
H2020-ICT-2018-2-825377

UNICORE

UNICORE: A Common Code Base and Toolkit for Deployment of

Applications to Secure and Reliable Virtual Execution Environments

Horizon 2020 - Research and Innovation Framework Programme

D2.2 API Design

Due date of deliverable: 30 June 2019

Actual submission date: 30 June 2019

Start date of project 1 January 2019

Duration 36 months

Lead contractor for this deliverable University of Liège (ULiège)

Version 1.0

Confidentiality status “Public”

c© UNICORE Consortium 2019 Page 1 of (33)

Abstract

The goal of the EU-funded UNICORE project is to develop a common code-base and toolchain that will

enable software developers to rapidly create secure, portable, scalable, high-performance solutions starting

from existing applications. The key to this is to compile an application into very light-weight virtual

machines – known as unikernels – where there is no traditional operating system, only the specific bits of

operating system functionality that the application needs. The resulting unikernels can then be deployed

and run on standard high-volume servers or cloud computing infrastructure.

In order to provide highest levels of flexibility during the Unikernels creation, it is necessary to define

interfaces to interact with the internal components of the OS kernel. These interfaces will be used to

expose existing OS kernel elements as a set of micro-libs (µ-libs). This decomposition of existing OS

kernel components into µ-libs will define APIs to interact with Unikernels. E.g., APIs to schedulers, timer

facilities, memory management, network stacks, etc.

This deliverable will thus define library categories, and describe their associated APIs along with semantics

annotations, in order to provide support for as many applications as possible. In addition, this deliverable

will also identify the libraries that UNICORE will need to support the widest possible range of applications,

along with a workplan as to how to quickly implement them. This deliverable is the first milestone in a

series of three. Further improvements and information will be made through other milestones of this

deliverable.

Target Audience

The target audience for this document is public.

Disclaimer

This document contains material, which is the copyright of certain UNICORE consortium parties, and may

not be reproduced or copied without permission. All UNICORE consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the UNICORE consortium as a whole, nor a certain party of the UNICORE consortium warrant that

the information contained in this document is capable of use, or that use of the information is free from risk,

and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.

Page 2 of (33) c© UNICORE Consortium 2019

Impressum

Full project title UNICORE: A Common Code Base and Toolkit for Deployment of Ap-

plications to Secure and Reliable Virtual Execution Environments

Title of the workpackage D2.2 API Design

Editor University of Liège (ULiège)

Project Co-ordinator Emil Slusanschi, UPB

Technical Manager Felipe Huici, NEC

Copyright notice c© 2019 Participants in project UNICORE

c© UNICORE Consortium 2019 Page 3 of (33)

Executive Summary
This is the first version of the UNICORE D2.2 document, ”API Design”.

This document uses D2.1 requirements as input in order to define UNICORE’s APIs. The approach taken is to

first describe the general structure of the UNICORE project as well as its main objectives. In order to respect

those, the UNICORE project should provide an abstract layer to support decomposition and modularization

of OS components into fine-grained modules called micro libraries or µ-libs. Such decomposition will allow

developers to select and include only the µ-libs that are necessary for specific applications. This interface

should also allow the construction of unikernels on several platforms and architectures.

Once the general structure of the UNICORE project has been defined, several operating system concepts

have been described. These are not defined to fully explain the functions of an operating system, but rather to

briefly describe the components that can be considered for API design. Taking into account the previously de-

fined concepts as well as the requirements of the deliverable D2.1, it was possible to define several categories

of API. It includes networking, storage, memory management, console (I/O), scheduler, thread management,

time management and miscellaneous. Each category is described via semantics annotations and provides

general operations to manipulate abstractions. These are needed not only to support the fundamental modu-

larization of OS primitives in UNICORE, but also to facilitate unikernels and µ-libs verification.

By using these specifications, several µ-libs have already been defined. In order to provide better flexibility

these have been divided again into three categories. The first category concerns internal libraries and provides

functionality typically found in operating systems and are part of the UNICORE core. The second one

is related to external libraries. These consist of existing software projects external to UNICORE but also

language environments. UNICORE has one last type of micro-library: platform libraries. These libraries

are the ones that allow to seamlessly support a range of different virtualization technologies independently

of what the target application might be. In this way, UNICORE removes one of the big barriers of entry

to adopting unikernel technologies: having to spend months of expert work building a unikernel for each

potential virtualization technology has often proven to be a show stopper in terms of business adoption.

UNICORE has already provided several µ-libs that can be used with to build minimal multi-

platforms/architectures unikernel. Another µ-libs are in progress or will be implemented for the next version

of this document.

Page 4 of (33) c© UNICORE Consortium 2019

List of Authors
Authors Gaulthier Gain and Cyril Soldani (ULiège), Felipe Huici (NEC)

Participants ULiège, NEC

Work-package WP2 - Platform Design and Evaluation

Security PUBLIC

Nature R

Version 1.0

Total number of pages 33

c© UNICORE Consortium 2019 Page 5 of (33)

Contents

Executive Summary 4

List of Authors 5

List of Figures 8

List of Tables 9

1 Introduction 10

1.1 Objectives . 10

1.2 Organization . 11

2 Design Principles 12

2.1 System overview . 12

2.2 General information . 13

2.2.1 I/O Streams . 13

2.2.2 CPU Scheduling and processes . 14

2.2.3 Threads . 14

3 API Design 15

3.1 Objectives . 15

3.2 Networking API . 16

3.3 Storage API . 17

3.3.1 File System Layer . 17

3.3.2 Block device interface . 18

3.4 Memory Management API . 19

3.4.1 Low-level interface . 19

3.4.2 High-level interface . 20

3.5 Process API . 20

3.6 Thread Management API . 21

3.6.1 Threads management . 21

3.6.2 Threads synchronization and coordination . 22

3.7 Console API . 22

3.7.1 Output . 22

3.7.2 Input . 23

3.8 Time Management API . 23

Page 6 of (33) c© UNICORE Consortium 2019

3.8.1 Date and time . 24

3.8.2 Format conversion . 24

3.9 Miscellaneous API . 24

3.9.1 Exception handling . 24

3.9.2 Random generator . 25

4 Micro-libraries from Unikraft 26

4.1 Internal Libraries . 26

4.1.1 Networking and Communication . 26

4.1.2 Storage . 27

4.1.3 Memory Management . 27

4.1.4 Scheduling and Process . 27

4.1.5 System and Miscellaneous . 27

4.2 External Libraries . 28

4.3 Platform Libraries . 29

5 Conclusion 31

References 32

c© UNICORE Consortium 2019 Page 7 of (33)

List of Figures

2.1 High-level overview of an application using the interface with different platforms and archi-

tectures. 12

2.2 Web service unikernel built by the UNICORE system. 13

Page 8 of (33) c© UNICORE Consortium 2019

List of Tables

3.1 POSIX compatible interfaces . 17

3.2 File operations . 18

3.3 Directory operations . 18

3.4 Block API . 18

3.5 Low-level memory management operations . 19

3.6 High-level memory management operations . 20

3.7 Process operations . 21

3.8 Basic operations for threads management. 21

3.9 Basic operations for threads synchronization and coordination 22

3.10 Log levels . 23

3.11 Log operations . 23

3.12 Time manipulation . 24

3.13 Format conversion . 24

3.14 Possible exception codes . 25

3.15 Random generator operations . 25

c© UNICORE Consortium 2019 Page 9 of (33)

1 Introduction
Operating systems expose different interfaces and features to applications to manipulate hardware. For ex-

ample, a UNIX-like operating system allows to interact with the hardware by providing system interfaces

such as a system call table. If such an interface does not exist, developers have to develop against hardware

interfaces defined by manufacturers which will restrict applications to specific hardware. By providing such

an interface, operating systems allow developers to program consistent applications regardless the underlying

infrastructure.

Nowadays, the Linux kernel [1] has more than 400 different system calls [2]. Several system calls are very

similar and can only be differentiated by their number of parameters. Securing such a syscall API is thus quite

challenging. The advent of unikernels will circumvent this problematic since they include only the minimum

functionalities to run a dedicated service. To provide such functionalities, a consistent system interface must

be defined.

The challenge in this context is to define an abstraction layer allowing specialization and customization of

unikernels while supporting multiple platforms (e.g., bare metal, KVM [3], Xen [4], etc.) without requiring

any additional work from the application developer.

Before defining the system interface itself, the main objectives to consider for developing a well-adapted

interface are first explained in this chapter.

1.1 Objectives

The main objective of this deliverable is to provide the library categories API definitions and semantics anno-

tations. This layer defines the common interfaces prevailing throughout UNICORE to support decomposition

and modularization of OS components, and automated unikernels construction.

Defining a consistent system interface provides many advantages. Among these we can consider the following

main concepts:

• Simplicity of programming: With APIs, developers can leverage the development by implementing the

software that was already developed by other programmers. This way a programmer can fully focus on

the core values of his application.

• Separation of concerns: The principles of separation of concerns allow to provide software modularity

because it separates its code into different modules. Modularity, and therefore separation of concerns,

is achieved by encapsulating information in a section of code that has a well-defined interface. Ap-

plying the separation of concerns principle simplifies the development and maintenance of computer

components.

• Ease of access: Another advantage about APIs is that it makes a lot of great enhancements and features

easily accessible. This fact is reinforced by the open-source nature of the project. With this approach, it

Page 10 of (33) c© UNICORE Consortium 2019

will be possible to have feedback about the interface and to take it into consideration to modify current

components or add new features.

These different concepts will make it possible to define a programming interface proposing to choose the most

adapted libraries to build a unikernel with optimal performance and tiny memory footprint. For example, a

user can decide to use a very minimalistic libc implementation or a standard libc such as newlib [5] during

the creation of a unikernel. By using the first one, the result image will be much lighter.

1.2 Organization
This document is organized as follows. Chapter 2 gives an overview of the UNICORE system, and discusses

its general design principles. Chapter 3 describes the various components and their APIs. Chapter 4 gives

an overview of existing µ-libs that have been designed for the unikraft project and for future µ-libs. Finally,

Chapter 5 summarises what has been achieved and any shortcomings that have been identified.

c© UNICORE Consortium 2019 Page 11 of (33)

2 Design Principles
This chapter will first define the general principles of the UNICORE project. Then, it will cover general

information that is relevant to all the operations specified in Chapter 3. These design principles will drive the

UNICORE’s API definition.

2.1 System overview

UNICORE will allow the decomposition of operating system primitives and libraries into fine-grained mod-

ules called micro-libraries or µ-libs. This decomposition of OS functions and system libraries into µ-libs

will drive the definition of APIs. This set of APIs can be considered as an abstraction layer that will provide

an interface to interact with lower levels. To turn an application into a unikernel, developers only have to

follow the UNICORE API instead of implementing themselves the system API specification. In other words,

instead of developing an application for each combination of target platform and architecture, they need only

to use the defined APIs. Figure 2.1 illustrates a high level diagram of a unikernel on different platforms and

architectures.

Application

API

XenBare metal KVM Linux

ARMx86 64 MIPS

Platform

Architecture

Figure 2.1: High-level overview of an application using the interface with different platforms and architec-
tures.

As we can see this abstraction layer will allow to migrate an application on multiple platforms (e.g., Xen and

KVM) and CPU architectures. In addition to supporting several applications and architectures, UNICORE

will offer several µ-libs. These µ-libs will provide a common code base for unikernels, ensuring a large

degree of code reusability. Several µ-libs will be defined in order to guarantee as much modularity, flexibility

and interoperability as possible.

In addition to propose several libraries, the UNICORE system will provide a build tool in charge of compiling

the application and the selected libraries together to create a binary for a specific platform and architecture.

The tool allows users to select libraries, to configure them, and to warn them when library dependencies are

not met. In addition, the tool can also simultaneously generate binaries for multiple platforms. The build

tool will be described in further details in deliverable D4.1 - Design & implementation of tools for unikernel

deployment.

Figure 2.2 shows an example of a web service application packaged as a unikernel. This one is built by using

Page 12 of (33) c© UNICORE Consortium 2019

a special collection of needed µ-libs which can be chosen among a large set of µ-libs during the unikernel

creation.

Figure 2.2: Web service unikernel built by the UNICORE system.

Finally, it should be noted that by combining the application, libraries and OS into a single entity, unikernels

can avoid costly context switches and copies between kernel space and user space. Everything can be run

in the same address space with the same privilege mode, increasing performance compared to traditional

user-space applications running on top of a general-purpose operating system. Of course, there might still

be copies and context switches in the underlying hypervisor (depending on the target platform), but at least

redundant operations can be avoided.

2.2 General information

The purpose of this chapter is not to fully describe the functions of an operating system but rather to define

and describe briefly the OS components which can be considered for designing the API in the following

chapter.

2.2.1 I/O Streams

An I/O stream represents an input source or an output destination. A stream can represent many different

kinds of sources and destinations, including disk files, devices, other programs, and memory arrays.

In input operations, data bytes flow from an input source (such as keyboard, file, network or another program)

into the application. In output operations, data bytes flow from the application to an output sink (such as

console, file, network or another program). Streams acts as an intermediaries between the application and the

actual I/O devices, in such a way that it frees the developer from having to handle the actual devices.

Unikernels will use I/O streams for a variety of operations such as sending data messages across the network

or to write output to the console.

c© UNICORE Consortium 2019 Page 13 of (33)

2.2.2 CPU Scheduling and processes

In UNIX systems, programs are run as processes. A process can be defined as a program instance that is

running on one or more processor(s) under the control of an operating system. A process comprises a set of

instructions for the processor, but also data that is stored in memory and a context. To manage processes,

a classic operating system saves multiple pieces of information in data structures. There is a table to hold

information about all created processes. There is one input per process in the table, called the Process Control

Block (PCB). This structure is used to track the process’s execution status and is thus needed to manage the

scheduling of a particular process.

With unikernels, we have only one memory space and only one application that runs within. Therefore,

managing several processes is no longer necessary. Section 3.5 discusses how to handle this new paradigm.

2.2.3 Threads

In unikernels, UNIX processes do not exist. Instead, the main structure is composed of threads. A thread is

a flow of execution within a process which is characterized by a thread control block. As for processes, this

data structure will be used by the kernel’s scheduler to determine which thread is allowed to execute at any

point in time.

Nevertheless, unlike processes, threads can be easily ported on unikernels. Section 3.6 describes the high-

level operations to manage threads.

Page 14 of (33) c© UNICORE Consortium 2019

3 API Design
This chapter provides high-level API specifications of the µ-libs. Through this chapter, high-level operations

are mentioned. They represent general mechanisms to manipulate abstractions such as storage, networking,

etc., and will allow to drive the decomposition of OS and library primitives into µ-libs. This decomposition

will be further detailed in Chapter 4 which presents some of the implemented µ-libs.

3.1 Objectives

In order to respect the requirements defined in the deliverable D2.1 [6], the UNICORE project shall meet the

main following criteria:

• The system shall provide a high-level interface to interact with low-level features independently of the

underlying platform and architecture.

• The system shall support all utilities and facilities related to Kubernetes [7] and OpenStack [8] orches-

tration.

• The system shall support DPDK [9] and NFV [10] infrastructures.

• The system shall support interactions with databases such as Redis [11] , MySQL [12] and sqlite [13].

• The system shall support I/O interactions.

• The system shall support secure and insecure network connections.

Among all those criteria, it is possible to generalize the requirements by defining several categories. Having

different categories allows to ensure a good cohesion and a separation of concerns while designing the APIs.

The following categories have been defined:

• Networking.

• Storage.

• Memory management.

• Scheduler.

• Thread management.

• Console (I/O).

• Time management.

• Miscellaneous.

The design described in this document achieves elegance by partitioning system functions into eight major

categories where each group of the system provides a well-defined service. Each category defines a set of

concepts that can be exploited to perform particular tasks, as implied by its name. The following sections

describe the API per category.

c© UNICORE Consortium 2019 Page 15 of (33)

3.2 Networking API

Unikernels can be used for various purpose, and different applications will have different networking require-

ments. E.g., a web server is an end-point application that will likely use a POSIX socket interface to abstract

TCP connections as streams of bytes. On the other hand, a network address translator (NAT) is a middlebox

that just processes packets, and does not need a TCP/IP stack at all.

In a general-purpose operating system such as GNU\Linux, those conflicting networking requirements are

reconciled through the use of a very general and flexible networking stack, that can be used at the same time

for various kinds of applications. However, that flexibility comes at a cost: performance. While performance

is usually decent enough for end-point socket-based applications, it is not for middleboxes. Even if those

are doing simple packet processing, they still have to pay the price of the full-blown networking stack, and

the kernel-to-user-space copies. This hinders the development of network function virtualisation (NFV). To

circumvent those problems, middleboxes have to find ways to bypass the OS network stack completely. This

can be done through the use of user-space packet I/O frameworks, e.g., the Data Plane Development Kit

(DPDK [9]). Alternatively, one can also choose to integrate more closely into the kernel, e.g., using eXpress

Data Path (XDP [14]) which provides entry points at the lowest level in the network stack.

With unikernels, the situation is better. The custom-built network stack can be tailored to the application,

and we only brings in what is strictly necessary. This improves both performance (as it incurs less overhead)

and security (as it reduces attack surface). The various parameters tuning the networking stack can also be

tailored to the unique application. Moreover, as far as the unikernel is concerned, there is not distinction

between kernel space and user space, which can avoid costly context switches and packet copies (in some

cases).

To ease the porting of existing network applications to the UNICORE platform, we will reuse existing net-

working APIs. For middlebox applications, which only process packets or are doing flow reconstruction

themselves, we will provide raw packet I/O APIs, e.g. the one of DPDK. Conceptually, those APIs allow:

• to bind to and setup network interfaces;

• to allocate pools of packet buffers, used to receive and send packets;

• to receive and send batches of packets.

In combination with network virtualisation techniques such as SR-IOV [15], that allows to associate a phys-

ical NIC queue directly to a virtualised guest, this low-level interface should allow for very fast, lightweight

middleboxes.

In addition to that low-level packet-based API, we will also provide a TCP/IP network stack for applications

that need it, with a traditional POSIX socket interface.

Both the low-level and socket-based APIs will mimic existing APIs, to ease porting existing applications.

However, we don’t exclude the possibility of extending those APIs to take advantage of the specifics of the

Page 16 of (33) c© UNICORE Consortium 2019

UNICORE environment.

Of course, following the general philosophy of UNICORE, the underlying implementations will be decom-

posed into different µ-libs, to maximise adaptability to the application and target environment (see section 4

for details).

3.3 Storage API

Storage API is designed to provide compatibility to existing applications, and flexibility to purpose built I/O

intensive systems. The storage API comprises a file system and a block device layers. The file system layer

offers the file and directory abstraction to applications, by leveraging interfaces exposed by the block device

layer. The block device layer is directly facing storage device drivers. This layer is introduced for generality

and flexibility to cope with various storage media and to build portable extensions. The extendability at the

block layer allows developers to manipulate multiple storage hardware without changing interface for file

systems. Typically this flexibility is useful to implement RAID and SSD cache. The following sections

describe detailed specifications of storage related APIs.

3.3.1 File System Layer

POSIX compatible VFS interface. For backward compatibility, POSIX compatible functions are provided

to applications. The interfaces rely on the VFS API which maintains file descriptors. Therefore, POSIX

compatible interfaces have to be enabled under the dependency with the VFS layer. The table below shows

some examples. Implementation of those functions are depending on file systems. Those interfaces can be

explicitly obviated when building unikernels for specific-purpose applications.

Name Description

posix open open a file and returns a file descriptor
posix close close a file
posix write write data to a file
posix read read data from a file

Table 3.1: POSIX compatible interfaces

File representation data structure. The main entity passed across the file system interfaces is the inode.

Each file entity is corresponding to an inode object. To keep flexibility, definition of inode is kept minimal,

and detailed data structures are defined in file system implementations. inode retains function pointers which

are a series of common file operations. Those functions are called from generic file operation routines. By

implementing those function differently, file system specific behaviors can be realized. Table 3.2 shows some

example of them.

Directory operations. inode can also represent a directory. Directory inodes implement other functions

which are specific to file and directory creation and deletion. File systems have to implement their own direc-

tory operations for the directory inode. When a file is created in a directory, those operations are executed.

Interfaces for other functionalities. Here only defines minimal interfaces for hiding complexity of file

c© UNICORE Consortium 2019 Page 17 of (33)

Name Description

fgettype return the corresponding file type
fgetname return the corresponding file name
fwrite write data to the corresponding file
fread read data from the corresponding file

Table 3.2: File operations

Name Description

create create a file or directory
delete delete a file or directory

Table 3.3: Directory operations

system specific behaviors. In general, file system implementations incur high complexity in consistency

management and every file system tends to be specialized for the crash consistency mechanism (e.g., journal-

ing, copy-on-write). Especially, data structure updates for block usage bitmap and directory trees are tightly

coupled with file system specific crash consistency mechanisms. File systems have to explicitly call functions

to indicate starting and ending transactions when they update their data structures, and such functions are too

specific for file systems. Therefore, this storage API specification is designed to be as relaxed as possible

so that developers can design and implement varied types of file systems. On the other hand, specifications

in previous sections provide sufficient versatility for file systems so that application programs can run on

different file systems without modifying their application code.

3.3.2 Block device interface

The block device layer is located in-between the file system layer and the storage device driver. This layer

forwards requests from the upper layer to the lower layer. This layer is designed for adding flexibility to stor-

age media management. The block device layer offers hook points to extensions so that they can implement

storage array cooperation mechanisms such as RAID. The interface defined in Table 3.4 gives a representa-

tive example of this layer’s interface. Those functions are called by an upper layer and take a block device

representation object as an argument. The block device data structure implements also following functions,

and at the bottom layer, device driver specific APIs are directly called. Unikernel applications can directly

call those functions for bypassing the cost of file system operations.

Name Description

block write write data to a specific block
block read read data from a specific block

block write hook hook for block write
block read hook hook point for block read

Table 3.4: Block API

Page 18 of (33) c© UNICORE Consortium 2019

3.4 Memory Management API

Unikernels are single-address space. As a result, there is no longer any separation between user and kernel

address space. In this way, the kernel and the application can run in the same privilege ring. Although there

is only a single-address space, memory management techniques are still needed.

Memory management can be divided into two parts. The first one concerns low-level operations and focuses

on basics such as dynamic allocation of stack and heap storage while the second one provides high-level

facilities.

(i) Low-level memory manager

• treats memory as a single, exhaustible resource

(ii) High-level memory manager

• manages pages within address space

• divides memory into abstract resources

3.4.1 Low-level interface

A set of functions and data structures should be used to manage free memory. Four high-level generic

operations can be defined to manage memory:

Name Description

allocstk allocate stack space when a process is created
freestk release a stack when a process terminates

allocheap allocate heap storage on demand
freeheap release heap storage as requested

Table 3.5: Low-level memory management operations

With this design, free space is considered as a single and exhaustible resource. The low-level memory man-

ager allocates space provided a request can be satisfied. In addition, the low-level memory manager does not

partition the free space into memory available for process stacks and memory available for heap variables. In

other words, requests of one type can take the remaining free space.

Functions allocstk and freestk are respectively called during the process creation and termination.

The allocstk obtains a block of memory from the highest address of free space, and returns a pointer to

the new allocated block. Finally, when the process is stopped or killed, a call to the function freestk is

performed to release the process’s stack and return the block to the free list.

Functions allocheap and freeheap provide similar services for heap management. Nevertheless, unlike

the stack allocation functions, allocheap and freeheap allocate blocks from the lowest address of the

free space.

c© UNICORE Consortium 2019 Page 19 of (33)

3.4.2 High-level interface

The previous section describes a low-level memory management facility that treats memory as an exhaustible

resource. At an upper level, conventional heap management operations can be defined. Indeed, it should be

possible to perform classic operations to extend the heap memory by calling methods similar to malloc,

calloc and realloc functions. The first method is used to dynamically allocate a single large block of

memory with the specified size in bytes. If the space is insufficient, allocation fails and returns a NULL

pointer. The second one is used to dynamically allocate the specified number of blocks of memory with zero

values. Finally, the last one attempts to resize a memory block that was previously allocated. Basically, if

tougher memory alignment is needed, it must be possible to use additional function(s) such as memalign.

To deallocate a memory block previously allocated by a call to calloc, malloc or realloc, a free

method taking as a parameter the pointer to a memory block previously allocated, should be defined.

Name Description

malloc allocate a single large block of memory
calloc allocate the specified number of blocks of memory with zero values
realloc resize a memory block that was previously allocated
memalign allocate aligned memory
free deallocate the memory previously allocated

Table 3.6: High-level memory management operations

3.5 Process API

A characteristic of a UNIX program is the use of multi-process abstractions, such as fork and interprocess

communication. The use of such primitives allows multiple tasks to run independently of one another as

though they each had the full memory of the machine to themselves. To exchange data and messages between

processes, there exist several inter-process communication (IPC) mechanisms, each with unique use cases and

semantics.

In the context of unikernels, the classical paradigm of processes should be adapted. Indeed, unikernels are

dedicated to a single application and thus strip off the process abstraction from its monolithic appliance. In

the same way inter-process communication can no longer be done using the traditional IPC.

As for classic operating systems, it should be possible to create a process with a specific function (e.g.,

fork in UNIX). However in that case, this function should be used only once and during the unikernel

start-up. Indeed, it will boostrap the process and thus the unikernel itself. It can be only used once and not

several times during the unikernel life cycle. Several UNIX applications use fork to handle simultaneously

different operations. For example, mysql [12] uses fork when it is launched as a daemon. DNS servers

such as rbldnsd [16] use fork for reloading DNS zones after having added new configuration. To handle

existing applications that use fork, it is necessary to perform further research. When a unikernel must be

stopped, a function to free up resources should be called. This function will stop the current process and thus

Page 20 of (33) c© UNICORE Consortium 2019

the unikernel. Table 3.7 gives high-level operations to manage processes in a unikernel.

Name Description

process create create a process as an unikernel instance
process exit terminate a process

Table 3.7: Process operations

Concerning the IPC mechanisms, those become useless since only one process is running at a time. Com-

munications between unikernels should be handled by another mechanisms such as networking operations

or/and Remote Procedure Call (RPC). The PCB data structure can be also modified since process scheduling

is no longer needed. Again, further researches must be established concerning this part.

3.6 Thread Management API

Although unikernels only manage one process, they should have a complete support for SMP (multi-core)

VMs, and for threads, as almost all modern applications use them. Thread API includes two abstractions:

thread management (e.g., creation of threads), and scheduling primitives for inter-thread synchronization and

coordination.

3.6.1 Threads management

It should be feasible to easily create and exit threads with simple operations. Table 3.8 defines the high-level

operations to manage threads. To ease the porting of existing multi-threaded applications to the UNICORE

platform, we will reuse existing threads APIs such as pthreads [17] which is based on pre-emptive multi-

threading.

Name Description

thread create create and initialize a thread
thread exit terminate calling thread
thread join wait for a thread to finish
thread sleep suspend the current thread for the given timespan

Table 3.8: Basic operations for threads management.

The thread create function starts a new thread in the calling process. The new thread starts execution by

invoking an internal routine which defines its behaviour. Every thread created by thread create should

look identical to the platform and the architecture, to keep the abstraction portable on various host options.

The purpose of thread exit is to free the resources allocated for the current thread, including the initial

stack. If several threads are created, it can be useful that the originating thread has to wait for the completion

of all its spawned thread’s tasks. This operation is performed by calling the thread join function. Finally,

the thread sleep method should suspend the current thread for a given timespan (in microseconds).

c© UNICORE Consortium 2019 Page 21 of (33)

3.6.2 Threads synchronization and coordination

To coordinate and synchronize threads, the API should define two scheduling primitives. These scheduling

primitives, listed in Table 3.9, should prevent a thread from spinning on a CPU core until the state of a lock

or an event is atomically changed.

Name Description

mutex lock Wait for a lock on a mutex object
mutex unlock Unlock a mutex object

Table 3.9: Basic operations for threads synchronization and coordination

The mutex lockmethod sets up a mutex lock. A mutex lock enforces atomic execution in a critical section:

it acts as a gate keeper to a section of code allowing one thread in and blocking access to all others until the

lock is released again. The mutex lock function releases a mutex lock held by the current thread.

To decide which thread should run, a thread scheduler should be implemented. The thread scheduler should

be able to multiplex N threads on top of M CPUs (N may be much higher than M), and guarantee fairness

and load balancing (moving threads between cores to improve global fairness). It should also consider pre-

emptive or time slicing scheduling to schedule threads.

The approach describes below is called pre-emptive threading. Threads are pre-emptive, therefore if a given

thread spends a lot of time using the CPU, the scheduler will temporarily interrupt it and will switch to another

thread. There exists another model that is called collaborative threading. In this model, once a thread has

control it executes until it explicitly yields control or blocks. The problem with cooperative multi-threading is

that it depends on the willingness of threads to make room for other threads. If a task fails to release control,

there is nothing that can be done about it.

A lot of web applications such as nginx [18] achieve concurrency with pre-emptive multitasking by using

threads: each request is handled by a thread and when the request is done, the thread is released back to

a pool. Some applications follow another approach by using the collaborative model. For example, the

Ocsigen [19] framework allows to develop web sites and client-server web applications in OCaml [20] using

a collaborative threading library called Lwt [21]. Depending the needs, it can be interesting to consider

collaborative model and to provide a micro-lib based on the Lwt library.

3.7 Console API

Console API is designed to provide compatibility to existing applications by providing an interface to log

messages and to retrieve user input. This one is especially useful for debugging purpose.

3.7.1 Output

On a standard Linux system, the user-space klogd daemon retrieves the kernel messages from the log buffer

and feeds them into the system log file via the syslogd daemon. Considering unikernels, it is difficult to keep

this approach since unikernels are designed specifically for running a single process. Therefore it should be

Page 22 of (33) c© UNICORE Consortium 2019

necessary to propose several print operations and log levels. Although such an API is certainly less crucial

than the one related to the network, it can be useful to debug applications. Table 3.10 shows the different log

levels possible.

Name Meaning

LOG EMERG Emergency messages, system is about to crash or is unstable
LOG ALERT Something bad happened and action must be taken immediately
LOG CRIT A critical condition occurred like a serious hardware/software failure
LOG ERR An error condition, often used by drivers to indicate difficulties with the hardware

LOG WARNING A warning, meaning nothing serious by itself but might indicate problems
LOG INFO Informational message e.g. startup information at driver initialization
LOG DEBUG Debug messages

Table 3.10: Log levels

In addition to log levels, several log operations should also be defined. These are mainly differentiated by

their specific behavior. Indeed, the log method produces output with simple and standardized formatting.

For more precise control over the output format than what is provided by log, the logf function should

be used. With this one, it is possible to specify the width to use for each item, as well as various formatting

choices for numbers.

Name Description

log write a message to the console
logf write a message in a specific format to the console

Table 3.11: Log operations

In a general way, log methods write to standard error and print the date and time of each logged message.

Every log message is output on a separate line: if the message being printed does not end in a newline, the

logger will add one.

3.7.2 Input

Generally, unikernels do not interact directly with user input. This approach ensures better isolation and

security. Nevertheless, in some cases (e.g., debugging), it can be useful that users provide input. An input

function allowing user input should also be considered. This one implements formatted input analogous to

C’s scanf function.

3.8 Time Management API

For several kinds of applications, time and date management can be useful. Therefore, it is necessary to

define a group of functions to manage both. These functions should provide support for time acquisition,

conversion between date formats and formatted output to strings.

c© UNICORE Consortium 2019 Page 23 of (33)

3.8.1 Date and time

It should be possible to return the current system time as the number of microseconds passed since the Epoch,

1970-01-01 00:00:00 Universal Time (UTC). To query the system time, the host must have a reliable time

source. A common reliable time source that can be considered is a system timer incremented by the hardware

alarm interrupts [22]. In addition, it should also be feasible to compute the difference in seconds between two

time values.

Name Description

time return the current time of the system since an Epoch
difftime compute the difference in seconds between two time values

Table 3.12: Time manipulation

3.8.2 Format conversion

The time function returns a value of integral type holding the number of seconds since the Epoch. Several

functions to convert time since epoch to a (custom) textual representation should also be defined. For example,

a textual representation can have the following format: Www Mmm dd hh:mm:ss yyyy

• Www - the day of the week (one of Mon, Tue,

Wed, Thu, Fri, Sat, Sun).

• Mmm - the month (one of Jan, Feb, Mar, Apr,

May, Jun, Jul, Aug, Sep, Oct, Nov, Dec).

• dd - the day of the month

• hh - hours

• mm - minutes

• ss - seconds

• yyyy - years

The ttime will convert a time value to the textual representation considering all fields below. Unlike the

previous function, the ctime will allow to specify a specific string format.

Name Description

ttime convert a time value to a textual representation
ctime convert a time value to a custom textual representation

Table 3.13: Format conversion

3.9 Miscellaneous API
Besides managing host resources, the API also contains miscellaneous features such as exception handling

and random number generation.

3.9.1 Exception handling

Exceptions are designed for handling failures inside the exposed interface or for hardware exceptions. If

an exception is triggered, a handler should be specified in order to catch it. When an exception is raised,

this handler should receive a data structure which contains information related to the exception. Among this

Page 24 of (33) c© UNICORE Consortium 2019

information, it should be possible to get values of general-purpose registers when the exception is triggered,

the address that triggers a memory fault, or an illegal instruction and an exception code. Table 3.14 contains

a non-exhaustive list of possible exception codes:

Name Description

MEM FAULT read or write memory violation
DIV BY ZERO divide by zero

STACK OVERFLOW the stack went beyond the maximum available size
INST FAULT illegal instruction fault

Table 3.14: Possible exception codes

When an exception is raised, the current execution is interrupted and redirected to the specified handler

function. This function will try to recover the execution by considering the previous information. Once

the exception has been processed by the handler function, it can return to the original execution. Defining

exception handling allows to support languages such as C++.

3.9.2 Random generator

Random numbers are used in various programs and protocols. Those are particularly useful for secure com-

munications. Indeed, random numbers are one of the main elements for many cryptographic applications.

Pseudo-random number generator (PRNG), encryption keys and authentication tokens need to be fed by ran-

dom numbers. Standard functions defined in Table 3.15 respectively generate the pseudo-random number

and initialize the seeds for the random number generator function.

Name Description

rand generate the pseudo-random number
srand initialize the pseudo-random number generator

Table 3.15: Random generator operations

c© UNICORE Consortium 2019 Page 25 of (33)

4 Micro-libraries from Unikraft
To allow for extreme specialization and customization of its unikernels, UNICORE will decompose operating

system primitives and libraries into fine-grained modules called µ-libs. These can be arbitrarily small or as

large as standard libraries like libc [23]. These libraries are divided into three categories:

(i) Internal libraries provide functionality typically found in operating systems and are part of the UNI-

CORE core.

(ii) External libraries consist of existing software projects external to UNICORE. For example, these

include libraries such as openssh [24], glibc and libuuid, but also language environments such as

Javascript/v8 and Python [25].

(iii) Platform libraries allows users to select particular platforms.

In addition to these categories there exist also applications that can be ported to the UNICORE project. They

correspond to standard applications such as MySQL, nginx or PyTorch [26], to name a few.

In the rest of this chapter we list the µ-libs that UNICORE has already provided, is working on providing, or

is envisioning to provide in the future.

4.1 Internal Libraries

One important thing to point out regarding internal libraries is that for each category of library (e.g., memory

allocators, schedulers, device buses, network drivers, . . .) UNICORE defines (or will define) an API that each

library under that category must comply with. This is so that it is possible to easily plug and play different

libraries of a certain type (e.g., using a cooperative scheduler or a preemptive one).

An API consists of a header file defining the actual API as well as an implementation of some

generic/compatibility functions, if any, that are common to all libraries under a specific category.

4.1.1 Networking and Communication

The network API provides information about the system’s connection in terms of connection type (e.g., wifi,

wired, . . .). It references also low-level functions to handle sockets. Indeed, the purpose of the networked-

libraries is to manage several kinds of network applications.

• uknetdev: This library adds network driver interface. The netdev API provides a generalized interface

between network device drivers and network stack implementations or low-level network applications.

• ukbus: API/abstraction for device buses

• ukpci: Implementation of a PCI bus (in progress)

Page 26 of (33) c© UNICORE Consortium 2019

4.1.2 Storage

• vfscore: The project’s main virtual filesystem API and implementation

• ramfs: An implementation of a simple RAM-based filesytem

• devfs: An implementation of the device file system

• 9pfs: An implementation of the 9pfs filesystem

• libblock: The project’s block layer implementation and API

4.1.3 Memory Management

This subsection describes all project micro-libraries related to memory management.

• ukalloc: abstraction/API library for memory allocators

• ukallocbbuddy: binary buddy allocator implementation

4.1.4 Scheduling and Process

This subsection describes all project micro-libraries related to memory management.

• uksched: abstraction/API for all schedulers

• ukschedcoop: implementation of a cooperative round-robin scheduler

• libukschedpreempt: implementation of a pre-emptive scheduler (in progress)

• libproc: process support via cloning of running unikernel (in progress)

• ukmpi: inter-thread communication

• uklock: multi-task synchronization primitives

4.1.5 System and Miscellaneous

• nolibc: minimalistic implementation of libc functionality

• noblim: minimalistic implementation of libm functionality (in progress)

• uktimeconv: time conversion functions

• ukboot: early boot code

• ukargparse: argument parser

• ukdebug: printing and debug helpers

• ukswrand: random number generator

c© UNICORE Consortium 2019 Page 27 of (33)

• syscallshim: shim layer for suppporting syscalls

• uksglist: singly-linked list implementataion

• ukunistd: implementation of unistd.h functions

4.2 External Libraries

In addition to internal libraries, UNICORE defines the concept of external micro-libraries. An external library

adds functionality provided by a software package unrelated to UNICORE; for instance, these could include

things like openssh, frameworks such as DPDK, or language environments such as Go [27] or Python [25].

External libraries can be added to a UNICORE unikernel build in order to enhance that unikernel’s function-

ality. While clearly the external library’s code doesn’t need to be written from scratch, some level of porting

effort needs to be done in order to integrate what is essentially an external project with the UNICORE build

system. As complimentary work, we are looking at mechanisms to automatically port such libraries, for in-

stance by using binary re-writing techniques to run Linux-built, ELF format binaries withing UNICORE-built

unikernels.

The list below gives an overview of the external libraries currently supported by the project, as well as a few

that are in progress.

(i) newlib: C standard library implementation

(ii) musl: C standard library implementation (in progress)

(iii) libuv: software library with a focus on asynchronous events (in progress)

(iv) zlib: software library used for data compression (in progress)

(v) libuuid: software library is used to generate unique identifiers

(vi) libunwind: library to analyze and modify the call stack of C programs.

(vii) openssl: software library for the Transport Layer Security (in progress)

(viii) libaxtls: software library for the Transport Layer Security (in progress)

(ix) libcxx: standard c++ library support

(x) libcxxabi: c++ abi

(xi) compiler-rt: runtime support

(xii) eigen: C++ template library for linear algebra

(xiii) intel-intrinsics: C style functions that provide access Intel instructions

Page 28 of (33) c© UNICORE Consortium 2019

(xiv) fp16: Half-precision floating point formats conversion

(xv) fxdiv: division via fixed-point multiplication by inverse

(xvi) libunwind: stack unwinder

(xvii) lwip: network stack

(xviii) micropython: sub-set of Python for embedded devices (in progress)

(xix) pthread-embedded: pthread API support

(xx) pthreadpool: pthread-based thread pool for C/C++

(xxi) python: CPython v2 and v3 (in progress)

(xxii) libgo: Go support (in progress)

(xxiii) libjvm: OpenJDK/Java support (in progress)

(xxiv) libruby: Ruby support (in progress)

(xxv) libv8: Javascript/v8 support (in progress)

(xxvi) librust: Rust support (in progress)

(xxvii) dpdk: Intel’s DPDK high performance packet framework (in progress)

(xxviii) c-ares: C library for asynchronous DNS requests (in progress)

(xxix) http-parser: parser for HTTP messages written in C (in progress)

4.3 Platform Libraries

UNICORE has one last type of micro-library: platform libraries. These libraries are the ones that allow

us to seamlessly support a range of different virtualization technologies independently of what the target

application might be. In this way, UNICORE removes one of the big barriers of entry to adopting unikernel

technologies: having to spend months of expert work building a unikernel for each potential virtualization

technology has often proven to be a show stopper in terms of business adoption.

More concretely, UNICORE currently supports, or is planning on supporting, the following platforms:

• Xen: The popular open source Xen hypervisor is natively supported by UNICORE, including virtual

drivers for networking and block devices (both in progress), as well as support for the Xen bus and

XenStore.

• KVM/QEMU [28]: Support for the KVM platform, using QEMU for device emulation.

c© UNICORE Consortium 2019 Page 29 of (33)

• KVM/Solo5 [29]: Support for the minimalistic for highly efficient Solo5 virtual machine monitor

(VMM) on top of KVM (in progress)

• KVM/Firecracker [30]: Support for the newly introduced Amazon Firecracker VMM (support for

actual devices is in progress).

• Linux userspace: Not an actual virtualization platform, this target acts as a good development tool:

UNICORE users can develop their unikernel using Linux user-space (and leveraging all the standard

tools available in that environment), and then switch to one of the other platforms for actual deploy-

ment.

• OCI containers [31]: Support for OCI-compatible containers (e.g., Docker and Rkt are OCI-

compatible). This work is in progress.

In addition, it is worth pointing that UNICORE also supports multiple CPU architectures. Such architecture-

specific code does not constitute actual micro-libraries, but does allow UNICORE to seamlessly support

different architectures. So far, x86 64 is supported, with ARM64 support coming soon (there’s also rudimen-

tary support for ARM32). Support of the MIPS architecture should also be considered if we have enough

resources and time.

Page 30 of (33) c© UNICORE Consortium 2019

5 Conclusion
This document describes the first milestone concerning design API. It begins by introducing the general

structure of the UNICORE project as well as its main objectives. This one aims to define a clear and concise

interface that can support multiple platforms/architectures and allows a certain degree of flexibility to the user

by letting him to choose which library to pick to build an unikernel. Subsequently, it defines a set of concepts

that is relevant to define general operations. All these specifications are established by the use of semantic

annotations and define high-level mechanisms that should be considered during the design of a unikernel and

more precisely concerning its interface. By using this specification, several µ-libs have already been defined

and can thus be used with the build tool to construct a multi-platforms/architectures unikernel. Another µ-libs

are in progress or will be implemented for the next version of this document.

c© UNICORE Consortium 2019 Page 31 of (33)

References
[1] “The linux kernel archives.” [Online]. Available: https://www.kernel.org

[2] “Linux system calls list.” [Online]. Available: http://man7.org/linux/man-pages/man2/syscalls.2.html

[3] “Kernel virtual machine.” [Online]. Available: https://www.linux-kvm.org/page/Main Page

[4] “Xen project.” [Online]. Available: https://www.xenproject.org

[5] “The newlib homepage - sourceware.org.” [Online]. Available: https://sourceware.org/newlib

[6] C. Patachia, E. Slusanschi, F. Huici, G. Bosson, G. Carrozzo, J. Martı́n, J. Bromell, J. Guijarro,

M. Rapoport, R. Stoenescu, and R. Deaconescu, “D2.1 requirements,” Apr. 2019. [Online]. Available:

https://doi.org/10.5281/zenodo.2783992

[7] “Production-grade container orchestration.” [Online]. Available: https://kubernetes.io

[8] “Build the future of open infrastructure.” [Online]. Available: https://www.openstack.org

[9] “Dpdk - data plane development kit.” [Online]. Available: https://www.dpdk.org

[10] “Etsi, european telecommunications standards institute, industry specification groups (isg) - nfv.”

[Online]. Available: https://www.etsi.org/technologies/nfv

[11] “Redis.” [Online]. Available: https://redis.io

[12] “Mysql.” [Online]. Available: https://www.mysql.com

[13] “Sqlite.” [Online]. Available: https://sqlite.org/index.html

[14] “Xdp - express data path.” [Online]. Available: https://www.iovisor.org/technology/xdp

[15] “Pci special interest group.” [Online]. Available: http://www.pcisig.com/home

[16] “A small and fast dns daemon especially made to serve dnsbl zones.” [Online]. Available:

https://rbldnsd.io

[17] “Linux programmer’s manual - pthreads posix threads.” [Online]. Available: http://man7.org/linux/

man-pages/man7/pthreads.7.html

[18] “Nginx — high performance load balancer, web server, and reverse proxy.” [Online]. Available:

https://www.nginx.com

[19] “Multi-tier programming for web and mobile apps.” [Online]. Available: https://ocsigen.org/home/

intro.html

Page 32 of (33) c© UNICORE Consortium 2019

https://www.kernel.org
http://man7.org/linux/man-pages/man2/syscalls.2.html
https://www.linux-kvm.org/page/Main_Page
https://www.xenproject.org
https://sourceware.org/newlib
https://doi.org/10.5281/zenodo.2783992
https://kubernetes.io
https://www.openstack.org
https://www.dpdk.org
https://www.etsi.org/technologies/nfv
https://redis.io
https://www.mysql.com
https://sqlite.org/index.html
https://www.iovisor.org/technology/xdp
http://www.pcisig.com/home
https://rbldnsd.io
http://man7.org/linux/man-pages/man7/pthreads.7.html
http://man7.org/linux/man-pages/man7/pthreads.7.html
https://www.nginx.com
https://ocsigen.org/home/intro.html
https://ocsigen.org/home/intro.html

[20] “Ocaml is an industrial strength programming language supporting functional, imperative and

object-oriented styles.” [Online]. Available: https://ocaml.org/index.html

[21] J. Vouillon, “Lwt: A cooperative thread library,” in Proceedings of the 2008 ACM SIGPLAN

Workshop on ML, ser. ML ’08. New York, NY, USA: ACM, 2008, pp. 3–12. [Online]. Available:

http://doi.acm.org/10.1145/1411304.1411307

[22] R. Love, Linux Kernel Development, 3rd ed. Addison-Wesley Professional, 2010.

[23] “libc(7) - linux manual page.” [Online]. Available: http://man7.org/linux/man-pages/man7/libc.7.html

[24] “Openssh.” [Online]. Available: https://www.openssh.com

[25] “Python.” [Online]. Available: https://www.python.org

[26] “Pytorch - an open source deep learning platform that provides a seamless path from research

prototyping to production deployment.” [Online]. Available: https://pytorch.org

[27] “The go programming language.” [Online]. Available: https://golang.org

[28] “Qemu, the fast! processor emulator.” [Online]. Available: https://www.qemu.org

[29] “Solo5 unikernel.” [Online]. Available: https://developer.ibm.com/open/projects/solo5-unikernel/

[30] “Firecracker - secure and fast microvms for serverless computing.” [Online]. Available: https:

//firecracker-microvm.github.io

[31] “Open containers initiative.” [Online]. Available: https://www.opencontainers.org

c© UNICORE Consortium 2019 Page 33 of (33)

https://ocaml.org/index.html
http://doi.acm.org/10.1145/1411304.1411307
http://man7.org/linux/man-pages/man7/libc.7.html
https://www.openssh.com
https://www.python.org
https://pytorch.org
https://golang.org
https://www.qemu.org
https://developer.ibm.com/open/projects/solo5-unikernel/
https://firecracker-microvm.github.io
https://firecracker-microvm.github.io
https://www.opencontainers.org

	Executive Summary
	List of Authors
	List of Figures
	List of Tables
	Introduction
	Objectives
	Organization

	Design Principles
	System overview
	General information
	I/O Streams
	CPU Scheduling and processes
	Threads

	API Design
	Objectives
	Networking API
	Storage API
	File System Layer
	Block device interface

	Memory Management API
	Low-level interface
	High-level interface

	Process API
	Thread Management API
	Threads management
	Threads synchronization and coordination

	Console API
	Output
	Input

	Time Management API
	Date and time
	Format conversion

	Miscellaneous API
	Exception handling
	Random generator

	Micro-libraries from Unikraft
	Internal Libraries
	Networking and Communication
	Storage
	Memory Management
	Scheduling and Process
	System and Miscellaneous

	External Libraries
	Platform Libraries

	Conclusion
	References

