{ "cells": [ { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "#Importing the libraries\n", "import pandas as pd\n", "import numpy as np\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Country2009201020112012201320142015201620172018
0AfricaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1North AfricaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2Algeria5280.595671.318652.249326.2910161.69724.3810412.710217.110073.49583.72
3Libya. .. .. .2987.413964.693755.66. .. .. .. .
4Morocco3055.073160.83342.73402.74065.554048.613268.363327.033461.463696.86
\n", "
" ], "text/plain": [ " Country 2009 2010 2011 2012 2013 2014 \\\n", "0 Africa NaN NaN NaN NaN NaN NaN \n", "1 North Africa NaN NaN NaN NaN NaN NaN \n", "2 Algeria 5280.59 5671.31 8652.24 9326.29 10161.6 9724.38 \n", "3 Libya . . . . . . 2987.41 3964.69 3755.66 \n", "4 Morocco 3055.07 3160.8 3342.7 3402.7 4065.55 4048.61 \n", "\n", " 2015 2016 2017 2018 \n", "0 NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN \n", "2 10412.7 10217.1 10073.4 9583.72 \n", "3 . . . . . . . . \n", "4 3268.36 3327.03 3461.46 3696.86 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#We will see the military spending data of G20 Countries\n", "#we took the data from this site \"https://www.sipri.org/databases/milex\"\n", "#Among csv,excel and other file formates i took excel which is flexible for me,\n", "#based on your convenience you can use better one.\n", "\n", "militarydata = pd.ExcelFile(\"SIPRI-Milex-data-1949-2018_0.xlsx\")\n", "\n", "#Excel sheet has 10 sheets but we will be using only three sheets with this information Per capita,Share of GDP, Current USD and Country.\n", "\n", "#Delete header and footer as they are unnecessary and take the data from 2009 to 2018 as it is recent one.\n", "usd = militarydata.parse('Current USD',skip_footer=8,skiprows = 5)\n", "usd1 = usd[['Country',2009,2010,2011,2012,2013,2014,2015,2016,2017,2018]]\n", "usd1.head()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country
Turkey16352.317939.417304.917958.218662.617772.215880.9178541782418967.1
South Africa3592.694188.174594.154489.594118.213892.473488.873169.763638.943639.88
Russia51532.158720.270237.581469.488352.984696.566418.769245.366527.361387.5
Japan51465.254655.560762.260011.549023.946881.242106.146471.34538746618
Indonesia3304.464663.375838.036531.18384.036929.267639.17385.418178.147437.2
Germany47470.146255.548140.346470.945930.546102.739812.641579.545381.749470.6
Canada18936.219315.721393.720452.118515.717853.717937.617782.821343.421620.6
Australia18960.123217.726597.226216.624825.325783.724045.626382.927691.126711.8
Saudi Arabia41267.245244.548530.956497.96702080762.487185.963672.87040067554.7
Mexico4855.515897.26471.396978.787837.618663.387739.526019.775781.446567.51
Italy34054.532020.833828.82978129957.42770122180.82503326447.927807.5
India38722.246090.449633.847216.947403.550914.151295.556637.664559.466510.3
France6688461781.764600.960035.262417.163613.655342.157358.460417.563799.7
China105644115712137967157390179880200772214093216031227829249997
Brazil25648.834002.936936.23398732874.832659.624617.724224.729283.127766.4
Argentina2981.853475.354051.934563.225137.974979.445482.624509.655459.644144.99
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 2014 2015 \\\n", "Country \n", "Turkey 16352.3 17939.4 17304.9 17958.2 18662.6 17772.2 15880.9 \n", "South Africa 3592.69 4188.17 4594.15 4489.59 4118.21 3892.47 3488.87 \n", "Russia 51532.1 58720.2 70237.5 81469.4 88352.9 84696.5 66418.7 \n", "Japan 51465.2 54655.5 60762.2 60011.5 49023.9 46881.2 42106.1 \n", "Indonesia 3304.46 4663.37 5838.03 6531.1 8384.03 6929.26 7639.1 \n", "Germany 47470.1 46255.5 48140.3 46470.9 45930.5 46102.7 39812.6 \n", "Canada 18936.2 19315.7 21393.7 20452.1 18515.7 17853.7 17937.6 \n", "Australia 18960.1 23217.7 26597.2 26216.6 24825.3 25783.7 24045.6 \n", "Saudi Arabia 41267.2 45244.5 48530.9 56497.9 67020 80762.4 87185.9 \n", "Mexico 4855.51 5897.2 6471.39 6978.78 7837.61 8663.38 7739.52 \n", "Italy 34054.5 32020.8 33828.8 29781 29957.4 27701 22180.8 \n", "India 38722.2 46090.4 49633.8 47216.9 47403.5 50914.1 51295.5 \n", "France 66884 61781.7 64600.9 60035.2 62417.1 63613.6 55342.1 \n", "China 105644 115712 137967 157390 179880 200772 214093 \n", "Brazil 25648.8 34002.9 36936.2 33987 32874.8 32659.6 24617.7 \n", "Argentina 2981.85 3475.35 4051.93 4563.22 5137.97 4979.44 5482.62 \n", "\n", " 2016 2017 2018 \n", "Country \n", "Turkey 17854 17824 18967.1 \n", "South Africa 3169.76 3638.94 3639.88 \n", "Russia 69245.3 66527.3 61387.5 \n", "Japan 46471.3 45387 46618 \n", "Indonesia 7385.41 8178.14 7437.2 \n", "Germany 41579.5 45381.7 49470.6 \n", "Canada 17782.8 21343.4 21620.6 \n", "Australia 26382.9 27691.1 26711.8 \n", "Saudi Arabia 63672.8 70400 67554.7 \n", "Mexico 6019.77 5781.44 6567.51 \n", "Italy 25033 26447.9 27807.5 \n", "India 56637.6 64559.4 66510.3 \n", "France 57358.4 60417.5 63799.7 \n", "China 216031 227829 249997 \n", "Brazil 24224.7 29283.1 27766.4 \n", "Argentina 4509.65 5459.64 4144.99 " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Remove the data which is not useful and dropping the NAN's\n", "usd2 = usd1[usd1!=\". .\"]\n", "usd2 = usd2[usd!=\"xxx\"]\n", "usd2 = usd2.dropna(how='any',axis=0)\n", "\n", "#Setting the index name as Country\n", "usd3 = usd2.set_index('Country')\n", "usd3.head()\n", "\n", "#Viewing the military data for G20 Nations\n", "G20_military_countries = usd3.loc[['Turkey','South Africa','Russia','Japan','Indonesia', \n", " 'Germany','Canada','Australia',\n", " 'Saudi Arabia','Mexico','Italy','India','France','China','Brazil','Argentina',],:]\n", "G20_military_countries\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Country\n", "Turkey 1.765156e+05\n", "South Africa 3.881272e+04\n", "Russia 6.985875e+05\n", "Japan 5.033819e+05\n", "Indonesia 6.629008e+04\n", "Germany 4.566144e+05\n", "Canada 1.951516e+05\n", "Australia 2.504320e+05\n", "Saudi Arabia 6.281363e+05\n", "Mexico 6.681211e+04\n", "Italy 2.888129e+05\n", "India 5.189838e+05\n", "France 6.162502e+05\n", "China 1.805317e+06\n", "Brazil 3.020013e+05\n", "Argentina 4.478667e+04\n", "Name: TOTAL, dtype: float64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Taking the data from 2009 to 2018 and adding a new column 'TOTAL' to it.\n", "G20_military_countries['TOTAL'] = np.sum(G20_military_countries, axis =1)\n", "G20_military_countries['TOTAL']" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018TOTAL
Country
China1056441157121379671573901798802007722140932160312278292499971.805317e+06
Russia51532.158720.270237.581469.488352.984696.566418.769245.366527.361387.56.985875e+05
Saudi Arabia41267.245244.548530.956497.96702080762.487185.963672.87040067554.76.281363e+05
France6688461781.764600.960035.262417.163613.655342.157358.460417.563799.76.162502e+05
India38722.246090.449633.847216.947403.550914.151295.556637.664559.466510.35.189838e+05
Japan51465.254655.560762.260011.549023.946881.242106.146471.345387466185.033819e+05
Germany47470.146255.548140.346470.945930.546102.739812.641579.545381.749470.64.566144e+05
Brazil25648.834002.936936.23398732874.832659.624617.724224.729283.127766.43.020013e+05
Italy34054.532020.833828.82978129957.42770122180.82503326447.927807.52.888129e+05
Australia18960.123217.726597.226216.624825.325783.724045.626382.927691.126711.82.504320e+05
Canada18936.219315.721393.720452.118515.717853.717937.617782.821343.421620.61.951516e+05
Turkey16352.317939.417304.917958.218662.617772.215880.9178541782418967.11.765156e+05
Mexico4855.515897.26471.396978.787837.618663.387739.526019.775781.446567.516.681211e+04
Indonesia3304.464663.375838.036531.18384.036929.267639.17385.418178.147437.26.629008e+04
Argentina2981.853475.354051.934563.225137.974979.445482.624509.655459.644144.994.478667e+04
South Africa3592.694188.174594.154489.594118.213892.473488.873169.763638.943639.883.881272e+04
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 2014 2015 \\\n", "Country \n", "China 105644 115712 137967 157390 179880 200772 214093 \n", "Russia 51532.1 58720.2 70237.5 81469.4 88352.9 84696.5 66418.7 \n", "Saudi Arabia 41267.2 45244.5 48530.9 56497.9 67020 80762.4 87185.9 \n", "France 66884 61781.7 64600.9 60035.2 62417.1 63613.6 55342.1 \n", "India 38722.2 46090.4 49633.8 47216.9 47403.5 50914.1 51295.5 \n", "Japan 51465.2 54655.5 60762.2 60011.5 49023.9 46881.2 42106.1 \n", "Germany 47470.1 46255.5 48140.3 46470.9 45930.5 46102.7 39812.6 \n", "Brazil 25648.8 34002.9 36936.2 33987 32874.8 32659.6 24617.7 \n", "Italy 34054.5 32020.8 33828.8 29781 29957.4 27701 22180.8 \n", "Australia 18960.1 23217.7 26597.2 26216.6 24825.3 25783.7 24045.6 \n", "Canada 18936.2 19315.7 21393.7 20452.1 18515.7 17853.7 17937.6 \n", "Turkey 16352.3 17939.4 17304.9 17958.2 18662.6 17772.2 15880.9 \n", "Mexico 4855.51 5897.2 6471.39 6978.78 7837.61 8663.38 7739.52 \n", "Indonesia 3304.46 4663.37 5838.03 6531.1 8384.03 6929.26 7639.1 \n", "Argentina 2981.85 3475.35 4051.93 4563.22 5137.97 4979.44 5482.62 \n", "South Africa 3592.69 4188.17 4594.15 4489.59 4118.21 3892.47 3488.87 \n", "\n", " 2016 2017 2018 TOTAL \n", "Country \n", "China 216031 227829 249997 1.805317e+06 \n", "Russia 69245.3 66527.3 61387.5 6.985875e+05 \n", "Saudi Arabia 63672.8 70400 67554.7 6.281363e+05 \n", "France 57358.4 60417.5 63799.7 6.162502e+05 \n", "India 56637.6 64559.4 66510.3 5.189838e+05 \n", "Japan 46471.3 45387 46618 5.033819e+05 \n", "Germany 41579.5 45381.7 49470.6 4.566144e+05 \n", "Brazil 24224.7 29283.1 27766.4 3.020013e+05 \n", "Italy 25033 26447.9 27807.5 2.888129e+05 \n", "Australia 26382.9 27691.1 26711.8 2.504320e+05 \n", "Canada 17782.8 21343.4 21620.6 1.951516e+05 \n", "Turkey 17854 17824 18967.1 1.765156e+05 \n", "Mexico 6019.77 5781.44 6567.51 6.681211e+04 \n", "Indonesia 7385.41 8178.14 7437.2 6.629008e+04 \n", "Argentina 4509.65 5459.64 4144.99 4.478667e+04 \n", "South Africa 3169.76 3638.94 3639.88 3.881272e+04 " ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "#keeping the data in descending order by making ascending order as 'False' and \n", "#checking the military expenditure of 10 years.\n", "#this gives military data in millions\n", "\n", "G20_military_countries.sort_values(ascending = False,by = 'TOTAL')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country
Turkey0.02536590.02324130.02078540.02054760.01963250.01902460.01847060.02067540.02068140.0250436
South Africa0.012140.01115810.01103260.01132790.01123270.01109440.01099180.01075530.01043660.0098171
Russia0.03922730.03583860.03423450.03685970.03846230.04104180.04862760.05452410.04233410.0392951
Japan0.009837770.009588510.009868060.009674270.009508660.009669990.00958050.009395830.009307680.0092384
Indonesia0.006124110.006175870.006537770.007115490.00918770.007778550.008869710.007906950.008043370.00716443
Germany0.01388910.01353650.01281110.01311260.01223990.01182510.01177460.0118990.01234140.0123377
Canada0.01381040.01197150.01196080.0112110.01004860.009922710.01150130.01158460.0129340.0125263
Australia0.01929180.0186240.01769390.01679920.01649530.01781290.01958450.02092850.02007970.0189156
Saudi Arabia0.0961720.08565680.07230050.0767660.08976130.1067790.1332570.09872740.1025140.0877472
Mexico0.005394740.005574960.005481950.005810370.006149830.00659120.00661710.00559230.005023720.00538884
Italy0.01558540.01506820.01486140.01436740.01406130.01287380.01210620.01339610.01366530.013327
India0.0289350.02707460.0265150.02537350.02472730.02496770.02405130.02506470.02509620.0241903
France0.02486340.02337910.02257660.02236930.0222040.02230360.02269890.02327320.02349680.0229394
China0.02062690.01907440.01834160.01836450.01866940.01905850.01907090.01924950.01896510.0186594
Brazil0.01538630.01539410.01411850.01378660.01329450.01330240.01365520.01350150.01419530.014749
Argentina0.008865090.008148780.007642870.007848250.008377360.008781010.008501290.00813140.008561380.00854561
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 \\\n", "Country \n", "Turkey 0.0253659 0.0232413 0.0207854 0.0205476 0.0196325 \n", "South Africa 0.01214 0.0111581 0.0110326 0.0113279 0.0112327 \n", "Russia 0.0392273 0.0358386 0.0342345 0.0368597 0.0384623 \n", "Japan 0.00983777 0.00958851 0.00986806 0.00967427 0.00950866 \n", "Indonesia 0.00612411 0.00617587 0.00653777 0.00711549 0.0091877 \n", "Germany 0.0138891 0.0135365 0.0128111 0.0131126 0.0122399 \n", "Canada 0.0138104 0.0119715 0.0119608 0.011211 0.0100486 \n", "Australia 0.0192918 0.018624 0.0176939 0.0167992 0.0164953 \n", "Saudi Arabia 0.096172 0.0856568 0.0723005 0.076766 0.0897613 \n", "Mexico 0.00539474 0.00557496 0.00548195 0.00581037 0.00614983 \n", "Italy 0.0155854 0.0150682 0.0148614 0.0143674 0.0140613 \n", "India 0.028935 0.0270746 0.026515 0.0253735 0.0247273 \n", "France 0.0248634 0.0233791 0.0225766 0.0223693 0.022204 \n", "China 0.0206269 0.0190744 0.0183416 0.0183645 0.0186694 \n", "Brazil 0.0153863 0.0153941 0.0141185 0.0137866 0.0132945 \n", "Argentina 0.00886509 0.00814878 0.00764287 0.00784825 0.00837736 \n", "\n", " 2014 2015 2016 2017 2018 \n", "Country \n", "Turkey 0.0190246 0.0184706 0.0206754 0.0206814 0.0250436 \n", "South Africa 0.0110944 0.0109918 0.0107553 0.0104366 0.0098171 \n", "Russia 0.0410418 0.0486276 0.0545241 0.0423341 0.0392951 \n", "Japan 0.00966999 0.0095805 0.00939583 0.00930768 0.0092384 \n", "Indonesia 0.00777855 0.00886971 0.00790695 0.00804337 0.00716443 \n", "Germany 0.0118251 0.0117746 0.011899 0.0123414 0.0123377 \n", "Canada 0.00992271 0.0115013 0.0115846 0.012934 0.0125263 \n", "Australia 0.0178129 0.0195845 0.0209285 0.0200797 0.0189156 \n", "Saudi Arabia 0.106779 0.133257 0.0987274 0.102514 0.0877472 \n", "Mexico 0.0065912 0.0066171 0.0055923 0.00502372 0.00538884 \n", "Italy 0.0128738 0.0121062 0.0133961 0.0136653 0.013327 \n", "India 0.0249677 0.0240513 0.0250647 0.0250962 0.0241903 \n", "France 0.0223036 0.0226989 0.0232732 0.0234968 0.0229394 \n", "China 0.0190585 0.0190709 0.0192495 0.0189651 0.0186594 \n", "Brazil 0.0133024 0.0136552 0.0135015 0.0141953 0.014749 \n", "Argentina 0.00878101 0.00850129 0.0081314 0.00856138 0.00854561 " ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#This gives Share of GDp data with respect to country and year.\n", "\n", "GDPdata = militarydata.parse('Share of GDP',skip_footer=8,skiprows=5)\n", "GDPdata1 = GDPdata[['Country',2009,2010,2011,2012,2013,2014,2015,2016,2017,2018]]\n", "\n", "#Remove the data which is not useful and dropping the NAN's\n", "GDPdata2 = GDPdata1[GDPdata1!=\". .\"]\n", "GDPdata2 = GDPdata2[GDPdata!=\"xxx\"]\n", "GDPdata2 = GDPdata2.dropna(how='any',axis=0)\n", "GDPdata2.head()\n", "#Choicing the index name as 'Country'\n", "GDPdata3 = GDPdata2.set_index('Country')\n", "GDPdata3.head()\n", "\n", "#Selecting the military spending of all G20 countries with respect to Share of GDP\n", "GDP_G20 = GDPdata3.loc[['Turkey','South Africa','Russia','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Saudi Arabia','Mexico',\n", " 'Italy','India','France','China','Brazil','Argentina',],:]\n", "\n", "\n", "GDP_G20" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country
Turkey2.536592.324132.078542.054761.963251.902461.847062.067542.068142.50436
South Africa1.2141.115811.103261.132791.123271.109441.099181.075531.043660.98171
Russia3.922733.583863.423453.685973.846234.104184.862765.452414.233413.92951
Japan0.9837770.9588510.9868060.9674270.9508660.9669990.958050.9395830.9307680.92384
Indonesia0.6124110.6175870.6537770.7115490.918770.7778550.8869710.7906950.8043370.716443
Germany1.388911.353651.281111.311261.223991.182511.177461.18991.234141.23377
Canada1.381041.197151.196081.12111.004860.9922711.150131.158461.29341.25263
Australia1.929181.86241.769391.679921.649531.781291.958452.092852.007971.89156
Saudi Arabia9.61728.565687.230057.67668.9761310.677913.32579.8727410.25148.77472
Mexico0.5394740.5574960.5481950.5810370.6149830.659120.661710.559230.5023720.538884
Italy1.558541.506821.486141.436741.406131.287381.210621.339611.366531.3327
India2.89352.707462.65152.537352.472732.496772.405132.506472.509622.41903
France2.486342.337912.257662.236932.22042.230362.269892.327322.349682.29394
China2.062691.907441.834161.836451.866941.905851.907091.924951.896511.86594
Brazil1.538631.539411.411851.378661.329451.330241.365521.350151.419531.4749
Argentina0.8865090.8148780.7642870.7848250.8377360.8781010.8501290.813140.8561380.854561
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 2014 \\\n", "Country \n", "Turkey 2.53659 2.32413 2.07854 2.05476 1.96325 1.90246 \n", "South Africa 1.214 1.11581 1.10326 1.13279 1.12327 1.10944 \n", "Russia 3.92273 3.58386 3.42345 3.68597 3.84623 4.10418 \n", "Japan 0.983777 0.958851 0.986806 0.967427 0.950866 0.966999 \n", "Indonesia 0.612411 0.617587 0.653777 0.711549 0.91877 0.777855 \n", "Germany 1.38891 1.35365 1.28111 1.31126 1.22399 1.18251 \n", "Canada 1.38104 1.19715 1.19608 1.1211 1.00486 0.992271 \n", "Australia 1.92918 1.8624 1.76939 1.67992 1.64953 1.78129 \n", "Saudi Arabia 9.6172 8.56568 7.23005 7.6766 8.97613 10.6779 \n", "Mexico 0.539474 0.557496 0.548195 0.581037 0.614983 0.65912 \n", "Italy 1.55854 1.50682 1.48614 1.43674 1.40613 1.28738 \n", "India 2.8935 2.70746 2.6515 2.53735 2.47273 2.49677 \n", "France 2.48634 2.33791 2.25766 2.23693 2.2204 2.23036 \n", "China 2.06269 1.90744 1.83416 1.83645 1.86694 1.90585 \n", "Brazil 1.53863 1.53941 1.41185 1.37866 1.32945 1.33024 \n", "Argentina 0.886509 0.814878 0.764287 0.784825 0.837736 0.878101 \n", "\n", " 2015 2016 2017 2018 \n", "Country \n", "Turkey 1.84706 2.06754 2.06814 2.50436 \n", "South Africa 1.09918 1.07553 1.04366 0.98171 \n", "Russia 4.86276 5.45241 4.23341 3.92951 \n", "Japan 0.95805 0.939583 0.930768 0.92384 \n", "Indonesia 0.886971 0.790695 0.804337 0.716443 \n", "Germany 1.17746 1.1899 1.23414 1.23377 \n", "Canada 1.15013 1.15846 1.2934 1.25263 \n", "Australia 1.95845 2.09285 2.00797 1.89156 \n", "Saudi Arabia 13.3257 9.87274 10.2514 8.77472 \n", "Mexico 0.66171 0.55923 0.502372 0.538884 \n", "Italy 1.21062 1.33961 1.36653 1.3327 \n", "India 2.40513 2.50647 2.50962 2.41903 \n", "France 2.26989 2.32732 2.34968 2.29394 \n", "China 1.90709 1.92495 1.89651 1.86594 \n", "Brazil 1.36552 1.35015 1.41953 1.4749 \n", "Argentina 0.850129 0.81314 0.856138 0.854561 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Military Percentage value is given by multiplying the Share of GDP to military spending\n", "military_percent_GDP = GDP_G20 * 100\n", "military_percent_GDP" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country
Turkey229.219248.032235.731240.824246.249230.716202.895224.543220.744231.541
South Africa70.485281.190287.903784.712176.59371.369663.099856.587264.159463.4143
Russia360.131410.19490.266568.045615.283589.146461.6480.989462.028426.407
Japan400.299425.163472.838467.283382.065365.794329.018363.772356.02366.536
Indonesia13.806519.228523.760126.241633.265727.159629.590328.284130.978827.8761
Germany586.299571.799594.81573.246565.194565.749487.256507.595552.666601.149
Canada560.412565.304619.414586.008525.187501.442498.965490.021582.767585.072
Australia872.171049.621183.161148.751072.331098.361010.341093.561132.531078.3
Saudi Arabia1547.821649.711718.641942.422238.142624.142762.791972.782137.342013.29
Mexico42.037250.266454.340357.757863.961769.741361.47847.198944.760750.226
Italy570.983536.094566.078498.562502.069464.894372.761421.219445.552469.001
India31.889237.442139.79537.382837.075739.350639.185242.772148.208249.1195
France1066.94980.2471019.85943.358976.489991.01858.587886.245929.793978.024
China78.135385.0975100.892114.449130.085144.429153.249153.923161.636176.671
Brazil131.603172.782185.902169.46162.418159.929119.525116.66139.917131.677
Argentina73.085784.304297.2692108.398120.78115.851126.276102.849123.32392.7522
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 2014 2015 \\\n", "Country \n", "Turkey 229.219 248.032 235.731 240.824 246.249 230.716 202.895 \n", "South Africa 70.4852 81.1902 87.9037 84.7121 76.593 71.3696 63.0998 \n", "Russia 360.131 410.19 490.266 568.045 615.283 589.146 461.6 \n", "Japan 400.299 425.163 472.838 467.283 382.065 365.794 329.018 \n", "Indonesia 13.8065 19.2285 23.7601 26.2416 33.2657 27.1596 29.5903 \n", "Germany 586.299 571.799 594.81 573.246 565.194 565.749 487.256 \n", "Canada 560.412 565.304 619.414 586.008 525.187 501.442 498.965 \n", "Australia 872.17 1049.62 1183.16 1148.75 1072.33 1098.36 1010.34 \n", "Saudi Arabia 1547.82 1649.71 1718.64 1942.42 2238.14 2624.14 2762.79 \n", "Mexico 42.0372 50.2664 54.3403 57.7578 63.9617 69.7413 61.478 \n", "Italy 570.983 536.094 566.078 498.562 502.069 464.894 372.761 \n", "India 31.8892 37.4421 39.795 37.3828 37.0757 39.3506 39.1852 \n", "France 1066.94 980.247 1019.85 943.358 976.489 991.01 858.587 \n", "China 78.1353 85.0975 100.892 114.449 130.085 144.429 153.249 \n", "Brazil 131.603 172.782 185.902 169.46 162.418 159.929 119.525 \n", "Argentina 73.0857 84.3042 97.2692 108.398 120.78 115.851 126.276 \n", "\n", " 2016 2017 2018 \n", "Country \n", "Turkey 224.543 220.744 231.541 \n", "South Africa 56.5872 64.1594 63.4143 \n", "Russia 480.989 462.028 426.407 \n", "Japan 363.772 356.02 366.536 \n", "Indonesia 28.2841 30.9788 27.8761 \n", "Germany 507.595 552.666 601.149 \n", "Canada 490.021 582.767 585.072 \n", "Australia 1093.56 1132.53 1078.3 \n", "Saudi Arabia 1972.78 2137.34 2013.29 \n", "Mexico 47.1989 44.7607 50.226 \n", "Italy 421.219 445.552 469.001 \n", "India 42.7721 48.2082 49.1195 \n", "France 886.245 929.793 978.024 \n", "China 153.923 161.636 176.671 \n", "Brazil 116.66 139.917 131.677 \n", "Argentina 102.849 123.323 92.7522 " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "\n", "#Per capita military spending data for 10 countries .\n", "##Delete header and footer as they are unnecessary and take the data from 2009 to 2018 as it is recent one\n", "\n", "\n", "military_Per_Capita = militarydata.parse('Per capita',skip_footer=8,skiprows=6)\n", "military_Per_Capita_1 = military_Per_Capita[['Country',2009,2010,2011,2012,2013,2014,2015,2016,2017,2018]]\n", "\n", "#Remove the data which is not useful and dropping the NAN's\n", "military_Per_Capita_2 = military_Per_Capita_1[military_Per_Capita_1!=\". .\"]\n", "military_Per_Capita_2 = military_Per_Capita_2[military_Per_Capita!=\"xxx\"]\n", "military_Per_Capita_2 = military_Per_Capita_2.dropna(how='any',axis=0)\n", "military_Per_Capita_2.head()\n", "\n", "#Setting the index name as Country\n", "military_Per_Capita3= military_Per_Capita_2.set_index('Country')\n", "military_Per_Capita3.head()\n", "\n", "#We need to choose the Per Capita for the countries mentioned below\n", "military_Per_Capita_G20countries = military_Per_Capita3.loc[['Turkey','South Africa','Russia','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Saudi Arabia','Mexico',\n", " 'Italy','India','France','China','Brazil','Argentina',],:]\n", "\n", "military_Per_Capita_G20countries\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country Name
Turkey6.446399e+057.719018e+058.325237e+058.739822e+059.505794e+059.341859e+058.597969e+058.637216e+058.515492e+057.665091e+05
South Africa2.959365e+053.753494e+054.164189e+053.963279e+053.666432e+053.506362e+053.175368e+052.957466e+053.488716e+053.662982e+05
Japan5.231383e+065.700098e+066.157460e+066.203213e+065.155717e+064.850414e+064.389476e+064.926667e+064.859951e+064.970916e+06
Indonesia5.395801e+057.550942e+058.929691e+059.178699e+059.125241e+058.908148e+058.608542e+059.318774e+051.015423e+061.042173e+06
Germany3.418005e+063.417095e+063.757698e+063.543984e+063.752514e+063.898727e+063.381389e+063.495163e+063.693204e+063.996759e+06
Canada1.371153e+061.613543e+061.789141e+061.823967e+061.842018e+061.801480e+061.552900e+061.526706e+061.646867e+061.709327e+06
Australia9.278052e+051.146138e+061.396650e+061.546152e+061.576184e+061.467484e+061.351520e+061.210028e+061.330803e+061.432195e+06
Saudi Arabia4.290979e+055.282072e+056.712388e+057.359748e+057.466471e+057.563503e+056.542699e+056.449355e+056.885861e+057.824835e+05
Mexico9.000454e+051.057801e+061.180490e+061.201090e+061.274443e+061.314564e+061.170565e+061.077828e+061.158071e+061.223809e+06
Italy2.185160e+062.125058e+062.276292e+062.072823e+062.130491e+062.151733e+061.832273e+061.869202e+061.946570e+062.073902e+06
India1.341887e+061.675615e+061.823050e+061.827638e+061.856722e+062.039127e+062.103588e+062.290432e+062.652551e+062.726323e+06
France2.690222e+062.642610e+062.861408e+062.683825e+062.811078e+062.852166e+062.438208e+062.471286e+062.586285e+062.777535e+06
China5.101702e+066.087165e+067.551500e+068.532231e+069.570406e+061.043853e+071.101554e+071.113795e+071.214349e+071.360815e+07
Brazil1.667020e+062.208872e+062.616202e+062.465189e+062.472806e+062.455994e+061.802214e+061.796275e+062.053595e+061.868626e+06
Argentina3.329765e+054.236274e+055.301633e+055.459824e+055.520251e+055.263197e+055.947493e+055.575314e+056.426959e+055.184751e+05
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 \\\n", "Country Name \n", "Turkey 6.446399e+05 7.719018e+05 8.325237e+05 8.739822e+05 \n", "South Africa 2.959365e+05 3.753494e+05 4.164189e+05 3.963279e+05 \n", "Japan 5.231383e+06 5.700098e+06 6.157460e+06 6.203213e+06 \n", "Indonesia 5.395801e+05 7.550942e+05 8.929691e+05 9.178699e+05 \n", "Germany 3.418005e+06 3.417095e+06 3.757698e+06 3.543984e+06 \n", "Canada 1.371153e+06 1.613543e+06 1.789141e+06 1.823967e+06 \n", "Australia 9.278052e+05 1.146138e+06 1.396650e+06 1.546152e+06 \n", "Saudi Arabia 4.290979e+05 5.282072e+05 6.712388e+05 7.359748e+05 \n", "Mexico 9.000454e+05 1.057801e+06 1.180490e+06 1.201090e+06 \n", "Italy 2.185160e+06 2.125058e+06 2.276292e+06 2.072823e+06 \n", "India 1.341887e+06 1.675615e+06 1.823050e+06 1.827638e+06 \n", "France 2.690222e+06 2.642610e+06 2.861408e+06 2.683825e+06 \n", "China 5.101702e+06 6.087165e+06 7.551500e+06 8.532231e+06 \n", "Brazil 1.667020e+06 2.208872e+06 2.616202e+06 2.465189e+06 \n", "Argentina 3.329765e+05 4.236274e+05 5.301633e+05 5.459824e+05 \n", "\n", " 2013 2014 2015 2016 \\\n", "Country Name \n", "Turkey 9.505794e+05 9.341859e+05 8.597969e+05 8.637216e+05 \n", "South Africa 3.666432e+05 3.506362e+05 3.175368e+05 2.957466e+05 \n", "Japan 5.155717e+06 4.850414e+06 4.389476e+06 4.926667e+06 \n", "Indonesia 9.125241e+05 8.908148e+05 8.608542e+05 9.318774e+05 \n", "Germany 3.752514e+06 3.898727e+06 3.381389e+06 3.495163e+06 \n", "Canada 1.842018e+06 1.801480e+06 1.552900e+06 1.526706e+06 \n", "Australia 1.576184e+06 1.467484e+06 1.351520e+06 1.210028e+06 \n", "Saudi Arabia 7.466471e+05 7.563503e+05 6.542699e+05 6.449355e+05 \n", "Mexico 1.274443e+06 1.314564e+06 1.170565e+06 1.077828e+06 \n", "Italy 2.130491e+06 2.151733e+06 1.832273e+06 1.869202e+06 \n", "India 1.856722e+06 2.039127e+06 2.103588e+06 2.290432e+06 \n", "France 2.811078e+06 2.852166e+06 2.438208e+06 2.471286e+06 \n", "China 9.570406e+06 1.043853e+07 1.101554e+07 1.113795e+07 \n", "Brazil 2.472806e+06 2.455994e+06 1.802214e+06 1.796275e+06 \n", "Argentina 5.520251e+05 5.263197e+05 5.947493e+05 5.575314e+05 \n", "\n", " 2017 2018 \n", "Country Name \n", "Turkey 8.515492e+05 7.665091e+05 \n", "South Africa 3.488716e+05 3.662982e+05 \n", "Japan 4.859951e+06 4.970916e+06 \n", "Indonesia 1.015423e+06 1.042173e+06 \n", "Germany 3.693204e+06 3.996759e+06 \n", "Canada 1.646867e+06 1.709327e+06 \n", "Australia 1.330803e+06 1.432195e+06 \n", "Saudi Arabia 6.885861e+05 7.824835e+05 \n", "Mexico 1.158071e+06 1.223809e+06 \n", "Italy 1.946570e+06 2.073902e+06 \n", "India 2.652551e+06 2.726323e+06 \n", "France 2.586285e+06 2.777535e+06 \n", "China 1.214349e+07 1.360815e+07 \n", "Brazil 2.053595e+06 1.868626e+06 \n", "Argentina 6.426959e+05 5.184751e+05 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#In millions we have GDP data of G20 Countries\n", "#we took the data from world bank website and url is \"https://data.worldbank.org/indicator/NY.GDP.MKTP.CD\"\n", "\n", "GDPdata = pd.read_excel(\"Until2018_GDP_US$.xls\",index_col=0,sheet_name='Data',skiprows=3)\n", "GDP_G20 = GDPdata.loc[['Turkey','South Africa','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Saudi Arabia','Mexico',\n", " 'Italy','India','France','China','Brazil','Argentina'],\n", " ['2009','2010','2011','2012','2013','2014','2015','2016','2017','2018']]\n", "GDP_G20_Millions = GDP_G20/1000000\n", "GDP_G20_Millions" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2008200920102011201220132014201520162017
Country Name
Turkey10850.8719369036.26807610672.40036511340.82227011720.31301412542.72092612127.46145810984.80288210862.72642610546.152563
South Africa5688.5088065805.9983627276.3767567967.6781597478.1365786819.0623026429.0239505742.9878005279.7304726151.077955
Japan39339.29757340855.17563544507.67638648167.99726848603.47665040454.44745838109.41211334567.74567538972.34063938428.097317
Indonesia2160.5276052254.4455923113.4806353634.2768053687.9539963620.6639813491.5958873334.5490753570.2846153846.864323
Germany45699.19832341732.70725341785.55691346810.32795944065.24890846530.91142848042.56343541323.92150242232.57420844469.909061
Canada46596.33599140773.45436447447.47602452082.21076052496.69487052418.31506250633.20882243525.37018742348.94546145032.119908
Australia49535.25787442709.80330351936.88871262411.78544767864.68986267990.29003062327.55593956561.41238249896.68110153799.938090
Saudi Arabia20037.83233916094.29309819259.58725723770.74738625303.09462124934.38614224575.40303820732.86172219982.08563120849.291369
Mexico9765.7170287792.2477309016.4579279912.5823629940.46856110400.56315810582.4105269298.2428788450.4940108910.333177
Italy40640.18385836976.84553435849.37319838334.68385034814.12511735370.27525835396.66572430180.32151530668.98142931952.975921
India991.4846301090.3177651345.7701531461.6719571446.9854101452.1953731576.0040181606.0382851717.4738781942.097401
France45334.11091541575.41617840638.33400443790.73539940874.71595642592.95151943008.65257036613.37521636870.21913438476.658636
Brazil8787.6106588553.38136811224.15408313167.47289212291.46685212216.90446412026.6193918750.2229968639.3657439821.407686
Argentina8953.3592758161.30696610276.26049812726.90835912969.70712412976.63642512245.25644913698.29343812654.35499914398.358771
\n", "
" ], "text/plain": [ " 2008 2009 2010 2011 \\\n", "Country Name \n", "Turkey 10850.871936 9036.268076 10672.400365 11340.822270 \n", "South Africa 5688.508806 5805.998362 7276.376756 7967.678159 \n", "Japan 39339.297573 40855.175635 44507.676386 48167.997268 \n", "Indonesia 2160.527605 2254.445592 3113.480635 3634.276805 \n", "Germany 45699.198323 41732.707253 41785.556913 46810.327959 \n", "Canada 46596.335991 40773.454364 47447.476024 52082.210760 \n", "Australia 49535.257874 42709.803303 51936.888712 62411.785447 \n", "Saudi Arabia 20037.832339 16094.293098 19259.587257 23770.747386 \n", "Mexico 9765.717028 7792.247730 9016.457927 9912.582362 \n", "Italy 40640.183858 36976.845534 35849.373198 38334.683850 \n", "India 991.484630 1090.317765 1345.770153 1461.671957 \n", "France 45334.110915 41575.416178 40638.334004 43790.735399 \n", "Brazil 8787.610658 8553.381368 11224.154083 13167.472892 \n", "Argentina 8953.359275 8161.306966 10276.260498 12726.908359 \n", "\n", " 2012 2013 2014 2015 \\\n", "Country Name \n", "Turkey 11720.313014 12542.720926 12127.461458 10984.802882 \n", "South Africa 7478.136578 6819.062302 6429.023950 5742.987800 \n", "Japan 48603.476650 40454.447458 38109.412113 34567.745675 \n", "Indonesia 3687.953996 3620.663981 3491.595887 3334.549075 \n", "Germany 44065.248908 46530.911428 48042.563435 41323.921502 \n", "Canada 52496.694870 52418.315062 50633.208822 43525.370187 \n", "Australia 67864.689862 67990.290030 62327.555939 56561.412382 \n", "Saudi Arabia 25303.094621 24934.386142 24575.403038 20732.861722 \n", "Mexico 9940.468561 10400.563158 10582.410526 9298.242878 \n", "Italy 34814.125117 35370.275258 35396.665724 30180.321515 \n", "India 1446.985410 1452.195373 1576.004018 1606.038285 \n", "France 40874.715956 42592.951519 43008.652570 36613.375216 \n", "Brazil 12291.466852 12216.904464 12026.619391 8750.222996 \n", "Argentina 12969.707124 12976.636425 12245.256449 13698.293438 \n", "\n", " 2016 2017 \n", "Country Name \n", "Turkey 10862.726426 10546.152563 \n", "South Africa 5279.730472 6151.077955 \n", "Japan 38972.340639 38428.097317 \n", "Indonesia 3570.284615 3846.864323 \n", "Germany 42232.574208 44469.909061 \n", "Canada 42348.945461 45032.119908 \n", "Australia 49896.681101 53799.938090 \n", "Saudi Arabia 19982.085631 20849.291369 \n", "Mexico 8450.494010 8910.333177 \n", "Italy 30668.981429 31952.975921 \n", "India 1717.473878 1942.097401 \n", "France 36870.219134 38476.658636 \n", "Brazil 8639.365743 9821.407686 \n", "Argentina 12654.354999 14398.358771 " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#GDP Per Person of G20 countries\n", "#we took the data from world bank website and url is \"https://data.worldbank.org/indicator/NY.GDP.MKTP.CD\"\n", "\n", "GDP_Per_Person = pd.read_excel(\"Until2018_GDP_PC_US$.xls\",index_col=0,sheet_name='Data',skiprows=3)\n", "\n", "GDP_Per_Person_20 = GDP_Per_Person.loc[['Turkey','South Africa','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Saudi Arabia','Mexico',\n", " 'Italy','India','France','Brazil','Argentina'],\n", " ['2008','2009','2010','2011','2012','2013','2014','2015','2016','2017']]\n", "\n", "GDP_Per_Person_20\n" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
200920102011201220132014201520162017
Country Name
Turkey7.133918e+077.232691e+077.340946e+077.456987e+077.578733e+077.703063e+077.827147e+077.951243e+078.074502e+07
South Africa5.097082e+075.158466e+075.226352e+075.299821e+075.376740e+075.453957e+075.529122e+075.601547e+075.671716e+07
Japan1.280470e+081.280700e+081.278330e+081.276290e+081.274450e+081.272760e+081.271410e+081.269945e+081.267858e+08
Indonesia2.393405e+082.425241e+082.457075e+082.488832e+082.520323e+082.551311e+082.581621e+082.611155e+082.639914e+08
Germany8.190231e+078.177693e+078.027498e+078.042582e+078.064560e+078.098250e+078.168661e+078.234867e+078.269500e+07
Canada3.362857e+073.400527e+073.434278e+073.475054e+073.515237e+073.553535e+073.583251e+073.626460e+073.670808e+07
Australia2.169170e+072.203175e+072.234002e+072.274248e+072.314590e+072.350414e+072.385078e+072.421081e+072.459893e+07
Saudi Arabia2.666149e+072.742568e+072.823802e+072.908636e+072.994448e+073.077672e+073.155714e+073.227569e+073.293821e+07
Mexico1.155052e+081.173189e+081.190900e+081.208283e+081.225360e+081.242216e+081.258909e+081.275404e+081.291633e+08
Italy5.909536e+075.927742e+075.937945e+075.953972e+076.023395e+076.078914e+076.073058e+076.062750e+076.055142e+07
India1.214270e+091.230981e+091.247236e+091.263066e+091.278562e+091.293859e+091.309054e+091.324171e+091.339180e+09
France6.470704e+076.502751e+076.534278e+076.565979e+076.599866e+076.631609e+076.659337e+076.685977e+076.711865e+07
Brazil1.948960e+081.967963e+081.986867e+082.005610e+082.024086e+082.042131e+082.059621e+082.076529e+082.092883e+08
Argentina4.079941e+074.122389e+074.165688e+074.209674e+074.253992e+074.298152e+074.341776e+074.384743e+074.427104e+07
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 \\\n", "Country Name \n", "Turkey 7.133918e+07 7.232691e+07 7.340946e+07 7.456987e+07 \n", "South Africa 5.097082e+07 5.158466e+07 5.226352e+07 5.299821e+07 \n", "Japan 1.280470e+08 1.280700e+08 1.278330e+08 1.276290e+08 \n", "Indonesia 2.393405e+08 2.425241e+08 2.457075e+08 2.488832e+08 \n", "Germany 8.190231e+07 8.177693e+07 8.027498e+07 8.042582e+07 \n", "Canada 3.362857e+07 3.400527e+07 3.434278e+07 3.475054e+07 \n", "Australia 2.169170e+07 2.203175e+07 2.234002e+07 2.274248e+07 \n", "Saudi Arabia 2.666149e+07 2.742568e+07 2.823802e+07 2.908636e+07 \n", "Mexico 1.155052e+08 1.173189e+08 1.190900e+08 1.208283e+08 \n", "Italy 5.909536e+07 5.927742e+07 5.937945e+07 5.953972e+07 \n", "India 1.214270e+09 1.230981e+09 1.247236e+09 1.263066e+09 \n", "France 6.470704e+07 6.502751e+07 6.534278e+07 6.565979e+07 \n", "Brazil 1.948960e+08 1.967963e+08 1.986867e+08 2.005610e+08 \n", "Argentina 4.079941e+07 4.122389e+07 4.165688e+07 4.209674e+07 \n", "\n", " 2013 2014 2015 2016 \\\n", "Country Name \n", "Turkey 7.578733e+07 7.703063e+07 7.827147e+07 7.951243e+07 \n", "South Africa 5.376740e+07 5.453957e+07 5.529122e+07 5.601547e+07 \n", "Japan 1.274450e+08 1.272760e+08 1.271410e+08 1.269945e+08 \n", "Indonesia 2.520323e+08 2.551311e+08 2.581621e+08 2.611155e+08 \n", "Germany 8.064560e+07 8.098250e+07 8.168661e+07 8.234867e+07 \n", "Canada 3.515237e+07 3.553535e+07 3.583251e+07 3.626460e+07 \n", "Australia 2.314590e+07 2.350414e+07 2.385078e+07 2.421081e+07 \n", "Saudi Arabia 2.994448e+07 3.077672e+07 3.155714e+07 3.227569e+07 \n", "Mexico 1.225360e+08 1.242216e+08 1.258909e+08 1.275404e+08 \n", "Italy 6.023395e+07 6.078914e+07 6.073058e+07 6.062750e+07 \n", "India 1.278562e+09 1.293859e+09 1.309054e+09 1.324171e+09 \n", "France 6.599866e+07 6.631609e+07 6.659337e+07 6.685977e+07 \n", "Brazil 2.024086e+08 2.042131e+08 2.059621e+08 2.076529e+08 \n", "Argentina 4.253992e+07 4.298152e+07 4.341776e+07 4.384743e+07 \n", "\n", " 2017 \n", "Country Name \n", "Turkey 8.074502e+07 \n", "South Africa 5.671716e+07 \n", "Japan 1.267858e+08 \n", "Indonesia 2.639914e+08 \n", "Germany 8.269500e+07 \n", "Canada 3.670808e+07 \n", "Australia 2.459893e+07 \n", "Saudi Arabia 3.293821e+07 \n", "Mexico 1.291633e+08 \n", "Italy 6.055142e+07 \n", "India 1.339180e+09 \n", "France 6.711865e+07 \n", "Brazil 2.092883e+08 \n", "Argentina 4.427104e+07 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Population of G20 Countries\n", "##we took the data from world bank website and url is \"https://data.worldbank.org/indicator/NY.GDP.MKTP.CD\"\n", "\n", "Populationdata = pd.read_excel(\"Until2018_Total_Population.xls\",index_col=0,sheet_name='Data',skiprows=3)\n", "Population_G20 = Populationdata.loc[['Turkey','South Africa','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Saudi Arabia','Mexico',\n", " 'Italy','India','France','Brazil','Argentina'],\n", " ['2009','2010','2011','2012','2013','2014','2015','2016','2017']]\n", "Population_G20" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
200920102011201220132014201520162017
Country Name
Turkey71.33918572.32691473.40945574.56986775.78733377.03062878.27147279.51242680.745020
South Africa50.97081851.58466352.26351652.99821353.76739654.53957155.29122556.01547356.717156
Japan128.047000128.070000127.833000127.629000127.445000127.276000127.141000126.994511126.785797
Indonesia239.340478242.524123245.707511248.883232252.032263255.131116258.162113261.115456263.991379
Germany81.90230781.77693080.27498380.42582380.64560580.98250081.68661182.34866982.695000
Canada33.62857134.00527434.34278034.75054535.15237035.53534835.83251336.26460436.708083
Australia21.69170022.03175022.34002422.74247523.14590123.50413823.85078424.21080924.598933
Saudi Arabia26.66149227.42567628.23802029.08635729.94447630.77672231.55714432.27568732.938213
Mexico115.505228117.318941119.090017120.828307122.535969124.221600125.890949127.540423129.163276
Italy59.09536559.27741759.37944959.53971760.23394860.78914060.73058260.62749860.551416
India1214.2701321230.9806911247.2360291263.0658521278.5622071293.8592941309.0539801324.1713541339.180127
France64.70704465.02750765.34277565.65978965.99866066.31609266.59336666.85976867.118648
Brazil194.895996196.796269198.686688200.560983202.408632204.213133205.962108207.652865209.288278
Argentina40.79940741.22388941.65687942.09673942.53992542.98151543.41776543.84743044.271041
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 \\\n", "Country Name \n", "Turkey 71.339185 72.326914 73.409455 74.569867 75.787333 \n", "South Africa 50.970818 51.584663 52.263516 52.998213 53.767396 \n", "Japan 128.047000 128.070000 127.833000 127.629000 127.445000 \n", "Indonesia 239.340478 242.524123 245.707511 248.883232 252.032263 \n", "Germany 81.902307 81.776930 80.274983 80.425823 80.645605 \n", "Canada 33.628571 34.005274 34.342780 34.750545 35.152370 \n", "Australia 21.691700 22.031750 22.340024 22.742475 23.145901 \n", "Saudi Arabia 26.661492 27.425676 28.238020 29.086357 29.944476 \n", "Mexico 115.505228 117.318941 119.090017 120.828307 122.535969 \n", "Italy 59.095365 59.277417 59.379449 59.539717 60.233948 \n", "India 1214.270132 1230.980691 1247.236029 1263.065852 1278.562207 \n", "France 64.707044 65.027507 65.342775 65.659789 65.998660 \n", "Brazil 194.895996 196.796269 198.686688 200.560983 202.408632 \n", "Argentina 40.799407 41.223889 41.656879 42.096739 42.539925 \n", "\n", " 2014 2015 2016 2017 \n", "Country Name \n", "Turkey 77.030628 78.271472 79.512426 80.745020 \n", "South Africa 54.539571 55.291225 56.015473 56.717156 \n", "Japan 127.276000 127.141000 126.994511 126.785797 \n", "Indonesia 255.131116 258.162113 261.115456 263.991379 \n", "Germany 80.982500 81.686611 82.348669 82.695000 \n", "Canada 35.535348 35.832513 36.264604 36.708083 \n", "Australia 23.504138 23.850784 24.210809 24.598933 \n", "Saudi Arabia 30.776722 31.557144 32.275687 32.938213 \n", "Mexico 124.221600 125.890949 127.540423 129.163276 \n", "Italy 60.789140 60.730582 60.627498 60.551416 \n", "India 1293.859294 1309.053980 1324.171354 1339.180127 \n", "France 66.316092 66.593366 66.859768 67.118648 \n", "Brazil 204.213133 205.962108 207.652865 209.288278 \n", "Argentina 42.981515 43.417765 43.847430 44.271041 " ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#In millions we have Population data of G20 Countries\n", "PopulationData_Millions = Population_G20/1000000\n", "PopulationData_Millions" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2006200720082009201020112012201320142015
Country Name
Turkey416.884706512.734525570.680980500.071604539.328806531.659655524.817836552.405481527.202842454.608292
South Africa362.463642385.999993372.355113413.074083539.567615597.359448579.748563526.499575509.833261470.796993
Japan2754.1574472772.4554483213.3988093685.8252374060.1900835087.1022015212.0693804336.1499474099.4650803732.562266
Indonesia45.36182957.05049460.66673863.904085107.491965121.471749124.473534122.041519120.079190111.761744
Germany3746.1561104240.4979824730.1230374742.2527174696.7377025030.8052514761.2533155103.4865485293.3844844591.846096
Canada3710.0063734125.3893724389.2633474290.8512734987.5486825292.4419145343.6121605286.7409035028.9823334507.550519
Australia3177.4855193794.2380454088.8042773997.5096894952.7761475876.8784836047.0200695838.3898945637.5597214934.047418
Saudi Arabia544.327217574.455256575.125565657.687624670.962495859.550351991.6676741091.3175881248.8052931194.100455
Mexico501.037570542.785954556.534658477.648850538.744767565.129192580.748407617.874698593.398448534.810930
Italy2830.1818143088.4700973489.9857263324.3736203214.5462823387.5756183125.6114683195.5532853190.0881432700.425800
India29.65160035.96347837.99360038.41241245.25077248.72283349.05140356.21882457.15114063.317742
France3693.5842914168.0345474614.2654304523.5945514385.4298644725.3513044447.7464344679.1146504779.1794284026.147179
Brazil484.001823600.408660704.905757719.961527894.9414191029.311397960.783780975.9354051014.092105780.395982
Argentina380.102685465.151885567.328010576.811181698.603496806.859949864.505354920.812880845.054687997.931375
\n", "
" ], "text/plain": [ " 2006 2007 2008 2009 2010 \\\n", "Country Name \n", "Turkey 416.884706 512.734525 570.680980 500.071604 539.328806 \n", "South Africa 362.463642 385.999993 372.355113 413.074083 539.567615 \n", "Japan 2754.157447 2772.455448 3213.398809 3685.825237 4060.190083 \n", "Indonesia 45.361829 57.050494 60.666738 63.904085 107.491965 \n", "Germany 3746.156110 4240.497982 4730.123037 4742.252717 4696.737702 \n", "Canada 3710.006373 4125.389372 4389.263347 4290.851273 4987.548682 \n", "Australia 3177.485519 3794.238045 4088.804277 3997.509689 4952.776147 \n", "Saudi Arabia 544.327217 574.455256 575.125565 657.687624 670.962495 \n", "Mexico 501.037570 542.785954 556.534658 477.648850 538.744767 \n", "Italy 2830.181814 3088.470097 3489.985726 3324.373620 3214.546282 \n", "India 29.651600 35.963478 37.993600 38.412412 45.250772 \n", "France 3693.584291 4168.034547 4614.265430 4523.594551 4385.429864 \n", "Brazil 484.001823 600.408660 704.905757 719.961527 894.941419 \n", "Argentina 380.102685 465.151885 567.328010 576.811181 698.603496 \n", "\n", " 2011 2012 2013 2014 2015 \n", "Country Name \n", "Turkey 531.659655 524.817836 552.405481 527.202842 454.608292 \n", "South Africa 597.359448 579.748563 526.499575 509.833261 470.796993 \n", "Japan 5087.102201 5212.069380 4336.149947 4099.465080 3732.562266 \n", "Indonesia 121.471749 124.473534 122.041519 120.079190 111.761744 \n", "Germany 5030.805251 4761.253315 5103.486548 5293.384484 4591.846096 \n", "Canada 5292.441914 5343.612160 5286.740903 5028.982333 4507.550519 \n", "Australia 5876.878483 6047.020069 5838.389894 5637.559721 4934.047418 \n", "Saudi Arabia 859.550351 991.667674 1091.317588 1248.805293 1194.100455 \n", "Mexico 565.129192 580.748407 617.874698 593.398448 534.810930 \n", "Italy 3387.575618 3125.611468 3195.553285 3190.088143 2700.425800 \n", "India 48.722833 49.051403 56.218824 57.151140 63.317742 \n", "France 4725.351304 4447.746434 4679.114650 4779.179428 4026.147179 \n", "Brazil 1029.311397 960.783780 975.935405 1014.092105 780.395982 \n", "Argentina 806.859949 864.505354 920.812880 845.054687 997.931375 " ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Health Per Person of G20 Countries spending amount in US dollars.\n", "###we took the data from world bank website and url is \"https://data.worldbank.org/indicator/NY.GDP.MKTP.CD\"\n", "\n", "\n", "Health_Per_Person = pd.read_excel(\"Until2018_Health_PC.xls\",index_col=0,sheet_name='Data',skiprows=3)\n", "Health_Per_Person_G20 = Health_Per_Person.loc[['Turkey','South Africa','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Saudi Arabia','Mexico',\n", " 'Italy','India','France','Brazil','Argentina'],\n", " ['2006','2007','2008','2009','2010','2011','2012','2013','2014','2015']]\n", "Health_Per_Person_G20" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
200620072008200920102011201220132014201520162017
Country Name
TurkeyNaNNaNNaN35674.70063739007.98816139028.84555139135.59625041865.33810840610.76598035582.860204NaNNaN
South AfricaNaNNaNNaN21054.72389027833.41357431220.10506030725.63782728308.51115227806.08733426030.942487NaNNaN
JapanNaNNaNNaN471958.864145519988.543989650299.535599665211.202905552620.629974521763.517499474561.699040NaNNaN
IndonesiaNaNNaNNaN15294.83413526069.39457029846.52102030979.37553230758.40010030635.93785828852.647942NaNNaN
GermanyNaNNaNNaN388401.437899384084.790313403847.805990382927.716389411573.760287428671.508942375092.345811NaNNaN
CanadaNaNNaNNaN144295.196693169602.959503181757.168320185693.434813185841.472314178706.637278161516.862568NaNNaN
AustraliaNaNNaNNaN86712.780916109118.325885131289.606354137524.202744135134.794482132505.981660117680.899223NaNNaN
Saudi ArabiaNaNNaNNaN17534.93333318401.60000024272.00000028844.00000032678.93333338434.13333337682.400000NaNNaN
MexicoNaNNaNNaN55170.93937763204.96552467301.24503770170.84681875711.87485873712.90469467327.855468NaNNaN
ItalyNaNNaNNaN196455.072444190550.000451201152.373663186098.022242192480.790375193922.714760163998.430498NaNNaN
IndiaNaNNaNNaN46643.04511255702.82611760768.87230461955.15197071879.26398273945.53340682886.341554NaNNaN
FranceNaNNaNNaN292708.431641285173.571171308767.567069292038.092366308815.296857316936.502632268114.692674NaNNaN
BrazilNaNNaNNaN140317.618912176121.132221204510.472428192695.739449197537.750236207090.925902160732.001560NaNNaN
ArgentinaNaNNaNNaN23533.55415428799.15295933611.26728536392.85625439171.31083536321.73072043327.949940NaNNaN
\n", "
" ], "text/plain": [ " 2006 2007 2008 2009 2010 2011 \\\n", "Country Name \n", "Turkey NaN NaN NaN 35674.700637 39007.988161 39028.845551 \n", "South Africa NaN NaN NaN 21054.723890 27833.413574 31220.105060 \n", "Japan NaN NaN NaN 471958.864145 519988.543989 650299.535599 \n", "Indonesia NaN NaN NaN 15294.834135 26069.394570 29846.521020 \n", "Germany NaN NaN NaN 388401.437899 384084.790313 403847.805990 \n", "Canada NaN NaN NaN 144295.196693 169602.959503 181757.168320 \n", "Australia NaN NaN NaN 86712.780916 109118.325885 131289.606354 \n", "Saudi Arabia NaN NaN NaN 17534.933333 18401.600000 24272.000000 \n", "Mexico NaN NaN NaN 55170.939377 63204.965524 67301.245037 \n", "Italy NaN NaN NaN 196455.072444 190550.000451 201152.373663 \n", "India NaN NaN NaN 46643.045112 55702.826117 60768.872304 \n", "France NaN NaN NaN 292708.431641 285173.571171 308767.567069 \n", "Brazil NaN NaN NaN 140317.618912 176121.132221 204510.472428 \n", "Argentina NaN NaN NaN 23533.554154 28799.152959 33611.267285 \n", "\n", " 2012 2013 2014 2015 \\\n", "Country Name \n", "Turkey 39135.596250 41865.338108 40610.765980 35582.860204 \n", "South Africa 30725.637827 28308.511152 27806.087334 26030.942487 \n", "Japan 665211.202905 552620.629974 521763.517499 474561.699040 \n", "Indonesia 30979.375532 30758.400100 30635.937858 28852.647942 \n", "Germany 382927.716389 411573.760287 428671.508942 375092.345811 \n", "Canada 185693.434813 185841.472314 178706.637278 161516.862568 \n", "Australia 137524.202744 135134.794482 132505.981660 117680.899223 \n", "Saudi Arabia 28844.000000 32678.933333 38434.133333 37682.400000 \n", "Mexico 70170.846818 75711.874858 73712.904694 67327.855468 \n", "Italy 186098.022242 192480.790375 193922.714760 163998.430498 \n", "India 61955.151970 71879.263982 73945.533406 82886.341554 \n", "France 292038.092366 308815.296857 316936.502632 268114.692674 \n", "Brazil 192695.739449 197537.750236 207090.925902 160732.001560 \n", "Argentina 36392.856254 39171.310835 36321.730720 43327.949940 \n", "\n", " 2016 2017 \n", "Country Name \n", "Turkey NaN NaN \n", "South Africa NaN NaN \n", "Japan NaN NaN \n", "Indonesia NaN NaN \n", "Germany NaN NaN \n", "Canada NaN NaN \n", "Australia NaN NaN \n", "Saudi Arabia NaN NaN \n", "Mexico NaN NaN \n", "Italy NaN NaN \n", "India NaN NaN \n", "France NaN NaN \n", "Brazil NaN NaN \n", "Argentina NaN NaN " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Health Expenditure data of all G20 countries in million dollars\n", "\n", "HealthExpenditureData = Health_Per_Person_G20 * Population_G20\n", "HealthExpenditureData1_Millions = HealthExpenditureData/1000000\n", "HealthExpenditureData1_Millions" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "scrolled": true }, "outputs": [ { "ename": "NameError", "evalue": "name 'HealthExpenditureData_Millions' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#Formatting the countries in order based on Health Expenditure data in Millions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mHealthExpenditureData_Millions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Total'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mHealthExpenditureData_Millions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mHealthExpenditureData_Millions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Total'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mHealthExpenditureData_Millions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msort_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mascending\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Total'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'HealthExpenditureData_Millions' is not defined" ] } ], "source": [ "#Formatting the countries in order based on Health Expenditure data in Millions\n", "HealthExpenditureData_Millions['Total'] = np.sum(HealthExpenditureData_Millions,axis=1)\n", "HealthExpenditureData_Millions['Total']\n", "HealthExpenditureData_Millions.sort_values(ascending=False,by='Total')" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2006200720082009201020112012201320142015
Country Name
Turkey5.1884435.2807575.2594005.5339085.0536564.6878904.4778504.4041184.3472664.138533
South Africa6.5870626.4313166.5457617.1145877.4153577.4973177.7525537.7213697.9253048.201155
Japan7.8078437.8904618.1995149.0582979.15677310.61671810.79065310.79159410.83580310.898156
Indonesia2.8597713.0753432.8079592.8345813.4524693.3423913.3751383.3706943.4403573.347431
Germany10.1284869.98456210.18050211.16714411.03489810.74721110.80503710.96800011.05036711.151569
Canada9.2070559.2984359.46510210.57411310.56224310.21966410.22293110.1152729.98701710.435622
Australia7.9832178.0573178.2615268.5876028.4677828.5857248.7255028.8058449.0792509.445333
Saudi Arabia3.5496513.4874302.8701994.0864653.4930143.6253563.9299374.3903465.0985045.833172
Mexico5.7144625.8193595.7439626.1755936.0199525.7553925.9240726.0140175.6910275.864490
Italy8.4596878.1628368.5618318.9765378.9536128.8346438.9560618.9522679.0114418.996320
India3.6347783.5175423.5146793.4853803.2721213.2464503.3284743.7484263.6295253.888257
France10.0453689.96160010.10223510.80662110.71304710.72586410.82769710.92933111.10007711.066443
Brazil8.2593128.2093538.0214418.4173937.9734747.8172117.8165477.9883628.4318928.911484
Argentina6.4156356.4191726.2706046.9970066.7559966.3430366.2579646.3879816.4076256.834533
\n", "
" ], "text/plain": [ " 2006 2007 2008 2009 2010 2011 \\\n", "Country Name \n", "Turkey 5.188443 5.280757 5.259400 5.533908 5.053656 4.687890 \n", "South Africa 6.587062 6.431316 6.545761 7.114587 7.415357 7.497317 \n", "Japan 7.807843 7.890461 8.199514 9.058297 9.156773 10.616718 \n", "Indonesia 2.859771 3.075343 2.807959 2.834581 3.452469 3.342391 \n", "Germany 10.128486 9.984562 10.180502 11.167144 11.034898 10.747211 \n", "Canada 9.207055 9.298435 9.465102 10.574113 10.562243 10.219664 \n", "Australia 7.983217 8.057317 8.261526 8.587602 8.467782 8.585724 \n", "Saudi Arabia 3.549651 3.487430 2.870199 4.086465 3.493014 3.625356 \n", "Mexico 5.714462 5.819359 5.743962 6.175593 6.019952 5.755392 \n", "Italy 8.459687 8.162836 8.561831 8.976537 8.953612 8.834643 \n", "India 3.634778 3.517542 3.514679 3.485380 3.272121 3.246450 \n", "France 10.045368 9.961600 10.102235 10.806621 10.713047 10.725864 \n", "Brazil 8.259312 8.209353 8.021441 8.417393 7.973474 7.817211 \n", "Argentina 6.415635 6.419172 6.270604 6.997006 6.755996 6.343036 \n", "\n", " 2012 2013 2014 2015 \n", "Country Name \n", "Turkey 4.477850 4.404118 4.347266 4.138533 \n", "South Africa 7.752553 7.721369 7.925304 8.201155 \n", "Japan 10.790653 10.791594 10.835803 10.898156 \n", "Indonesia 3.375138 3.370694 3.440357 3.347431 \n", "Germany 10.805037 10.968000 11.050367 11.151569 \n", "Canada 10.222931 10.115272 9.987017 10.435622 \n", "Australia 8.725502 8.805844 9.079250 9.445333 \n", "Saudi Arabia 3.929937 4.390346 5.098504 5.833172 \n", "Mexico 5.924072 6.014017 5.691027 5.864490 \n", "Italy 8.956061 8.952267 9.011441 8.996320 \n", "India 3.328474 3.748426 3.629525 3.888257 \n", "France 10.827697 10.929331 11.100077 11.066443 \n", "Brazil 7.816547 7.988362 8.431892 8.911484 \n", "Argentina 6.257964 6.387981 6.407625 6.834533 " ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Health Percent Data of G20 countries and removing header and footer.\n", "#we took the data from world bank website and url is \"https://data.worldbank.org/indicator/NY.GDP.MKTP.CD\"\n", "\n", "\n", "HealthPercentData = pd.read_excel(\"Until2018_Health_%GDP.xls\",index_col=0,sheet_name='Data',skiprows=3)\n", "HealthPercentData_G20 = HealthPercentData.loc [['Turkey','South Africa','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Saudi Arabia','Mexico',\n", " 'Italy','India','France','Brazil','Argentina'],\n", " ['2006','2007','2008','2009','2010','2011','2012','2013','2014','2015']]\n", "HealthPercentData_G20" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015
Country Name
TurkeyNaNNaNNaN4.419004.364104.371164.29187
South Africa5.248695.721745.962756.371646.013546.046625.95619
JapanNaN3.639503.642583.692263.665383.59059NaN
Indonesia3.525132.812283.189443.407483.359043.288013.58360
Germany4.880484.913684.807804.933314.934974.931134.81341
Canada4.852645.369935.27444NaNNaNNaNNaN
Australia5.093275.559175.083134.877655.238015.173685.32175
Mexico5.187945.159225.105655.103104.696055.261345.23946
Italy4.536314.352394.14407NaN4.164724.075254.08036
India3.311243.423473.839723.867503.84467NaNNaN
France5.746185.692515.518305.456425.500285.512065.46424
Brazil5.463555.648805.737415.855105.838855.948486.24106
Argentina5.531055.019715.290635.345835.436615.361445.77611
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 2014 2015\n", "Country Name \n", "Turkey NaN NaN NaN 4.41900 4.36410 4.37116 4.29187\n", "South Africa 5.24869 5.72174 5.96275 6.37164 6.01354 6.04662 5.95619\n", "Japan NaN 3.63950 3.64258 3.69226 3.66538 3.59059 NaN\n", "Indonesia 3.52513 2.81228 3.18944 3.40748 3.35904 3.28801 3.58360\n", "Germany 4.88048 4.91368 4.80780 4.93331 4.93497 4.93113 4.81341\n", "Canada 4.85264 5.36993 5.27444 NaN NaN NaN NaN\n", "Australia 5.09327 5.55917 5.08313 4.87765 5.23801 5.17368 5.32175\n", "Mexico 5.18794 5.15922 5.10565 5.10310 4.69605 5.26134 5.23946\n", "Italy 4.53631 4.35239 4.14407 NaN 4.16472 4.07525 4.08036\n", "India 3.31124 3.42347 3.83972 3.86750 3.84467 NaN NaN\n", "France 5.74618 5.69251 5.51830 5.45642 5.50028 5.51206 5.46424\n", "Brazil 5.46355 5.64880 5.73741 5.85510 5.83885 5.94848 6.24106\n", "Argentina 5.53105 5.01971 5.29063 5.34583 5.43661 5.36144 5.77611" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#EducationPercentageData to check which country has good percentage of education with respect to GDP share\n", "##we took the data from world bank website and url is \"https://data.worldbank.org/indicator/NY.GDP.MKTP.CD\"\n", "\n", "\n", "\n", "EducationPercentData = pd.read_excel(\"Until2018_Education_%GDP.xls\",index_col=0,sheet_name='Data',skiprows=3)\n", "EducationPercentData_G20 = EducationPercentData.loc[['Turkey','South Africa','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Mexico',\n", " 'Italy','India','France','Brazil','Argentina'],\n", " ['2009','2010','2011','2012','2013','2014','2015']]\n", "EducationPercentData_G20\n", " " ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015
Country Name
Turkey0.000000.000000.000004.419004.364104.371164.29187
South Africa5.248695.721745.962756.371646.013546.046625.95619
Japan0.000003.639503.642583.692263.665383.590590.00000
Indonesia3.525132.812283.189443.407483.359043.288013.58360
Germany4.880484.913684.807804.933314.934974.931134.81341
Canada4.852645.369935.274440.000000.000000.000000.00000
Australia5.093275.559175.083134.877655.238015.173685.32175
Mexico5.187945.159225.105655.103104.696055.261345.23946
Italy4.536314.352394.144070.000004.164724.075254.08036
India3.311243.423473.839723.867503.844670.000000.00000
France5.746185.692515.518305.456425.500285.512065.46424
Brazil5.463555.648805.737415.855105.838855.948486.24106
Argentina5.531055.019715.290635.345835.436615.361445.77611
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 2014 2015\n", "Country Name \n", "Turkey 0.00000 0.00000 0.00000 4.41900 4.36410 4.37116 4.29187\n", "South Africa 5.24869 5.72174 5.96275 6.37164 6.01354 6.04662 5.95619\n", "Japan 0.00000 3.63950 3.64258 3.69226 3.66538 3.59059 0.00000\n", "Indonesia 3.52513 2.81228 3.18944 3.40748 3.35904 3.28801 3.58360\n", "Germany 4.88048 4.91368 4.80780 4.93331 4.93497 4.93113 4.81341\n", "Canada 4.85264 5.36993 5.27444 0.00000 0.00000 0.00000 0.00000\n", "Australia 5.09327 5.55917 5.08313 4.87765 5.23801 5.17368 5.32175\n", "Mexico 5.18794 5.15922 5.10565 5.10310 4.69605 5.26134 5.23946\n", "Italy 4.53631 4.35239 4.14407 0.00000 4.16472 4.07525 4.08036\n", "India 3.31124 3.42347 3.83972 3.86750 3.84467 0.00000 0.00000\n", "France 5.74618 5.69251 5.51830 5.45642 5.50028 5.51206 5.46424\n", "Brazil 5.46355 5.64880 5.73741 5.85510 5.83885 5.94848 6.24106\n", "Argentina 5.53105 5.01971 5.29063 5.34583 5.43661 5.36144 5.77611" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#We need to replace NAN's by Zero\n", "EducationPercentData_G20[np.isnan(EducationPercentData_G20)]=0\n", "EducationPercentData_G20" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country Name
Argentina18417.09585021264.86807028048.97762429187.28963530011.45397728218.31351534353.372950NaNNaNNaN
Australia47255.62306163715.78573870993.53038475415.87248682560.70000175922.91095671924.520559NaNNaNNaN
Brazil91078.459386124774.741551150102.210967144339.262076144383.459762146094.314874112477.280394NaNNaNNaN
Canada66537.11918186646.11955694367.1509020.0000000.0000000.0000000.000000NaNNaNNaN
ChinaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
France154585.014837150430.812834157901.087060146440.776347154617.145931157213.088025133229.531150NaNNaNNaN
Germany166815.050492167905.092106180662.617960174835.712588185185.415633192251.272249162760.132566NaNNaNNaN
India44433.08914557364.18754570000.01268770683.89420271384.8383850.0000000.000000NaNNaNNaN
Indonesia19020.89947221235.36205328480.71391631276.23361330652.05076229290.07823430849.572368NaNNaNNaN
Italy99125.63991592490.82251794331.1506510.00000088728.99813087688.49371374763.335912NaNNaNNaN
Japan0.000000207455.070886224290.391709229038.756794188976.621837174158.4633840.000000NaNNaNNaN
Mexico46693.81276454574.29600260271.66736261292.82312759848.48448069163.67984461331.265035NaNNaNNaN
Saudi ArabiaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
South Africa15532.78873821476.51921124830.01646525252.58542722048.23688221201.63909018913.096953NaNNaNNaN
Turkey0.0000000.0000000.00000038621.27547841484.23616840834.76105936901.364039NaNNaNNaN
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 \\\n", "Country Name \n", "Argentina 18417.095850 21264.868070 28048.977624 29187.289635 \n", "Australia 47255.623061 63715.785738 70993.530384 75415.872486 \n", "Brazil 91078.459386 124774.741551 150102.210967 144339.262076 \n", "Canada 66537.119181 86646.119556 94367.150902 0.000000 \n", "China NaN NaN NaN NaN \n", "France 154585.014837 150430.812834 157901.087060 146440.776347 \n", "Germany 166815.050492 167905.092106 180662.617960 174835.712588 \n", "India 44433.089145 57364.187545 70000.012687 70683.894202 \n", "Indonesia 19020.899472 21235.362053 28480.713916 31276.233613 \n", "Italy 99125.639915 92490.822517 94331.150651 0.000000 \n", "Japan 0.000000 207455.070886 224290.391709 229038.756794 \n", "Mexico 46693.812764 54574.296002 60271.667362 61292.823127 \n", "Saudi Arabia NaN NaN NaN NaN \n", "South Africa 15532.788738 21476.519211 24830.016465 25252.585427 \n", "Turkey 0.000000 0.000000 0.000000 38621.275478 \n", "\n", " 2013 2014 2015 2016 2017 2018 \n", "Country Name \n", "Argentina 30011.453977 28218.313515 34353.372950 NaN NaN NaN \n", "Australia 82560.700001 75922.910956 71924.520559 NaN NaN NaN \n", "Brazil 144383.459762 146094.314874 112477.280394 NaN NaN NaN \n", "Canada 0.000000 0.000000 0.000000 NaN NaN NaN \n", "China NaN NaN NaN NaN NaN NaN \n", "France 154617.145931 157213.088025 133229.531150 NaN NaN NaN \n", "Germany 185185.415633 192251.272249 162760.132566 NaN NaN NaN \n", "India 71384.838385 0.000000 0.000000 NaN NaN NaN \n", "Indonesia 30652.050762 29290.078234 30849.572368 NaN NaN NaN \n", "Italy 88728.998130 87688.493713 74763.335912 NaN NaN NaN \n", "Japan 188976.621837 174158.463384 0.000000 NaN NaN NaN \n", "Mexico 59848.484480 69163.679844 61331.265035 NaN NaN NaN \n", "Saudi Arabia NaN NaN NaN NaN NaN NaN \n", "South Africa 22048.236882 21201.639090 18913.096953 NaN NaN NaN \n", "Turkey 41484.236168 40834.761059 36901.364039 NaN NaN NaN " ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Education Expedniture for G20 Countries i million dollars\n", "EducationExpenditureData_Millions_G20 = (EducationPercentData_G20 * GDP_G20_Millions)/100\n", "EducationExpenditureData_Millions_G20" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015
Country Name
Turkey0.000000.000000.000004.419004.364104.371164.29187
South Africa5.248695.721745.962756.371646.013546.046625.95619
Japan0.000003.639503.642583.692263.665383.590590.00000
Indonesia3.525132.812283.189443.407483.359043.288013.58360
Germany4.880484.913684.807804.933314.934974.931134.81341
Canada4.852645.369935.274440.000000.000000.000000.00000
Australia5.093275.559175.083134.877655.238015.173685.32175
Mexico5.187945.159225.105655.103104.696055.261345.23946
Italy4.536314.352394.144070.000004.164724.075254.08036
India3.311243.423473.839723.867503.844670.000000.00000
France5.746185.692515.518305.456425.500285.512065.46424
Brazil5.463555.648805.737415.855105.838855.948486.24106
Argentina5.531055.019715.290635.345835.436615.361445.77611
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 2014 2015\n", "Country Name \n", "Turkey 0.00000 0.00000 0.00000 4.41900 4.36410 4.37116 4.29187\n", "South Africa 5.24869 5.72174 5.96275 6.37164 6.01354 6.04662 5.95619\n", "Japan 0.00000 3.63950 3.64258 3.69226 3.66538 3.59059 0.00000\n", "Indonesia 3.52513 2.81228 3.18944 3.40748 3.35904 3.28801 3.58360\n", "Germany 4.88048 4.91368 4.80780 4.93331 4.93497 4.93113 4.81341\n", "Canada 4.85264 5.36993 5.27444 0.00000 0.00000 0.00000 0.00000\n", "Australia 5.09327 5.55917 5.08313 4.87765 5.23801 5.17368 5.32175\n", "Mexico 5.18794 5.15922 5.10565 5.10310 4.69605 5.26134 5.23946\n", "Italy 4.53631 4.35239 4.14407 0.00000 4.16472 4.07525 4.08036\n", "India 3.31124 3.42347 3.83972 3.86750 3.84467 0.00000 0.00000\n", "France 5.74618 5.69251 5.51830 5.45642 5.50028 5.51206 5.46424\n", "Brazil 5.46355 5.64880 5.73741 5.85510 5.83885 5.94848 6.24106\n", "Argentina 5.53105 5.01971 5.29063 5.34583 5.43661 5.36144 5.77611" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Select the countries that gives more information and based on them select the percapita \n", "#for the 10 military countries\n", "EducationPercentData_10Countries = EducationPercentData_G20.loc[['Turkey','South Africa','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Mexico',\n", " 'Italy','India','France','Brazil','Argentina',],:]\n", "EducationPercentData_10Countries" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country Name
Turkey6.446399e+057.719018e+058.325237e+058.739822e+059.505794e+059.341859e+058.597969e+058.637216e+058.515492e+057.665091e+05
South Africa2.959365e+053.753494e+054.164189e+053.963279e+053.666432e+053.506362e+053.175368e+052.957466e+053.488716e+053.662982e+05
Japan5.231383e+065.700098e+066.157460e+066.203213e+065.155717e+064.850414e+064.389476e+064.926667e+064.859951e+064.970916e+06
Indonesia5.395801e+057.550942e+058.929691e+059.178699e+059.125241e+058.908148e+058.608542e+059.318774e+051.015423e+061.042173e+06
Germany3.418005e+063.417095e+063.757698e+063.543984e+063.752514e+063.898727e+063.381389e+063.495163e+063.693204e+063.996759e+06
Canada1.371153e+061.613543e+061.789141e+061.823967e+061.842018e+061.801480e+061.552900e+061.526706e+061.646867e+061.709327e+06
Australia9.278052e+051.146138e+061.396650e+061.546152e+061.576184e+061.467484e+061.351520e+061.210028e+061.330803e+061.432195e+06
Mexico9.000454e+051.057801e+061.180490e+061.201090e+061.274443e+061.314564e+061.170565e+061.077828e+061.158071e+061.223809e+06
Italy2.185160e+062.125058e+062.276292e+062.072823e+062.130491e+062.151733e+061.832273e+061.869202e+061.946570e+062.073902e+06
India1.341887e+061.675615e+061.823050e+061.827638e+061.856722e+062.039127e+062.103588e+062.290432e+062.652551e+062.726323e+06
France2.690222e+062.642610e+062.861408e+062.683825e+062.811078e+062.852166e+062.438208e+062.471286e+062.586285e+062.777535e+06
Brazil1.667020e+062.208872e+062.616202e+062.465189e+062.472806e+062.455994e+061.802214e+061.796275e+062.053595e+061.868626e+06
Argentina3.329765e+054.236274e+055.301633e+055.459824e+055.520251e+055.263197e+055.947493e+055.575314e+056.426959e+055.184751e+05
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 \\\n", "Country Name \n", "Turkey 6.446399e+05 7.719018e+05 8.325237e+05 8.739822e+05 \n", "South Africa 2.959365e+05 3.753494e+05 4.164189e+05 3.963279e+05 \n", "Japan 5.231383e+06 5.700098e+06 6.157460e+06 6.203213e+06 \n", "Indonesia 5.395801e+05 7.550942e+05 8.929691e+05 9.178699e+05 \n", "Germany 3.418005e+06 3.417095e+06 3.757698e+06 3.543984e+06 \n", "Canada 1.371153e+06 1.613543e+06 1.789141e+06 1.823967e+06 \n", "Australia 9.278052e+05 1.146138e+06 1.396650e+06 1.546152e+06 \n", "Mexico 9.000454e+05 1.057801e+06 1.180490e+06 1.201090e+06 \n", "Italy 2.185160e+06 2.125058e+06 2.276292e+06 2.072823e+06 \n", "India 1.341887e+06 1.675615e+06 1.823050e+06 1.827638e+06 \n", "France 2.690222e+06 2.642610e+06 2.861408e+06 2.683825e+06 \n", "Brazil 1.667020e+06 2.208872e+06 2.616202e+06 2.465189e+06 \n", "Argentina 3.329765e+05 4.236274e+05 5.301633e+05 5.459824e+05 \n", "\n", " 2013 2014 2015 2016 \\\n", "Country Name \n", "Turkey 9.505794e+05 9.341859e+05 8.597969e+05 8.637216e+05 \n", "South Africa 3.666432e+05 3.506362e+05 3.175368e+05 2.957466e+05 \n", "Japan 5.155717e+06 4.850414e+06 4.389476e+06 4.926667e+06 \n", "Indonesia 9.125241e+05 8.908148e+05 8.608542e+05 9.318774e+05 \n", "Germany 3.752514e+06 3.898727e+06 3.381389e+06 3.495163e+06 \n", "Canada 1.842018e+06 1.801480e+06 1.552900e+06 1.526706e+06 \n", "Australia 1.576184e+06 1.467484e+06 1.351520e+06 1.210028e+06 \n", "Mexico 1.274443e+06 1.314564e+06 1.170565e+06 1.077828e+06 \n", "Italy 2.130491e+06 2.151733e+06 1.832273e+06 1.869202e+06 \n", "India 1.856722e+06 2.039127e+06 2.103588e+06 2.290432e+06 \n", "France 2.811078e+06 2.852166e+06 2.438208e+06 2.471286e+06 \n", "Brazil 2.472806e+06 2.455994e+06 1.802214e+06 1.796275e+06 \n", "Argentina 5.520251e+05 5.263197e+05 5.947493e+05 5.575314e+05 \n", "\n", " 2017 2018 \n", "Country Name \n", "Turkey 8.515492e+05 7.665091e+05 \n", "South Africa 3.488716e+05 3.662982e+05 \n", "Japan 4.859951e+06 4.970916e+06 \n", "Indonesia 1.015423e+06 1.042173e+06 \n", "Germany 3.693204e+06 3.996759e+06 \n", "Canada 1.646867e+06 1.709327e+06 \n", "Australia 1.330803e+06 1.432195e+06 \n", "Mexico 1.158071e+06 1.223809e+06 \n", "Italy 1.946570e+06 2.073902e+06 \n", "India 2.652551e+06 2.726323e+06 \n", "France 2.586285e+06 2.777535e+06 \n", "Brazil 2.053595e+06 1.868626e+06 \n", "Argentina 6.426959e+05 5.184751e+05 " ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#GDP for 10 countries in millions\n", "GDP_10Countries_Millions = GDP_G20_Millions.loc[['Turkey','South Africa','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Mexico',\n", " 'Italy','India','France','Brazil','Argentina',],:]\n", "GDP_10Countries_Millions" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country Name
Turkey0.0000000.0000000.00000038621.27547841484.23616840834.76105936901.364039NaNNaNNaN
South Africa15532.78873821476.51921124830.01646525252.58542722048.23688221201.63909018913.096953NaNNaNNaN
Japan0.000000207455.070886224290.391709229038.756794188976.621837174158.4633840.000000NaNNaNNaN
Indonesia19020.89947221235.36205328480.71391631276.23361330652.05076229290.07823430849.572368NaNNaNNaN
Germany166815.050492167905.092106180662.617960174835.712588185185.415633192251.272249162760.132566NaNNaNNaN
Canada66537.11918186646.11955694367.1509020.0000000.0000000.0000000.000000NaNNaNNaN
Australia47255.62306163715.78573870993.53038475415.87248682560.70000175922.91095671924.520559NaNNaNNaN
Mexico46693.81276454574.29600260271.66736261292.82312759848.48448069163.67984461331.265035NaNNaNNaN
Italy99125.63991592490.82251794331.1506510.00000088728.99813087688.49371374763.335912NaNNaNNaN
India44433.08914557364.18754570000.01268770683.89420271384.8383850.0000000.000000NaNNaNNaN
France154585.014837150430.812834157901.087060146440.776347154617.145931157213.088025133229.531150NaNNaNNaN
Brazil91078.459386124774.741551150102.210967144339.262076144383.459762146094.314874112477.280394NaNNaNNaN
Argentina18417.09585021264.86807028048.97762429187.28963530011.45397728218.31351534353.372950NaNNaNNaN
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 \\\n", "Country Name \n", "Turkey 0.000000 0.000000 0.000000 38621.275478 \n", "South Africa 15532.788738 21476.519211 24830.016465 25252.585427 \n", "Japan 0.000000 207455.070886 224290.391709 229038.756794 \n", "Indonesia 19020.899472 21235.362053 28480.713916 31276.233613 \n", "Germany 166815.050492 167905.092106 180662.617960 174835.712588 \n", "Canada 66537.119181 86646.119556 94367.150902 0.000000 \n", "Australia 47255.623061 63715.785738 70993.530384 75415.872486 \n", "Mexico 46693.812764 54574.296002 60271.667362 61292.823127 \n", "Italy 99125.639915 92490.822517 94331.150651 0.000000 \n", "India 44433.089145 57364.187545 70000.012687 70683.894202 \n", "France 154585.014837 150430.812834 157901.087060 146440.776347 \n", "Brazil 91078.459386 124774.741551 150102.210967 144339.262076 \n", "Argentina 18417.095850 21264.868070 28048.977624 29187.289635 \n", "\n", " 2013 2014 2015 2016 2017 2018 \n", "Country Name \n", "Turkey 41484.236168 40834.761059 36901.364039 NaN NaN NaN \n", "South Africa 22048.236882 21201.639090 18913.096953 NaN NaN NaN \n", "Japan 188976.621837 174158.463384 0.000000 NaN NaN NaN \n", "Indonesia 30652.050762 29290.078234 30849.572368 NaN NaN NaN \n", "Germany 185185.415633 192251.272249 162760.132566 NaN NaN NaN \n", "Canada 0.000000 0.000000 0.000000 NaN NaN NaN \n", "Australia 82560.700001 75922.910956 71924.520559 NaN NaN NaN \n", "Mexico 59848.484480 69163.679844 61331.265035 NaN NaN NaN \n", "Italy 88728.998130 87688.493713 74763.335912 NaN NaN NaN \n", "India 71384.838385 0.000000 0.000000 NaN NaN NaN \n", "France 154617.145931 157213.088025 133229.531150 NaN NaN NaN \n", "Brazil 144383.459762 146094.314874 112477.280394 NaN NaN NaN \n", "Argentina 30011.453977 28218.313515 34353.372950 NaN NaN NaN " ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Education Expenditure Data of 10 countries in millions\n", "\n", "EducationExpenditureData_Millions_10Countries = (EducationPercentData_10Countries * GDP_10Countries_Millions)/100\n", "EducationExpenditureData_Millions_10Countries" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country Name
Argentina451.405969515.838476673.333632693.338494705.489114656.522077791.228497NaNNaNNaN
Australia2178.5117382891.9984003177.8627633316.0802633566.9685103230.1933793015.604039NaNNaNNaN
Brazil467.318268634.030016755.471906719.677676713.326593715.401173546.106667NaNNaNNaN
Canada1978.5889562548.0200382747.8017480.0000000.0000000.0000000.000000NaNNaNNaN
ChinaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
France2388.9982492313.3412272416.5041522230.2961762342.7315942370.6627352000.642694NaNNaNNaN
Germany2036.7564312053.2085532250.5469482173.8753312296.2865202373.9853951992.494615NaNNaNNaN
India36.59242546.60039656.12411055.96216155.8321200.0000000.000000NaNNaNNaN
Indonesia79.47213887.559793115.913078125.666295121.619551114.804022119.496901NaNNaNNaN
Italy1677.3843421560.3045341588.6161330.0000001473.0729281442.5026201231.065691NaNNaNNaN
Japan0.0000001619.8568821754.5578351794.5667271482.8092261368.3527400.000000NaNNaNNaN
Mexico404.257137465.178901506.101761507.272051488.415646556.776598487.177716NaNNaNNaN
Saudi ArabiaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
South Africa304.738855416.335359475.092729476.479941410.067039388.738648342.063265NaNNaNNaN
Turkey0.0000000.0000000.000000517.920670547.376910530.110712471.453559NaNNaNNaN
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 \\\n", "Country Name \n", "Argentina 451.405969 515.838476 673.333632 693.338494 705.489114 \n", "Australia 2178.511738 2891.998400 3177.862763 3316.080263 3566.968510 \n", "Brazil 467.318268 634.030016 755.471906 719.677676 713.326593 \n", "Canada 1978.588956 2548.020038 2747.801748 0.000000 0.000000 \n", "China NaN NaN NaN NaN NaN \n", "France 2388.998249 2313.341227 2416.504152 2230.296176 2342.731594 \n", "Germany 2036.756431 2053.208553 2250.546948 2173.875331 2296.286520 \n", "India 36.592425 46.600396 56.124110 55.962161 55.832120 \n", "Indonesia 79.472138 87.559793 115.913078 125.666295 121.619551 \n", "Italy 1677.384342 1560.304534 1588.616133 0.000000 1473.072928 \n", "Japan 0.000000 1619.856882 1754.557835 1794.566727 1482.809226 \n", "Mexico 404.257137 465.178901 506.101761 507.272051 488.415646 \n", "Saudi Arabia NaN NaN NaN NaN NaN \n", "South Africa 304.738855 416.335359 475.092729 476.479941 410.067039 \n", "Turkey 0.000000 0.000000 0.000000 517.920670 547.376910 \n", "\n", " 2014 2015 2016 2017 2018 \n", "Country Name \n", "Argentina 656.522077 791.228497 NaN NaN NaN \n", "Australia 3230.193379 3015.604039 NaN NaN NaN \n", "Brazil 715.401173 546.106667 NaN NaN NaN \n", "Canada 0.000000 0.000000 NaN NaN NaN \n", "China NaN NaN NaN NaN NaN \n", "France 2370.662735 2000.642694 NaN NaN NaN \n", "Germany 2373.985395 1992.494615 NaN NaN NaN \n", "India 0.000000 0.000000 NaN NaN NaN \n", "Indonesia 114.804022 119.496901 NaN NaN NaN \n", "Italy 1442.502620 1231.065691 NaN NaN NaN \n", "Japan 1368.352740 0.000000 NaN NaN NaN \n", "Mexico 556.776598 487.177716 NaN NaN NaN \n", "Saudi Arabia NaN NaN NaN NaN NaN \n", "South Africa 388.738648 342.063265 NaN NaN NaN \n", "Turkey 530.110712 471.453559 NaN NaN NaN " ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Education Per Person expenditure for countries in million dollars(US dollars)\n", "Education_Per_Person_G20 = EducationExpenditureData_Millions_G20/PopulationData_Millions\n", "Education_Per_Person_G20" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
200920102011201220132014201520162017
Country Name
Turkey71.33918572.32691473.40945574.56986775.78733377.03062878.27147279.51242680.745020
South Africa50.97081851.58466352.26351652.99821353.76739654.53957155.29122556.01547356.717156
Japan128.047000128.070000127.833000127.629000127.445000127.276000127.141000126.994511126.785797
Indonesia239.340478242.524123245.707511248.883232252.032263255.131116258.162113261.115456263.991379
Germany81.90230781.77693080.27498380.42582380.64560580.98250081.68661182.34866982.695000
Canada33.62857134.00527434.34278034.75054535.15237035.53534835.83251336.26460436.708083
Australia21.69170022.03175022.34002422.74247523.14590123.50413823.85078424.21080924.598933
Mexico115.505228117.318941119.090017120.828307122.535969124.221600125.890949127.540423129.163276
Italy59.09536559.27741759.37944959.53971760.23394860.78914060.73058260.62749860.551416
India1214.2701321230.9806911247.2360291263.0658521278.5622071293.8592941309.0539801324.1713541339.180127
France64.70704465.02750765.34277565.65978965.99866066.31609266.59336666.85976867.118648
Brazil194.895996196.796269198.686688200.560983202.408632204.213133205.962108207.652865209.288278
Argentina40.79940741.22388941.65687942.09673942.53992542.98151543.41776543.84743044.271041
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 \\\n", "Country Name \n", "Turkey 71.339185 72.326914 73.409455 74.569867 75.787333 \n", "South Africa 50.970818 51.584663 52.263516 52.998213 53.767396 \n", "Japan 128.047000 128.070000 127.833000 127.629000 127.445000 \n", "Indonesia 239.340478 242.524123 245.707511 248.883232 252.032263 \n", "Germany 81.902307 81.776930 80.274983 80.425823 80.645605 \n", "Canada 33.628571 34.005274 34.342780 34.750545 35.152370 \n", "Australia 21.691700 22.031750 22.340024 22.742475 23.145901 \n", "Mexico 115.505228 117.318941 119.090017 120.828307 122.535969 \n", "Italy 59.095365 59.277417 59.379449 59.539717 60.233948 \n", "India 1214.270132 1230.980691 1247.236029 1263.065852 1278.562207 \n", "France 64.707044 65.027507 65.342775 65.659789 65.998660 \n", "Brazil 194.895996 196.796269 198.686688 200.560983 202.408632 \n", "Argentina 40.799407 41.223889 41.656879 42.096739 42.539925 \n", "\n", " 2014 2015 2016 2017 \n", "Country Name \n", "Turkey 77.030628 78.271472 79.512426 80.745020 \n", "South Africa 54.539571 55.291225 56.015473 56.717156 \n", "Japan 127.276000 127.141000 126.994511 126.785797 \n", "Indonesia 255.131116 258.162113 261.115456 263.991379 \n", "Germany 80.982500 81.686611 82.348669 82.695000 \n", "Canada 35.535348 35.832513 36.264604 36.708083 \n", "Australia 23.504138 23.850784 24.210809 24.598933 \n", "Mexico 124.221600 125.890949 127.540423 129.163276 \n", "Italy 60.789140 60.730582 60.627498 60.551416 \n", "India 1293.859294 1309.053980 1324.171354 1339.180127 \n", "France 66.316092 66.593366 66.859768 67.118648 \n", "Brazil 204.213133 205.962108 207.652865 209.288278 \n", "Argentina 42.981515 43.417765 43.847430 44.271041 " ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Population data of 10 Countries in Million dollars\n", "PopulationData_Millions_10Countries = PopulationData_Millions.loc[['Turkey','South Africa','Japan','Indonesia', \n", " 'Germany','Canada','Australia','Mexico',\n", " 'Italy','India','France','Brazil','Argentina',],:]\n", "PopulationData_Millions_10Countries" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2009201020112012201320142015201620172018
Country Name
Turkey0.0000000.0000000.000000517.920670547.376910530.110712471.453559NaNNaNNaN
South Africa304.738855416.335359475.092729476.479941410.067039388.738648342.063265NaNNaNNaN
Japan0.0000001619.8568821754.5578351794.5667271482.8092261368.3527400.000000NaNNaNNaN
Indonesia79.47213887.559793115.913078125.666295121.619551114.804022119.496901NaNNaNNaN
Germany2036.7564312053.2085532250.5469482173.8753312296.2865202373.9853951992.494615NaNNaNNaN
Canada1978.5889562548.0200382747.8017480.0000000.0000000.0000000.000000NaNNaNNaN
Australia2178.5117382891.9984003177.8627633316.0802633566.9685103230.1933793015.604039NaNNaNNaN
Mexico404.257137465.178901506.101761507.272051488.415646556.776598487.177716NaNNaNNaN
Italy1677.3843421560.3045341588.6161330.0000001473.0729281442.5026201231.065691NaNNaNNaN
India36.59242546.60039656.12411055.96216155.8321200.0000000.000000NaNNaNNaN
France2388.9982492313.3412272416.5041522230.2961762342.7315942370.6627352000.642694NaNNaNNaN
Brazil467.318268634.030016755.471906719.677676713.326593715.401173546.106667NaNNaNNaN
Argentina451.405969515.838476673.333632693.338494705.489114656.522077791.228497NaNNaNNaN
\n", "
" ], "text/plain": [ " 2009 2010 2011 2012 2013 \\\n", "Country Name \n", "Turkey 0.000000 0.000000 0.000000 517.920670 547.376910 \n", "South Africa 304.738855 416.335359 475.092729 476.479941 410.067039 \n", "Japan 0.000000 1619.856882 1754.557835 1794.566727 1482.809226 \n", "Indonesia 79.472138 87.559793 115.913078 125.666295 121.619551 \n", "Germany 2036.756431 2053.208553 2250.546948 2173.875331 2296.286520 \n", "Canada 1978.588956 2548.020038 2747.801748 0.000000 0.000000 \n", "Australia 2178.511738 2891.998400 3177.862763 3316.080263 3566.968510 \n", "Mexico 404.257137 465.178901 506.101761 507.272051 488.415646 \n", "Italy 1677.384342 1560.304534 1588.616133 0.000000 1473.072928 \n", "India 36.592425 46.600396 56.124110 55.962161 55.832120 \n", "France 2388.998249 2313.341227 2416.504152 2230.296176 2342.731594 \n", "Brazil 467.318268 634.030016 755.471906 719.677676 713.326593 \n", "Argentina 451.405969 515.838476 673.333632 693.338494 705.489114 \n", "\n", " 2014 2015 2016 2017 2018 \n", "Country Name \n", "Turkey 530.110712 471.453559 NaN NaN NaN \n", "South Africa 388.738648 342.063265 NaN NaN NaN \n", "Japan 1368.352740 0.000000 NaN NaN NaN \n", "Indonesia 114.804022 119.496901 NaN NaN NaN \n", "Germany 2373.985395 1992.494615 NaN NaN NaN \n", "Canada 0.000000 0.000000 NaN NaN NaN \n", "Australia 3230.193379 3015.604039 NaN NaN NaN \n", "Mexico 556.776598 487.177716 NaN NaN NaN \n", "Italy 1442.502620 1231.065691 NaN NaN NaN \n", "India 0.000000 0.000000 NaN NaN NaN \n", "France 2370.662735 2000.642694 NaN NaN NaN \n", "Brazil 715.401173 546.106667 NaN NaN NaN \n", "Argentina 656.522077 791.228497 NaN NaN NaN " ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Education Data Per Person for 10 Countries in US dollars\n", "EducationData_Per_Person_10Countries = EducationExpenditureData_Millions_10Countries/PopulationData_Millions_10Countries\n", "EducationData_Per_Person_10Countries\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" } }, "nbformat": 4, "nbformat_minor": 2 }