϕ1,λ1) · (ϕ2,λ2) = (ϕ1 ◦ϕ2,(λ1 ◦ϕ2)λ2) (4.7)

The important result is the following:

Proposition 1 Let ρ0 ∈ Dens(M) and π0 : Diff(M) nΨ Λ(M) 7→ Dens(M) be the map defined by
π0(ϕ,λ) def.

= ϕ∗(λρ0).
Then, the map π0 is a Riemannian submersion of the metric L2(M,M×R∗+) (where M×R∗+ is endowed

with the cone metric (4.6)) on the group Diff(M) nΨΛ(M) to the Wasserstein-Fisher-Rao on the space
of generalized densities Dens(M).

A direct application of this result is the formal computation of the sectional curvature of the Wasserstein-
Fisher-Rao in this smooth setting by applying O’Neill’s formula, see [CPSV15].

The corresponding Monge formulation: Another important consequence of the L2 metric on the
group is that one can define a Monge formulation of the Wasserstein-Fisher-Rao metric as follows:

W F (ρ0, ρ1) = inf
(ϕ,λ)

{
‖(ϕ,λ)− (Id,1)‖L2 (ρ0) : ϕ∗(λρ0) = ρ1

}
(4.8)

4.3 The Kantorovich Formulation

From a variational point of view, it is important to derive a relaxation of the Monge formulation. It is
of interest to understand first the simple situation when the source and target measures are single Dirac
masses and when M is a convex and compact domain in the Euclidean space [CSPV15].



Proposition 2 Let M be a convex and compact domain in Rd with the Euclidean metric. Let m1δx1 and
m2δx2 be two Dirac masses.

If 1
2 d(x1,x2) < π/2, there exists a unique geodesic which is m(t)δx (t ) where (x(t),m(t)) is the geodesic

in M ×R∗+ with the cone metric between (x1,m1) and (x2,m2).
If 1

2 d(x1,x2) > π/2, there exists a unique geodesic which is m1(t)δx1 +m2(t)δx2 where m1(t) = m1(1−
t)2 and m2(t) = m2t2 which describe the geodesics between (xi ,mi ) and the vertex of the cone denoted
by S for i = 1,2.

If 1
2 d(x1,x2) = π/2, there exists an infinite number of geodesics which are interpolations of the two

first types defined above.

The important point is that passing to the case of measures the angle of the cone has been (surprisingly)
divided by 2. This is because we are not looking for geodesics on M ×R∗+ but on the space of measures
on M . This new distance is in fact the Fenchel-Legendre biconjugate of the initial distance with respect to
the mass variable. The generalization to any positive Radon measures gives a Kantorovich relaxation: For
two given positive Radon measures ρ1, ρ2, we define, forM (M2) the space of positive Radon measures
on M2,

Γ(ρ1, ρ2) def.
=
{
(γ1,γ2) ∈

(
M+(M2)

)2 : (Proj1)∗γ1 = ρ1, (Proj2)∗γ2 = ρ2
}
, (4.9)

where Proj1 and Proj2 denote the projection on the first and second factors of M2. The variational problem
associated with the Wasserstein-Fisher-Rao distance is

W F (ρ1, ρ2)2 = inf
(γ1,γ2)∈Γ(ρ1, ρ2)

∫
M2

ď2
(
(x,

dγ1

dγ
),(y,

dγ2

dγ
)
)

dγ(x,y) , (4.10)

where 4ď2 is m2 + m1 − 2
√

m1m2 cos
(

1
2 dM (x1,x2)∧ π/2

)
and γ is any measure that dominates ρ1 and

ρ2. The fact that the integration does not depend on this choice is because of the 1-homogeneity of d2 in
function of the mass. We also state the dual formulation:

Proposition 3 It holds

W F2(ρ0, ρ1) = sup
(φ,ψ)∈C (M )2

∫
M

φ(x) dρ0 +

∫
M

ψ(y) dρ1 (4.11)

subject to ∀(x,y) ∈ M2,



φ(x) ≤ 1 , ψ(y) ≤ 1 ,
(1−φ(x))(1−ψ(y)) ≥ cos2

(
ď(x,y)

) (4.12)

For numerical computation, this formulation can be further reduced with a change of variable given by
taking the logarithm of the multiplicative constraint (4.12).

4.4 Conclusion

We generalized the Wasserstein L2 distance to a Riemannian-like metric on the space of densities whose
total masses are different. Of important interest for application is that a static formulation is equivalent to
the original dynamic one, which reduces the computational time. This Wasserstein-Fisher-Rao distance
might be a useful tool in applications: On one hand, it can be seen as a modification of the Fisher-Rao
metric that is stable under small spatial deformations and on the other hand as a modification of the



Wasserstein metric which does not allow for mass transfer if masses are too far apart (note once again
that mass creation and destruction is enabled due to the cone metric).

This natural generalization introduces a cone metric on the product between space and mass. In a
smooth setting, it is possible to formally apply O’Neill’s formula to obtain the sectional curvature of the
space of generalized densities. However, we did not study the global geometry of the space: one expects
that, as for the Euclidean cone, the curvature is concentrated at its singularity. We refer to [CSPV15,
CPSV15] for more details and generalizations.

After the presentation at the workshop, two important papers [LMS15b, LMS15a] also appeared on
the same model motivated by different applications.
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Chapter 5
Image registration for landmarks with uncertainty

Stephen Marsland

Together with Tony Shardlow at the University of Bath in the UK I’ve been looking into landmark-based
image registration with noise.

Consider the problem of finding a diffeomorphism Φ : B → B of minimum bending energy so that
ur ◦Φ is as close as possible to ut , where ur ,ut : B → R are target and reference images in a domain
B ⊂ Rd .

If we parameterise the diffeomorphisms by time-dependent vector fields v : [0,1]×B→Rd and define
Φ(Q) = q(1) for Q ∈ B, where q(t) satisfies the initial-value problem

dq
dt

= v(t,q(t)), q(0) = Q, (5.1)

we can define the bending energy to be the norm

‖Φ‖ =

(∫ 1

0
‖Lv(t,·)‖2 dt

)1/2

,

for some differential operator L.
Specifically, we consider a set of noisy observations of landmarks qr

i and qt
i for i = 1,. . . ,N in B and

we demand that Φ(qr
i ) = qt

i . The case where landmarks are fully observed is well studied, and our focus
is uncertainty around landmark positions and sensitivity of the diffeomorphism to noise. To study this
problem, we introduce a Bayesian formulation and define a prior distribution on the set of diffeomor-
phisms. We then condition the distribution on the noisy observation of landmarks to define a posterior
distribution. Our approach is motivated by the Gibbs canonical distribution and we consider Langevin-
type perturbations of the Hamiltonian equations, which has the Gibbs distribution exp(−βH), for inverse
temperature β, as an invariant measure (modulo choices of boundary conditions and regularity of H).
The advantage is that, with suitable initial data, the solutions of the Langevin equation (qi (t),pi (t)) all
follow the same distribution exp(−βH) for t ∈ [0,1]. Therefore, when we condition on the data for qi (0)
and qi (1), each end is equally treated.

The dynamics in a Hamiltonian model are constant-energy (constant-H). Instead, we can connect the
system to a heat bath and look at constant-temperature dynamics. The heat bath perturbs the Hamiltonian
system by an amount determined by the temperature of the heat bath, which we parameterise by the
inverse temperature β. One method of constant-temperature particle dynamics is the Langevin equation.
That is, we consider the system of stochastic ODEs given by
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dpi =
[
− λ∇pi H −∇qi H

]
dt +σdWi (t),

dqi

dt
= ∇pi H (5.2)

for a dissipation λ > 0 and diffusion σ > 0. Here Wi (t) are i.i.d.Rd Brownian motions. In the case where
H = 1

2 p2 + V (q) for a potential V , (5.2) is the classical Langevin equation where the marginal invariant
distribution for p is N (0, β−1I) and hence the average temperature per degree of freedom is the constant
β−1. Let (qi (t),pi (t)) for t ∈ [0,1] satisfy (5.2) and defineΦ(Q) as in (5.1). Notice thatΦ(qi (0)) = qi (1).
In perturbing (5.2), only the momentum equation is changed, so the equations for q are untouched and
are consistent with definition of v(t,q) and hence Φ.

To define a distribution on the family of diffeomorphisms, it remains to choose initial data. If we
specify a distribution on [q1,. . . ,qN ,p1,. . . ,pN ] at t = 0, (5.2) implies a distribution on the paths and
hence on Φ via (5.1). The obvious choice is the Gibbs distribution. The Gibbs distribution is exp(−βH)
(excluding a normalising constant) and, if σ2 β = 2λ (the fluctuation–dissipation relation), it is an invariant
measure of (5.2). To see this, the generator of (5.2) is

L = ∇pH · ∇q + (−λ∇pH −∇qH) · ∇p +
1
2
σ2∇2

p

and its adjoint

L∗ρ = −∇q · ((∇pH)ρ)−∇p · ((−λ∇pH −∇qH)ρ) +
1
2
σ2∇2

pρ.

The Fokker–Planck equation for pdf ρ(q,p,t) is

∂ρ

∂t
= −∇qρ · ∇pH +

(
λ∇pH · ∇p +∇p · λ∇pH

)
ρ+∇pρ · ∇qH +

1
2
∇2

p(σ2ρ).

Put ρ = e−Hβ , to see

∂ρ

∂t
= (−β∇qH) · ∇pH ρ+ (−λ∇pH · β∇pH +∇p · λ∇pH)ρ− β∇pH · ∇qH ρ

+
1
2
σ2(−β∇2

pH + β2∇pH∇pHᵀ)ρ.

Then, ∂ρ/∂t = 0 if σ2 β = 2λ and ρ is an invariant measure.
In many cases G is translation invariant (e.g., G(q1,q2) = exp(− ‖q1−q2‖ /`) for a length scale `)

and this means exp(−βH) cannot be a probability measure on R2dN . While the desire to have an in-
variant measure is appealing, we view the trajectories as convenient parameterisations of the diffeo-
morphism and therefore not themselves of interest. It is simpler to ask for a distribution on the dif-
feomorphism that is invariant under taking the inverse: that is, Φ and Φ−1 have the same distribution. To
achieve this, [q1(t),. . . ,qN (t),p1(t),. . . ,pN (t)] should have the same distribution under the time reversal
t 7→ 1− t. This can be achieved very simply by setting initial data at t = 1/2 and flowing forward and
backward using the same dynamics. Precisely, choose an initial probability distribution µ1/2 on R2dN .
Given [pi (1/2),qi (1/2)] ∼ µ1/2, compute pi (t) and qi (t) for t > 1/2 by solving (5.2). For t < 1/2, solve

dpi =
[
λ∇pi H −∇qi H

]
dt +σdWi (t),

dqi

dt
= ∇pi H. (5.3)

Here the sign of the dissipation is changed as we evolve the system forward by decreasing t. Note that
the distribution of (q1,. . . ,qN ,p1,. . . ,pN ) is unchanged by t 7→ 1− t, as can be verified using the Fokker–
Planck equation.



In the case that µ1/2 is the Gibbs distribution, this method is identical to the originally proposed
method. However, we achieve a time-symmetric distribution with any choice of µ1/2 and the Gibbs dis-
tribution does not need to be known or sampled.

Sampling of Bayesian inverse problems such as this are often approached using MCMC. We take first
a simpler approach that allows quick approximation of, for example, the joint distribution of the landmark
positions. That is, we choose to linearise (5.2) about some distinguished paths and replace (5.2) by a linear
system of SDEs

dδ = −λ

(
∇pH (p∗(t),q∗(t))

0

)
+ B+(t)δ dt +

(
σIdN

0

)
dW(t), (5.4)

where W(t) is a RdN Brownian motion. Here, B(t) is a 2dN ×2dN matrix that describes the linearisation:
to linearise around p∗(t),q∗(t), take

B+(t) =

(
−λ∇PPH −∇QPH −λ∇PQH −∇QQH

∇PPH ∇PQH

)
.

all evaluated at p∗(t),q∗(t). This system is linear and exact expressions are available for this system in
terms of deterministic integrals. We prefer to use a time-stepping method, and have worked out forward
and backward versions of the Euler-Maruyama method with temporal covariance. The method seems to
work very well, and experiments are under way.

We are also planning to develop a method for full bridge diffusion in this case, and to consider how to
incorporate learning the Green’s function from data.





Chapter 6
Invariants of functions on symplectic surfaces and ideal
hydrodynamics

Boris Khesin

6.1 Abstract

This talk is based on the paper [1], to which we refer for more detail. We classify generic coadjoint orbits
of several diffeomorphism groups of surfaces. In particular, we answer a question about a complete set
of invariants for generic isovorticed fields in 2D ideal hydrodynamics posed by V.Arnold in [2], Section
I.5. Recall that the corresponding classification problem for diffeomorphisms of the circle was solved
by A. Kirillov in [3]. He showed that it is equivalent to classification of periodic quadratic differentials
and described Casimirs for generic orbits. Orbits of the Virasoro-Bott group, a nontrivial extension of the
circle diffeomorphism group, were classified independently in different terms by G.Segal, A.Kirillov, and
other authors. The latter problem is also equivalent to the classification of Hill’s operators or projective
structures on the circle. All those results deal with diffeomorphisms of one-dimensional manifolds.

In paper [1] we give an answer to this question by describing the orbit classification for symplectic
and Hamiltonian diffeomorphisms of an arbitrary 2D oriented surface. To obtain these classifications
we first solve an auxiliary problem, which is of interest by itself: classify (and describe invariants of)
generic Morse functions on closed surfaces with respect to the action of area-preserving diffeomorphisms
(possibly isotoped to the identity). It turns out that invariants of those actions on functions are given
by the Reeb graphs of functions equipped with various collections of structures, such as a measure on
the graph, homomorphisms of (local) homology groups of surfaces to that graph, a choice of a pants
de- composition, and the flux across certain cycles as we describe in the corresponding sections. Also
the corresponding measures on Reeb graphs are not arbitrary but satisfy certain con- straints in terms of
asymptotic expansions at all three-valent vertices of the graph. To pass from classification of functions to
classification of coadjoint orbits one needs to supplement the above data by the equality of appropriately
defined circulation functions.
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Chapter 7
Geodesics of constant coefficient Sobolev metric on curves

Jakob Møller-Andersen

When matching curves using a Riemannian approach, the choice of metric on the tangent space often
comes with a choice of parameters describing the metric. On the space of immersions,

Imm(S1,Rd ) = {c ∈ C∞(S1,Rd ) : c′(θ) , 0} ⊂ C∞(S1,Rd ) .

we consider the family of constant coefficient Sobolev type metrics given by

Gc (h,k) =

∫
S1

a0〈h,k〉+ a1〈Dsh,Dsk + a2〈D2
sh,D2

sk〉ds ,

where ai ∈ R, Ds = 1
|c′ | ∂θ , ds = |c′(θ) | dθ . Given two curves c0,c1, we can consider the space of all

paths, c connecting them. Geodesics in the space is are minimizers of the energy functional

E(c) =

∫ 1

0
Gc (ċ,ċ)d t .

Here · means differentiation with respect to t. To approximate these minimizers, we consider the space of
tensor product B-spline paths c connecting c0 and c1, explicitly we have the paths

c(t,θ) =

M∑
i=1

N∑
j=1

ci, j Bi (t)Cj (θ) ,

where Bi and Cj are B-splines chosen such that c(0,θ) = c0(θ) and c(1,θ) = c1(θ). Figure 1 shows
three examples of geodesics connecting two fixed curves, for increasing values of a2. For observing the
influence of the constant on the geodesics, we note that we can always scale the metric by a constant value,
so we can assume a0 = 1. We can observe that a2 has a "blow-up" effect for increasing values, see figure
1: certain features are smudged out and become bigger during the geodesic. This effect is also apparent
in the simpler situation in figure 2, where the effect is very pronounced between the two simple curves. A
heuristic explanation is that the H2 term in the metric measures the cost of changing the curvature of the
curve, so if this term dominates it is cheap in energy to scale the curve up, hence decrease the curvature,
then do a simple linear transformation to a similarly scaled version of the other curve and then rescaling
to the original since. The influence of the H1 term is not so easy to describe, especially not its interplay
with a2. Figure 3 shows how increasing values of a1 decreases the blow-up effect. Since the choice of
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Fig. 7.1 The effects of a2 on geodesics, here a0 = a1 = 1 and a2 = 1, 10, 100 in the first, second and third row respectively.

Fig. 7.2 Here a0 = a1 = 1 and a2 = 0.1, 10, 10 in the first, second and third row respectively.

parameters has a great influences on the geodesics, and their corresponding energies, the question is: for
a given application, how do you choose these parameters optimally to get the matching you need?

Fig. 7.3 Here a0 = 1, a2 = 10 and a1 = 10, 100 in the first and second row respectively.



Chapter 8
Holonomy, curvature, and anisotropic diffusions

Stefan Sommer1 and Anne Marie Svane2

8.1 Introduction

Let M be a smooth, connected, compact manifold of finite dimension with connection and a fixed volume
form. In [7], a class of distributions on M is introduced that generalizes Euclidean normal distributions
with anisotropic covariance to the non-linear geometry on M . The distributions arise as transition distri-
butions of Euclidean diffusion processes that through horizontal development in the frame bundle FM of
M are mapped to M . This process is denoted stochastic development, see e.g. [2].

In connection with this, it becomes relevant to study horizontal paths on FM and the naturual sub-
Riemannian structure on FM [9, 8]. The aim of this abstract is to review and outline the relation between
the curvature of M , the holonomy group and its Lie algebra, and the Hörmander condition of the hori-
zontal distribution on FM .

8.2 Brownian Motion in the Frame Bundle

The frame bundle FM of a differentiable manifold M is the smooth vector bundle consisting of points
x ∈ M and corresponding frames (ordered bases) in the tangent spaces Tx M . FM is a principal bundle
over M with fiber GL(n). A fundamental property of FM is the existence of n = dim(M) globally defined
horizontal vector fields H1,. . . ,Hn . These vector fields correspond to infinitesimal displacements δx on
M and parallel transport of frames along δx. Let π : FM → M be the bundle projection, and let H
denote the distribution in TFM spanned by the horizontal vector fields. We denote by π∗ the pushforward
TFM → T M of π and π∗u the horizontal lift of x ∈ T M toHu .

Given a stochastic processes Xt in Rn starting at 0, a stochastic development of Xt is a stochastic
process Ut on FM satisfying the Stratonovich stochastic differential equation dUt = Hi ◦ dX i

t with initial
condition U0 = u0 ∈ FM . If Xt is a Brownian motion, the projection Yt = πUt of Ut onto M may be
considered an anisotropic diffusion on M starting at πu0 with covariance Σ = ST S where S denotes the
frame part of u0.

If Hörmander’s condition is satisfied, the distribution of Ut will have a smooth density [9]. As we shall
see below, Hörmander’s condition is not satisfied on FM but in some situations on a subbundle of FM .
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8.2.1 Sub-Riemannian Structure

There exists a natural sub-Riemannian metric gFM : TFM∗→ HFM ⊂ TFM on FM defined by

〈w,gFM (ξ)〉 = (ξ |w) , ∀w ∈ HuFM , (8.1)

where the inner product at u = (x,Xα ) ∈ FM is

〈v,w〉 =
〈
X−1
α π(v),X−1

α π(w)
〉
Rn

,

see [9, 8]. The sub-Riemannian length of an absolutely continuous path γ : [0,1]→ FM whose deriva-
tive is a.e. horizontal is defined by l (γ) =

∫ 1
0 |γ̇(t) |dt. If γ̇ is not a.e. horizontal, we set l (γ) = ∞. The

corresponding sub-Riemannian distance between u1 and u2 in FM is then

d(u1,u2) = inf{l (γ) | γ(0) = u1,γ(1) = u2}.

As in the Riemannian case, one may now ask for length minimizing curves (geodesics), exponential
maps, etc. To answer such questions, it is convenient to assume that the horizontal vector fields satisfy
the Hörmander condition.

8.3 The Reachable Set and Holonomy

The sub-Riemannian distance between two points may be infinite, even if M is connected, because not all
points can be reached by a horizontal path. For this reason, we consider the set of reachable points. Write
u ∼ p if u,p ∈ FM and there exists a horizontal curve in FM joining u and p. Then

Q(u) = {p ∈ FM | p ∼ u}

is the set of points in FM reachable by horizontal curves from u. Q(u) is a smooth immersed submanifold
[10].

The holonomy group Holu (FM,H ) ofH at u ∈ FM is

Holu (FM,H ) = {a ∈ GL(n) |u · a ∼ u}

where u · a denotes the natural action on each fibre. The holonomy group corresponds to the set of frames
reachable by parallel transport around loops of π(u). We denote by Hol0u the connected component in
Holu containing the identity.

Proposition 8.1. Let M be Riemannian and fix u ∈ FM. Then Q(u) is a principal subbundle of FM with
fibre Holu (FM,H ).

Proof. Theorem 3.2.8 of [3] asserts that the holonomy subgroup is closed because M is Riemannian. The
result then follows from Theorem 2.3.6 of [3].

If M is Riemannian, Holu is isomorphic to a subgroup of O(n) and if M is orientable, it is a subgroup of
SO(n). In this case, if u is orthonormal, Q(u) is a subbundle of the orthonormal frame bundle OM .



8.3.1 The Hörmander condition

The horizontal distribution is said to satisfy the Hörmander condition if H is bracket generating, i.e. if
Lie(H ) = TFM where Lie(H ) denotes the Lie saturate of H , i.e. the linear span of H and all finite
brackets. The discussion below is based on [10, 1, 3, 5].

The Hörmander condition is not satisfied on FM , as one may realize as follows: The tangent space
TFM naturally splits into a horizontal partH and a vertical part V tangent to each fiber, that is TuFM �
Hu ⊕Vu . The vertical part of Lie(H )u is contained in the Lie algebra hu of Holu and hu ⊆ Vu . This rules
out thatH is bracket-generating since Holu ,GL(n). In general, it is not even bracket generating on OM
since we may have dimHolu < dimO(n).

We can give conditions under which the Hörmander condition is satisfied on Q(u). Let M be Rie-
mannian. Injectivity of the curvature tensor Rx : Λ2(Tx M) → so(Tx M) implies surjectivity because of
dimensions of Λ2(Tx M) and SO(Tx M). Such injective curvature metrics are generic, i.e. they form an
open and dense subset of all metrics on M [1]. In this situation, the Hörmander condition is satisfied on
the subbundle Q(u):

Theorem 8.1. If M is Riemannian and the curvature map is surjective then the horizontal distribution is
bracket generating on Q(u) and Hol0u = SO(n).

Proof. Since Lie(H )u ⊆ TuQ(u) ⊆ H + so(n), it suffices to show that Lie(H )u = H + so(n). For this,
it is enough that the span of H and its first bracket equals H + so(n), i.e. H + [H ,H ] = H + so(n).
Thus, let z = zv + zh ∈ so(n) ⊕Hu . By assumption, R is surjective onto so(n) so we can find horizontal
vector fields V,W s.t. R(V,W ) = zv . Since R(V,W ) = [V,W ]− π∗([π∗(V ),π∗(V )]), we have z = zv + zh =

[V,W ]−π∗([π∗(V ),π∗(V )]) + zh . The first term is in [H ,H ] and two last terms are inH giving the result.

When R is not injective, it is still possible that Q(u) satisfies Hörmander’s condition in some non-
degenerate situations:

Theorem 8.2. If Lie(H )u has constant rank for all u ∈ FM, then Q(u) satisfies the Hörmander condition.

The constant rank condition is for instance satisfied for analytic manifolds [5, Appendix C] and ho-
mogeneous spaces.

Proof. The distribution Lie(H ) is involutive by definition. The constant rank ensures that the Frobenius
theorem (see [4] Theorem 3.20) applies. Thus for any u ∈ FM there exists a maximal connected im-
mersed submanifold QLie(H ) (u) containing u of dimension dimLie(H ) with tangent space Lie(H ). By
construction, the Hörmander condition is satisfied on QLie(H ) (u).

Chow’s theorem [5, Theorem 2.2] yields that QLie(H ) (u) ⊆ Q(u). On the other hand, any two points
in Q(u) can be joined by a horizontal curve. By the construction of QLie(H ) (u), this curve must lie in
QLie(H ) (u). We deduce that Q(u) and QLie(H ) (u) are equal as sets. Moreover, it follows from [5, Exercise
C.4], see also [10], that dimLie(H )u = dimHolu , so Q(u) = QLie(H ) (u) as differentiable manifolds.

In general, however, Lie(H )u may not have constant dimension. In this case, it is not possible to find
a submanifold of FM whereH is bracket generating. For instance, if M is flat in a neighborhood of π(u)
then dimLie(H )u = n while the dimension of Lie(H ) may be larger in curved parts of M . While Q(u)
and Holu are global constructions, Lie(H )u is local and the corresponding Lie group is known as the
infinitesimal holonomy group [6].
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