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Abstract

Surface/interface stresses, when notable, are closely associated with a surface/interface

layer in which the interatomic bond lengths and charge density distribution differ

remarkably from those of the bulk. The presence of such topographical defects as

edges and corners amplifies the noted phenomena by large amounts. If the prin-

cipal features of interest are such studies as the physics and mechanics of evolv-

ing microscopic-/nanoscopic-interfaces and the behavior of nano-sized structures

which have a very large surface-to-volume ratio, traditional continuum theories

cease to hold. It is for the treatment of such problems that augmented contin-

uum approaches like second strain gradient and surface elasticity theories have been

developed by Mindlin (1965) and Gurtin and Murdoch (1975), respectively. In the

mathematical framework of the former theory, the surface effect is explicitly revealed

through surface characteristic length and modulus of cohesion, whereas within the
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latter theory, which views the bulk material and its complementary surface as sep-

arate interacting entities, the critical role of surfaces/interfaces is directly incorpo-

rated through the introduction of the notions of tangential surface strain tensor,

surface stress tensor, and surface elastic modulus tensor into the formulation. In

the realm of the experimentations, evaluation of the above-mentioned surface pa-

rameters poses serious difficulties. One of the objectives of the current study is to

provide a remedy as how to calculate, not only these parameters, but also Mindlin’s

bulk characteristic lengths as well as Lame constants with the aids of first principles

density functional theory (DFT). To this end, surface elasticity is reformulated by

maintaining the first and second gradients of the strain tensor for the bulk; as a

result two new key equations are obtained. One of these equations is an expression

for the net surface stress, needed to relate the surface parameters in surface elas-

ticity to the Mindlin’s second gradient theory parameters. The other equation is

for the total elastic energy which is utilized to find an analytical expression for the

surface energy. The available data on surface relaxation obtained experimentally

and computationally are in good correspondence with the results of the current the-

ory. Moreover, employing the present theory, an estimate for the effective elastic

constants of films with infinite extension is provided.

Keywords: second strain gradient theory, elastic surface, surface stress, surface

elastic constants, effective elastic constants, surface relaxation
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1. Introduction

Efforts towards the design and manufacturing of miniaturized devices in modern

technologies as well as the description of the phenomena associated with the physics

and mechanics of the evolving microscopic-/nanoscopic-interfaces have acquired a

close examination of the topography of the three dimensional nano-sized elastic me-

dia for such defects as surfaces/interfaces, edges, and corners, respectively, referred

to as the two, one, and zero dimensional defects. The equilibrium positions of the

atoms located in the close vicinity of such defects significantly differ from the posi-

tions they would have when they were well into the bulk. Therefore, the mechanical

properties of a nano-structure, in which the interior atoms are only a few lattice

parameters away from the boundary, are significantly affected by its surface (Cam-

marata and Sieradzki, 1989); presence of edges and corners on the boundary imposes

additional disturbance in the displacement field of the interior atoms. In fact, as

pointed out by Cammarata and Sieradzki (1989), surface stresses cause the surface

atoms to displace from their equilibrium positions they would have occupied if they

were well within the bulk. The phenomenon of surface relaxation has been previ-

ously studied both computationally and experimentally. Rosato et al. (1989) have

employed tight-binding (TB) to study surface relaxation of some transition metals.

Kuk and Feldman (1984) studied surface relaxation of Ag(110) through high-energy

ion scattering method. A manifestation of this phenomenon is the creation of a

surface layer in which the interatomic bond lengths and charge density distribution
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are quite different from those of the bulk.

Factually, continuum equations based on classical elasticity are limited to wave

lengths and bodily dimensions large enough compared with the lattice parameter

of the material. The idea of the characterization of the atomic structure of elastic

solids through the augmentation of classical theory of elasticity has initiated with

the early work of Cauchy (1851) who suggested that the local state of stress at

any given field point within the three dimensional elastic solid not only depends

on the displacement of the point but also is affected by the displacements of those

in its vicinity. Based on this concept and the subsequent works of Voigt (1887,

1894) along this line of thought, various gradient theories have been proposed in

the literature. Cauchy’s continuum theory for a periodic, non-centrosymmetric, and

isotropic solid can be generalized to account for the solid’s anisotropy response by

considering infinite gradients of strain in the potential energy density. The resulting

continuum field contains the same information as the equivalent equations deduced

directly from crystal lattice theory (Mindlin, 1972). Factually, consideration of the

surface effect has been one of the most important stimuli in the development of

augmented and higher order continuum theories which were brought into focus by

many researchers, mainly, in the period of about 1960 to 1975. However, what has

been developed in the context of higher order continuum theories lacks the physical

notions of surface strain, surface stress, and surface elastic moduli tensors which

all are mathematically introduced by Gurtin and Murdoch (1975) in the frame-
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work of surface elasticity. More specifically, they treat the bulk material and its

complementary surface as separate interacting entities, and write the equilibrium

conditions of surfaces and interfaces in terms of the surface and interface stresses as

well as bulk stresses. Along this line of thought, some researchers have additionally

derived the driving force corresponding to the normal variation of a propagating in-

terface (Gurtin, 1995; Simha and Bhattacharya, 1997, 1998, 2000). Moreover, Simha

and Bhattacharya (1997, 1998, 2000) have obtained the expressions for the driving

force on the intersections of interfaces and where the interfaces meet the external

boundary in terms of the bulk stress tensor, surface and interfacial stresses, bulk

elastic energy, interfacial total energy, and surface energy. As it was alluded to,

the other higher order continuum theories such as first and second strain gradient

theories did not explicitly bring out the above-mentioned surface and interface pa-

rameters. Recently, Javili et al. (2013) consider the total energy of an elastic body

as the sum of the energy of the bulk material and that of its bounding surface layer

of finite thickness. In their work, the bulk and surface materials are assumed to be of

grades 3 and 2, respectively. Moreover, in this context, at any field point within the

surface layer, the first and second gradients of the displacement field in the thickness

direction of the surface layer are nonzero. They carry out their formulations without

reference to the constitutive relations associated with both bulk and its complemen-

tary surface. For this reason, the effect of certain physically important parameters

such as modulus of cohesion and surface elastic constants in their analysis is ab-
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sent. Polizzotto (2013) considers an elastic body to consist of bulk and a surface

layer with nonzero thickness. Polizzotto (2013) assumes that the bulk material is of

grade 3, but for simplification discards many of the corresponding terms from the

energy expression; in particular, the term corresponding to the modulus of cohesion

is missing from the analysis.

In first strain gradient theory, it is assumed that the potential energy density

function of the material depends on both the second-order strain tensor and its first

gradient (Mindlin and Eshel, 1968). The correspondence between first strain gradi-

ent theory and the atomic structure of the material is exhibited by Toupin and Gazis

(1964) through consideration of the nearest and next nearest interatomic interac-

tions; they realized that the drawing in or pushing out the surface layer happens

only in non-centrosymmetric materials. Later, Toupin, in a private communica-

tion with Mindlin (1965), suggested that one can remove this restriction with the

inclusion of the components of the second gradient of the strain tensor in the poten-

tial energy density function. Subsequently, Mindlin (1965) proposed second strain

gradient theory in which the strain energy density function depends on, not only

the strain field and its first derivative, but also the second derivative of the strain

field. Agiasofitou and Lazar (2009) have explored the conservation and balance

laws for second strain gradient elasticity employing Noether’s theorem. In second

strain gradient theory which is developed for centrosymmetric, homogeneous, and

linearly elastic isotropic materials, sixteen elastic constants in addition to Lamé
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constants are revealed. Fifteen of these additional parameters bring on four char-

acteristic lengths associated with the bulk and another length scale associated with

the surface of such media. Generally speaking, bulk characteristic lengths together

with Lamé constants appear in the equilibrium equations, while surface characteris-

tic length enters the formulation through the boundary conditions, (Mindlin, 1965;

Ojaghnezhad and Shodja, 2013). The remaining parameter is modulus of cohesion

with the dimension of force which characterizes the surface effect. Mindlin (1965),

when considering an elastic half-space with zero body force field and traction free

surface within the framework of second strain gradient theory realized non-trivial

solution due to the surface effect stemming from modulus of cohesion. Ojaghnezhad

and Shodja (2013) by considering an infinitely extended traction free elastic film

with zero body force field observed non-trivial solution and, moreover, derived an

expression between the film’s surface energy and modulus of cohesion.

As briefly mentioned earlier, Gurtin and Murdoch (1975), based on the prevailing

capabilities of continuum mechanics, developed a mathematical framework for the

mechanical behavior of elastic surfaces of materials. They bring about a concise

notion of the material surface, surface strain tensor, surface stress, and surface

elastic constants as well as the linearized theory of elastic surfaces. An interesting

issue is the consideration of the simultaneous emergence of the two points of view,

namely, surface elasticity theory of Gurtin and Murdoch (1975) and second strain

gradient theory of Mindlin (1965). More specifically, one may ask whether there is
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a linkage between the surface elastic parameters such as surface stress and surface

elastic constants of surface elasticity theory and the elastic parameters stemming

from second strain gradient elasticity. To give an affirmative analysis to this concern,

the current work attempts to revisit surface elasticity in the context of second strain

gradient theory.

In the realm of experimentations, measurement of the additional parameters and

characteristic lengths poses serious difficulties. On the other hand, to date, using

a combination of simulation and analysis, such parameters associated with certain

augmented continuum theories have been evaluated with some success. Shodja and

Tehranchi (2010, 2012) and Shodja et al. (2012) calculated the values of the charac-

teristic lengths of Mindlin’s first and second strain gradient elasticity, respectively,

for face-centered cubic (fcc) crystals using analytical formulations complemented

by a many-body long-range Finnis-Sinclair potential (Finnis and Sinclair, 1984).

In another contribution, ab-initio calculations based on density functional theory

(DFT) are employed by Shodja et al. (2013) to calculate the additional parameters

and characteristic lengths of Mindlin’s first strain gradient elasticity. In the context

of second strain gradient, Ojaghnezhad and Shodja (2013) gave an analysis com-

bined with ab initio calculations to obtain modulus of cohesion, surface energy, and

the additional constants. Moreover, Ojaghnezhad and Shodja (2012), in a separate

study, calculated the surface elastic parameters such as surface residual stresses and

surface elastic constants of the ideal and reconstructed surfaces of Si(001) using

8

Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Surface elasticity revisited in the context of second strain gradient 
theory, Mechanics of Materials, Vol. 93, 2016, pp. 220-237, https://doi.org/10.1016/j.mechmat.2015.11.003.



first principles computations. In the present work, however, for a film of infinite

extension, the surface elastic parameters which appear in surface elasticity such as

surface residual stresses, surface energy, and surface elastic constants are analyti-

cally related to Mindlin’s additional parameters introduced in second strain gradient

theory. Afterwards, by utilizing the available experimental values of surface energy

and surface residual stresses, the corresponding relations are solved simultaneously

for surface characteristic length and modulus of cohesion. To this end, the values of

Lamé constants and bulk characteristic lengths must be known as well; these param-

eters will be computed using ab initio DFT calculations. In continue, surface elastic

constants and an estimate of the effective elastic constants for each considered film

are determined.

This paper proceeds as below. Section 2, in the realm of surface elasticity the-

ory, recovers some preliminary definitions for surface gradient and surface divergence

theorem. In section 3, the theory of surface elasticity is developed in the framework

of second strain gradient elasticity with energy considerations included. Section 4

is devoted to a film of infinite extension with planar surfaces in an effort to give

analytical expressions for the residual surface stress tensor and surface elastic con-

stants, formulate the effective elastic constants, and lay down a methodology for

the calculation of surface characteristic length and modulus of cohesion, all in the

mathematical framework of second strain gradient theory. In section 5, by utilizing

theory of lattice dynamics, a treatment for obtaining Lamé constants and bulk char-
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acteristic lengths in terms of atomic force constants is developed. In Section 6, case

studies are performed on three fcc crystals, Ag, Au, and Pt. For these materials,

the surface relaxations calculated using the current theory are compared with those

obtained via TB (Rosato et al., 1989) as well as experiment (Kuk and Feldman,

1984).

2. Preliminary definitions

An immediate purpose of the current work is to develop surface elasticity the-

ory in the context of second strain gradient elasticity. Thus, to the aim of self-

contentedness of the paper, a brief presentation of the required definitions and re-

sults previously given by Gurtin and Murdoch (1975) in some detail is in order. Let

E be a three-dimensional Euclidean point space and V denote the associated trans-

lation space. Consider a three-dimensional elastic body B with the elastic material

surface S = ∂B. Assume that the region B ∈ E is the image of B in a fixed

reference configuration and s= ∂B, which is the image of S , is a smooth orientable

surface with outward unit normal field, n. Assume that Tx is a two-dimensional sub-

space of V and denotes the tangent space at x ∈ s. Between the three-dimensional

space, V and its two-dimensional subspace, Tx, Gurtin and Murdoch (1975) de-

fine the inclusion map I(x) as a linear transformation from Tx to V , displayed as

I(x) ∈ Lin(Tx, V ), with the property I(x).τ = τ for every τ ∈ Tx. Conversely,

the perpendicular projection, P (x) ∈ Lin(V , Tx) is defined as the transpose of I(x)
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and hence P (x).I(x) gives the identity map on Tx which is denoted by 1(x). Due

to the above definitions, I(x).P (x) ∈ Lin(V , V ) and

I(x).P (x) = 1− n(x)⊗ n(x), (2.1)

where 1 is the identity map on V . For clarity, some of the formulations in the sub-

sequent analysis are presented using indicial notation with summation convention.

Moreover, throughout this paper, the rules

ab : cd = (a.c)(b.d), abc
...def = (a.d)(b.e)(c.f), etc., (2.2)

respectively, are used for scalar multiplication of dyads, triads, etc. The operator

for gradient on s is defined as (Gurtin and Murdoch, 1975)

∇s = P .∇. (2.3)

It is readily shown that I.∇s = ∇ − nn.∇ where ∇ is the gradient on B. For

an arbitrary smooth vector field, v on s defined as v : s → V , the components of

∇sv ∈ Lin(V , Tx) are defined as

∇sv = P .∇v. (2.4)

The tangential derivative of v which belongs to Lin(Tx, Tx) is (∇sv) .I and the

surface divergence is defined as

divsv = tr ((∇sv) .I) . (2.5)

From calculus, it is known that for a continuously differentiable tensor point

function, f of any order over an orientable regular subsurface, Σ ⊂ s with unit
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normal, n and piecewise smooth boundary curve, ∂Σ with positive unit tangent T,

the following relation holds (Brand, 1966)

∫
Σ

(
n 2.∇f − n∇.f

)
=

∮
∂Σ

T× f , (2.6)

where the number 2 over the dot denotes that n is dotted into the second vector to

the right of the dot. By replacing f with nf in the left hand side of Eq. (2.6), we

have

∫
Σ

(
n 2.∇(nf)− n∇.(nf)

)
=

∫
Σ

(I.∇s − (I.∇s.n)n)f , (2.7)

where n.∇n = 0 has been used. Subsequently, the following identity is obtained

∫
Σ

L.f =

∫
∂Σ

m.f , (2.8)

with

L = I.∇s − (I.∇s.n)n, (2.9)

and m = T×n which is the outward unit normal to ∂Σ at x and m(x) ∈ Unit(Tx);

Unit(Tx) is the set of all unit vectors in Tx. Subsequently, for a smooth tangent

vector field, t on Σ, ∫
Σ

divst =

∫
∂Σ

m.t. (2.10)

In the case of regular geometrically closed surface,
∫
Σ
divst = 0. Also, for a smooth

tensor field, S ∈ Lin(Tx, V ) on s, the surface divergence is defined as

divsS = I : ∇ST , (2.11)
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and associated with Σ ⊂ s, the surface divergence theorem is

∫
∂Σ

S.m =

∫
Σ

divsS. (2.12)

3. Reformulation of surface elasticity in the context of second strain gra-

dient theory

Previously, Ojaghnezhad and Shodja (2013) have calculated modulus of cohesion

and its relation to the surface energy associated with a film in the context of sec-

ond strain gradient theory only. Throughout this section, surface elasticity theory

of Gurtin and Murdoch (1975) will be reformulated in the mathematical framework

of second strain gradient theory of Mindlin (1965) in an effort to evaluate surface

stresses, surface elastic constants, and effective elastic constants associated with a

film within the present developments. To this end, in the kinematical considerations,

in addition to the bulk second order strain tensor and its first and second deriva-

tives, their corresponding complementary surface tangential tensors are defined and

in continue the equilibrium equations for both bulk and surface are written.

3.1. Kinematics

Suppose that an elastic medium B with an enclosing surface ∂B occupies the

region B with respect to a fixed reference configuration. According to the linear

second strain gradient theory formulated by Mindlin (1965), in addition to the usual

second order strain tensor,
1
ϵ the first and second gradients of strains are also taken
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into consideration via
2
ϵ and

3
ϵ as defined below

1
ϵ =

1

2
(∇u+ u∇) , (3.1a)

2
ϵ = ∇∇u, (3.1b)

3
ϵ = ∇∇∇u, (3.1c)

where u : B → V is the displacement vector. For the points on the material surface,

define the displacement vector u : ∂B → V . The infinitesimal surface strain tensor

is considered as the tangential field (Gurtin and Murdoch, 1975)

1

E =
1

2

(
P .u

↼

∇s +
⇀

∇su.I
)
. (3.2)

For further enhancement, one may also consider the first and second surface gradi-

ents of the surface strain tensor as

2

E =
⇀

∇s

⇀

∇su.I, (3.3a)

3

E =
⇀

∇s

⇀

∇s

⇀

∇su.I. (3.3b)

In the remaining analysis, the strain tensor,
1
ϵ and its first and second gradients,

2
ϵ and

3
ϵ will be kept but for the sake of simplicity it is assumed that the second

order tensor, E =
1

E is a sufficiently accurate measure of the tangential surface

deformation.

3.2. Equilibrium equations in the bulk and boundary conditions

According to Mindlin (1965), the variation of the total elastic strain energy in a

volume B with the material boundary ∂B, in the absence of any edges and corners
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is

δUB = δ

∫
B

U0 = −
∫
B

[
∇.

(
1
τ −∇.

2
τ +∇∇ :

3
τ
)]

.δu

+

∫
∂B

n.
(

1
τ −∇.

2
τ +∇∇ :

3
τ
)
.δu

−
∫
∂B

[
L.

(
n.

(
2
τ −∇.

3
τ
)
−L.

(
n.

3
τ
)
− (I.∇sn) .

(
nn :

3
τ
))]

.δu

−
∫
∂B

(
n.L.

(
n.

3
τ
)
+L.

(
nn :

3
τ
)
− nn :

(
2
τ −∇.

3
τ
))

.Dδu

+

∫
∂B

(
nnn

...
3
τ

)
.D2δu, (3.4)

where U0 is the elastic strain energy density and

1
τ =

∂U0

∂
1
ϵ
, (3.5a)

2
τ =

∂U0

∂
2
ϵ
, (3.5b)

3
τ =

∂U0

∂
3
ϵ
, (3.5c)

are the generalized stress tensors. The operatorD in Eq. (3.4) is defined asD = n.∇

and L is given by Eq. (2.9). The virtual work, δWvirt of the external applied loads

is written in the following form

δWvirt =

∫
B

bB.δu+

∫
∂B

(
1

t.δu+
2

t.Dδu+
3

t.D2δu

)
, (3.6)

where bB is the body force of the volume and
1

t,
2

t, and
3

t are the surface tractions

applied on the material boundary. The principle of stationary potential energy

requires that δ(UB −Wvirt) = 0, which subsequently leads to

∇.S + bB = 0, (3.7)
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in B, and the generalized surface tractions

1

t = n.S −L.
s
τ , (3.8a)

2

t = nn :
(

2
τ −∇.

3
τ
)
− n.

(
L.

(
n.

3
τ
))

−L.
(
nn :

3
τ
)
, (3.8b)

3

t = nnn
...
3
τ , (3.8c)

on ∂B, where

S =
1
τ −∇.

2
τ +∇∇ :

3
τ , (3.9a)

s
τ = n.

(
2
τ −∇.

3
τ
)
−L.

(
n.

3
τ
)
− (I.∇sn) .

(
nn :

3
τ
)
. (3.9b)

Assume that ∂B is a regular closed surface, then by letting Σ ≡ ∂B and f ≡ s
τ in

Eq. (2.8), it results in

∫
∂B

L.
s
τ = 0. (3.10)

Upon integration of the equilibrium equation over the region B, and employment of

the divergence theorem to the first part leads to

∫
∂B

n.S +

∫
B

bB = 0. (3.11)

With due attention to Eqs. (3.8a) and (3.10), Eq. (3.11) reduces to

∫
B

bB +

∫
∂B

1

t = 0, (3.12)

implying that the total body force of the bulk is in equilibrium with the total traction

of the first kind.
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According to Mindlin (1965), the strain energy density for homogeneous, isotropic,

and centrosymmetric materials has the following form

U0 =
1

2
λϵiiϵjj + µϵijϵij + a1ϵijjϵikk + a2ϵiikϵkjj + a3ϵiikϵjjk + a4ϵijkϵijk

+ a5ϵijkϵkji + b1ϵiijjϵkkll + b2ϵijkkϵijll + b3ϵiijkϵjkll + b4ϵiijkϵllkj

+ b5ϵiijkϵlljk + b6ϵijklϵijkl + b7ϵijklϵjkli + c1ϵiiϵjjkk + c2ϵijϵijkk

+ c3ϵijϵkkij + b0ϵiijj, (3.13)

where ϵij, ϵijk, and ϵijkl are the components of
1
ϵ,

2
ϵ, and

3
ϵ, respectively. λ and µ are

Lamé constants and ai’s, bi’s, and ci’s are the additional constants corresponding

to Mindlin’s second strain gradient theory. The bulk characteristic lengths, ℓ11, ℓ12,

ℓ21, and ℓ22 in Mindlin’s second strain gradient theory are defined as

2(λ+ 2µ)ℓ21j = ā− 2c̄±
{
(ā− 2c̄)2 − 4b̄(λ+ 2µ)

}1/2
, (3.14a)

2µℓ22j = ā′ − c3 ±
{
(ā′ − c3)

2 − 4b̄′µ
}1/2

, (3.14b)

where j = 1 and 2 correspond to the plus and minus signs, respectively and

ā = 2(a1 + a2 + a3 + a4 + a5), (3.15a)

b̄ = 2(b1 + b2 + b3 + b4 + b5 + b6 + b7), (3.15b)

c̄ = c1 + c2 + c3, (3.15c)

ā′ = 2(a3 + a4), (3.15d)

b̄′ = 2(b5 + b6). (3.15e)
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3.3. The relation between Piola-Kirchhoff surface stress and bulk stress tensors

As it was alluded to, the bulk material obeys second strain gradient theory and

thus it is of interest to express the net Piola-Kirchhoff surface stress tensor on ∂B

in terms of
1
τ ,

2
τ ,

3
τ , ∇sn, and n within B. Gurtin and Murdoch (1975) have shown

that if the surface traction field ts on s and the surface body force field bs(x), which

represents the force per unit area exerted on s at x by the environment, are in

equilibrium, then the following relation holds

divsS+ bs = 0, on ∂B, (3.16)

where S(x) ∈ Lin(Tx, V ) is the Piola-Kirchhoff surface stress tensor on s. Note

that the Piola-Kirchhoff surface stress tensor is not symmetric. As explained in the

previous section, the force per unit undeformed area −
1

t which is determined via

Eq. (3.8a), is exerted on ∂B by the interior of B, which here we denote it as
◦
B.

Then, the total body force on the surface s is given as

bs = be −
1

t, (3.17)

where be includes any force per unit area other than −
1

t which is applied on the

surface s by the environment. Integrating Eq. (3.16) over s = ∂B and using

Eqs. (2.12), (3.17), and (3.12) result in∫
∂(∂B)

S.m+

∫
B

bB +

∫
∂B

be = 0. (3.18)

For regular closed surfaces
∫
∂(∂B)

S.m = 0, and hence∫
B

bB +

∫
∂B

be = 0. (3.19)
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In accordance to the linearized theorem given by Gurtin and Murdoch (1975),

the Piola-Kirchhoff surface stress tensor is obtained as

S = I.M+ I.C : E+ (u
↼

∇s).M, (3.20)

where the symmetric tangential second order tensor, M is the residual surface stress

at x in the undeformed configuration and C is the surface elasticity tensor which

transforms the symmetric tangential strain tensor, E into a symmetric tangential

tensor, C : E. Due to the symmetries of E and C : E, and assuming the hyperelastic-

ity properties as for the bulk, C has six independent components. In x2x3-plane, the

independent components of C are C2222, C2223, C2233, C2323, C2333, and C3333. Using

the standard theorem for linear, isotropic and symmetric tensor-valued functions of

a symmetric tensor variable (Gurtin and Murdoch, 1975), it is inferred that

M = σ01, (3.21a)

C : E = λ0(trE)1+ 2µ0E, (3.21b)

in which σ0, λ0, and µ0 depend on the material point x. It is noteworthy to mention

that the tangential tensor, M represented by Eq. (3.21a) is referred to as surface

tension. Define the tensor of curvature for surface s in the undeformed configuration

as

κ = −P .
(
n

↼

∇s

)
. (3.22)

Noting that κ.P = −
⇀

∇sn, and the tangential tensors M, C : E, and κ are symmet-
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I(x̃).dP̃ = (S.ν)dl

ν

n

dl
x

be

−
1
t

Σ

∂Σ

a. undeformed configuration

dP̃ = (T̃.ν̃)dl̃

ν̃

ñ

dl̃
x̃

b̃e

−
1

t̃
Σ̃

∂Σ̃

b̃e

−
1

t̃

ñ

b. deformed configuration

Figure 1: (a) Σ is any regular subsurface of the smooth orientable surface s associated with the

undeformed configuration and is bounded by an oriented smooth curve ∂Σ. be is the current body

force per unit undeformed area and −
1
t is the current force per unit undeformed area exerted by

the bulk. dP̃ is the actual force in the deformed configuration. dl is an oriented line element

at x along ∂Σ. ν is a unit vector lying in the plane tangent to Σ at the point x; (b) deformed

configuration and its associated field quantities b̃e, −
1

t̃, and dP̃ . In this configuration not only ν

but also dP̃ lies in the plane tangent to Σ̃ at the point x̃. The equilibrium of the surface stresses

with b̃e and −
1

t̃ acting on a surface element with unit outward normal n is demonstrated in the

magnified element on the right.

ric, then by employing the identity

(divsS) .n = divs
(
ST .n

)
− S : n

↼

∇s, (3.23)

and Eq. (3.20), it is deduced that

(divsS) .n = divs
(
ST .n

)
+ κ :

(
M+ C : E+ P .(u

↼

∇s).M
)
. (3.24)

With the aid of Eqs. (3.16), (3.17), and (3.20), it can be shown that

divs

(
M.(

⇀

∇su).n
)
+ κ : (P .S) = n.

(
1

t− be

)
. (3.25)

It may be emphasized that the surface Cauchy stress tensor, T̃ on any regular

subsurface, Σ̃ of s̃ associated with the deformed configuration is a tangential tensor
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and hence, as schematically illustrated in Fig. 1b, the force, dP̃ acting on the line

element dl̃ at x̃ along the smooth curve ∂Σ̃ of the deformed surface is tangent to

Σ̃ at x̃. The Piola-Kirchhoff surface stress tensor, S, however, is the surface stress

tensor such that (S.ν)dl = I(x̃).dP̃ = dP̃ = (T̃.ν̃)dl̃, where the unit outward

normals ν and ν̃ to the oriented line elements dl and dl̃, respectively, lie in the

tangent planes to Σ and Σ̃ at x and x̃. Thus, in general, the actual force dP̃ is

not necessarily tangent to the undeformed surface, Σ at the corresponding point x.

In the special case where associated to any point on every oriented curve in Σ, S.ν

is a vector tangent to the undeformed surface, Σ at that point, one may represent

S = I(x).T, where T is a tangential tensor. Thus, n.S = n.I(x).T = 0 since,

P .n = 0. Subsequently, the first term on the right hand side of Eq. (3.23) and the

first term on the left hand side of Eq. (3.25) vanish, regardless of the curvature of s.

Thus, under this condition and such a scenario, where the curvature tensor is zero,

n.

(
1

t− be

)
= 0; moreover, for free surfaces, be = 0 and so n.

1

t = 0.

Now, dyade both sides of Eq. (3.7) with an arbitrary vector v ∈ V and integrate

over the region B

∫
B

(divS)⊗ v = −
∫
B

bB ⊗ v. (3.26)

By employing the divergence theorem

∫
∂B

n.(S ⊗ v)−
∫
B

ST (∇⊗ v) = −
∫
B

bB ⊗ v. (3.27)

Assuming that v is the position vector, x and using ∇x = 1 then Eq. (3.27) reduces
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to ∫
∂B

n.S ⊗ x =

∫
B

ST −
∫
B

bB ⊗ x. (3.28)

Employing Eqs. (3.8a), (3.16), and (3.17), it is seen that∫
B

ST =

∫
∂B

(
divsS+L.

s
τ
)
⊗ x+

∫
B

bB ⊗ x+

∫
∂B

be ⊗ x. (3.29)

By using the identity∫
∂Σ

S.m⊗ x =

∫
Σ

((divsS)⊗ x+ S.∇sx) , (3.30)

for a regular closed surface ∂B, the first term on the right-hand side of Eq. (3.29)

may be written as ∫
∂B

(divsS)⊗ x = −
∫
∂B

S.P . (3.31)

In arriving at Eq. (3.31), the Eq. (2.4) has also been utilized. To simplify the second

term on the right hand side of Eq. (3.29), consider a second order tensor f and a

vector v ∈ V on an orientable surface Σ with unit outward normal n and boundary

∂Σ. Then∫
Σ

(
n 2.∇f − n∇.f

)
⊗ v =

∫
Σ

(
n 2.∇(f ⊗ v)− n∇.(f ⊗ v)

)
+

∫
Σ

nifjl
∂vm
∂xj

eielem −
∫
Σ

nifil
∂vm
∂xj

ejelem, (3.32)

where ei is the unit base vector. Employing the identity (2.6)∫
Σ

(
n 2.∇f − n∇.f

)
⊗ v =

∮
∂Σ

T× (f ⊗ v) +

∫
Σ

nifjl
∂vm
∂xj

eielem

−
∫
Σ

nifil
∂vm
∂xj

ejelem. (3.33)
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In the above relation, replacing f by nf leads to∫
Σ

(
n 2.∇(nf)− n∇.(nf)

)
⊗ v =

∮
∂Σ

T× (nf ⊗ v) +

∫
Σ

ninjfls
∂vm
∂xj

eielesem

−
∫
Σ

fls
∂vm
∂xj

ejelesem. (3.34)

After some manipulation, it can be shown that Eq. (3.34) may be written as∫
Σ

L.f ⊗ v =

∮
∂Σ

m.f ⊗ v +

∫
Σ

n.fn.∇v −
∫
Σ

fT .∇v. (3.35)

Substituting the tensor
s
τ and vector x in place of f and v, respectively, and con-

sidering the integration on the regular closed surface ∂B, it is inferred that∫
∂B

L.
s
τ ⊗ x = −

∫
∂B

(
s
τ
T
− n.

s
τn

)
. (3.36)

Finally, Substitution of (3.31) and (3.36) into (3.29) leads to the following relation

for the net surface stress on ∂B∫
∂B

S.P =

∫
∂B

(
n.

s
τn− s

τ
T
)
−

∫
B

ST +

∫
B

bB ⊗ x+

∫
∂B

be ⊗ x, (3.37)

where the right hand side involves not only
s
τ on ∂B, but also

1
τ ,

2
τ , and

3
τ within

B.

3.4. Energy considerations

According to Mindlin (1965), the bulk elastic strain energy of an isotropic, cen-

trosymmetric, and elastic material occupying the region, B corresponding to the

displacement field, u is

UB =
1

2

∫
B

(
1
τ : ∇u+

2
τ
...∇∇u+

3
τ :: ∇∇∇u

)
+

1

2
b0

∫
B

∇2∇.u. (3.38)
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In addition, due to the elastic model of Gurtin and Murdoch (1975), the elastic strain

energy of surface ∂B pertinent to the displacement field, u and surface strain, E is

U∂B =
1

2

∫
∂B

(
(C : E) : E+

(
(u

↼

∇s).M
)
: u

↼

∇s

)
. (3.39)

Theorem 3.1. Let u be a solution for a three-dimensional body B with boundary

∂B and unit outward normal vector n. Then, the total elastic energy is given by

UB + U∂B = −1

2

∫
∂B

M : E+
b0
2

∫
B

∇2∇.u+
1

2

∫
∂B

(
be.u+

2

t.Du+
3

t.D2u

)
+

1

2

∫
B

bB.u. (3.40)

Proof. By using divergence theorem, it is readily shown that

∫
∂B

n.S.u =

∫
B

∇u : S −
∫
B

bB.u. (3.41)

Next, by using Eq. (3.9a), after some manipulation, we obtain

∫
∂B

n.S.u =

∫
B

(
∇u :

1
τ +∇∇u

...
2
τ +∇∇∇u ::

3
τ

)
+

∫
∂B

∇u :
(
n.∇.

3
τ − n.

2
τ
)
−
∫
∂B

∇∇u
...
(
n.

3
τ
)
−
∫
B

bB.u, (3.42)

and employing (3.38)

∫
∂B

n.S.u = 2UB − b0

∫
B

∇2∇.u+

∫
∂B

∇u :
(
n.∇.

3
τ − n.

2
τ
)

−
∫
∂B

∇∇u
...
(
n.

3
τ
)
−
∫
B

bB.u. (3.43)

The gradient of the displacement vector is splitted into the surface gradient and

normal gradient and then the surface divergence theorem (2.8) for regular closed
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surface ∂B is utilized to get∫
∂B

∇u :
(
n.∇.

3
τ − n.

2
τ
)
= −

∫
∂B

L.
(
n.∇.

3
τ − n.

2
τ
)
.u

+

∫
∂B

n.
(
n.∇.

3
τ − n.

2
τ
)
.Du. (3.44)

In a similar manner∫
∂B

∇∇u
...
(
n.

3
τ
)
=

∫
∂B

L.
(
L.

(
n.

3
τ
))

.u−
∫
∂B

n.
(
L.

(
n.

3
τ
))

.Du

+

∫
∂B

(
nn :

3
τ
)
: D∇u. (3.45)

Noting that D∇u = I.∇sDu+nD2u− (∇n) .∇u and ∇n = I.∇sn, manipulation

of the last integral of Eq. (3.45) for closed regular surface ∂B results in∫
∂B

(
nn :

3
τ
)
: D∇u =

∫
∂B

(
−L.

(
nn :

3
τ
)
.Du+L.

(
(I.∇sn) .

(
nn :

3
τ
))

.u

+ nnn
...
3
τ .D2u

)
. (3.46)

Therefore, relation (3.43) can be written as∫
∂B

n.S.u = 2UB − b0

∫
B

∇2∇.u−
∫
∂B

(
−L.

s
τ .u+

2

t.Du+
3

t.D2u

)
−

∫
B

bB.u.

(3.47)

Moreover, employing Eqs. (3.8a), (3.17), and (3.16), it is deduced that for the closed

regular surface ∂B∫
∂B

n.S.u = −
∫
∂B

S : u
↼

∇s +

∫
∂B

L.
s
τ .u+

∫
∂B

be.u. (3.48)

After insertion of the expression for S from Eq. (3.20) into Eq. (3.48), the following

relation is obtained∫
∂B

n.S.u = −
∫
∂B

(
M : E+ (C : E) : E+

(
(u

↼

∇s).M
)
: u

↼

∇s

)
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+

∫
∂B

L.
s
τ .u+

∫
∂B

be.u, (3.49)

or equivalently

∫
∂B

n.S.u = −2U∂B −
∫
∂B

M : E+

∫
∂B

L.
s
τ .u+

∫
∂B

be.u. (3.50)

Comparison of Eqs. (3.47) and (3.50) completes the proof.

4. Film of infinite extension

In this section, utilizing the present theory, the exact analytical expressions for

the Piola-Kirchhoff surface stress tensor, tangential residual surface stress tensor,

surface elastic constants, and effective elastic constants associated with an infinitely

extended planar film of thickness, t are derived. Place the origin of the Cartesian

coordinates midway through the thickness of the film and choose the coordinate axes

in such a way that −∞ < x2, x3 < ∞ and |x1| ≤ t/2. For the time being, suppose

that the film is subjected to a combined uniform biaxial tension and uniform shear

stress, then the pertaining displacement field is of the form

u = (A1(x1), A2 x2 + A4 x3, A3 x3 + A4 x2) , (4.1)

where A2, A3, and A4 are constant. The corresponding expressions for
1
ϵ,

2
ϵ, and

3
ϵ are obtained from Eqs. (3.1). Subsequently, with due attention to Eqs. (3.13)

and (3.5), the expressions for
1
τ ,

2
τ , and

3
τ are derived. Finally, by consideration of

Eqs. (3.9a) and (3.7), the displacement formulation of the equilibrium is found. The

26

Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Surface elasticity revisited in the context of second strain gradient 
theory, Mechanics of Materials, Vol. 93, 2016, pp. 220-237, https://doi.org/10.1016/j.mechmat.2015.11.003.



generalized surface tractions,
1

t,
2

t, and
3

t given in Eqs. (3.8) may also be represented

in terms of the displacements. As noted earlier, for simplicity, only the second order

tangential surface strain tensor, E =
1

E is maintained. The Piola-Kirchhoff surface

stress tensor, S is calculated by virtue of Eqs. (3.2) and (3.20). For the considered

planar film, the unit outward normal vectors to the top and bottom surfaces of

the film are n = (±1, 0, 0) and hence, from the definition of the perpendicular

projection, P and Eq. (2.1), we have

P =

0 1 0

0 0 1

 , I =


0 0

1 0

0 1

 . (4.2)

Subsequently, the surface tangential strain tensor and Piola-Kirchhoff surface stress

tensor throughout either the top or bottom surfaces of the film are

E =

A2 A4

A4 A3

 , (4.3a)

S =


0 0

M22 + A2M22 + A4M32 M23 + A2M23 + A4M33

M32 + A4M22 + A3M32 M33 + A4M23 + A3M33



+


0 0

C2222A2 + C2233A3 + 2C2223A4 C2322A2 + 2C2323A4 + C2333A3

C2322A2 + 2C2323A4 + C2333A3 C2233A2 + 2C2333A4 + C3333A3

 , (4.3b)
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respectively, where M22, M23 = M32, and M33 are the components of the symmetric

residual tangential surface stress tensor merely due to the free surface effects of the

film. From Eq. (4.3b), it is observed that for the infinitely extended homogeneous

film with constant surface elastic moduli tensor and residual tangential surface stress

tensor throughout the film surfaces, the surface Piola-Kirchhoff stress tensor is con-

stant, and hence divsS = 0 which in turn, according to Eq. (3.16), results in bs = 0.

In the absence of surface body forces, bs and be, Eq. (3.17) leads to
1

t = 0 on the film

surfaces. Moreover, for the supposed displacement field for the infinitely extended

film divs

(
M.(

⇀

∇su).n
)
= 0, and hence, zero surface curvature tensor, κ = 0 for the

film surfaces satisfies Eq. (3.25). Assuming that the film surfaces are traction-free,

the generalized surface tractions
2

t and
3

t are equal to zero. By solving the equilibrium

equations (3.7) with bB = 0 and
1

t =
2

t =
3

t = 0, the following result is obtained

A1(x1) = − (A2 + A3)

(
λx1

λ+ 2µ
+
(
λℓ210 − c1

)
(C∗

1 sinh (x1/ℓ11) + C∗
2 sinh (x1/ℓ12))

)
+ u∗(x1), (4.4)

where

u∗(x1) = b0 (C
∗
1 sinh (x1/ℓ11) + C∗

2 sinh (x1/ℓ12)) , (4.5)
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is due to the surface effect solely. In the above relations

C∗
1 =

−ℓ211 (ℓ
2
10 + ℓ212) / sinh

t

2ℓ11

(λ+ 2µ)

(
ℓ11 (ℓ210 + ℓ212)

2
coth

t

2ℓ11
− ℓ12 (ℓ210 + ℓ211)

2
coth

t

2ℓ12

) , (4.6a)

C∗
2 =

ℓ212 (ℓ
2
10 + ℓ211) / sinh

t

2ℓ12

(λ+ 2µ)

(
ℓ11 (ℓ210 + ℓ212)

2
coth

t

2ℓ11
− ℓ12 (ℓ210 + ℓ211)

2
coth

t

2ℓ12

) , (4.6b)

and the surface characteristic length, ℓ10 is defined as

(λ+ 2µ) ℓ210 = c̄. (4.7)

The total elastic energy of the film per unit area of the film surface is calculated

from Eq. (3.40) as below

UB + U∂B = 2tµ

(
A2

4 +
(λ+ µ)(A2

2 + A2
3) + λA2A3

λ+ 2µ

)
− σ̄b0

2
(A2 + A3)

+ b0
(
b0 −

(
λℓ210 − c1

)
(A2 + A3)

)(C∗
1

ℓ211
sinh

t

2ℓ11
+

C∗
2

ℓ212
sinh

t

2ℓ12

)
. (4.8)

It is interesting to note that, in Eq. (4.4), except for the first term, all the

remaining terms stem solely due to the second strain gradient theory. Thus, the

solution of this problem in the context of surface elasticity presented by Gurtin

and Murdoch (1975) is readily obtained from the above-mentioned solution if one

ignores the terms containing Mindlin’s additional elastic constants and characteristic

lengths

u =

(
−λ(A2 + A3)x1

λ+ 2µ
, A2x2 + A4x3, A3x3 + A4x2

)
. (4.9)
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This displacement field results in the following uniform stresses within the film

τ22 =
4µ(µ+ λ)A2 + 2λµA3

λ+ 2µ
, (4.10a)

τ33 =
4µ(µ+ λ)A3 + 2λµA2

λ+ 2µ
, (4.10b)

τ23 = τ32 = 2µA4, (4.10c)

which clearly correspond to
1
τ .

For the special case where the in-plane loadings are absent, A2 = A3 = A4 = 0.

Consequently, Eq. (4.1) reduces to u = (u∗(x1), 0, 0), and the surface tangential

strain tensor, E ≡ 0. For thin films, the scenario where the surface effect is the

only root cause of the displacement field u = (u∗(x1), 0, 0) has been discussed

by Ojaghnezhad and Shodja (2013) in the mathematical framework of Mindlin’s

second strain gradient elasticity. This nontrivial solution is due to the consideration

of the modulus of cohesion, b0 in the second strain gradient theory. In this case, the

only non-zero component of the strain tensor is

ϵ∗11 = b0

(
C∗

1

ℓ11
cosh

x1

ℓ11
+

C∗
2

ℓ12
cosh

x1

ℓ12

)
. (4.11)

Clearly, if b0 = 0, then only trivial solution prevails since according to Eqs. (4.5)

and (4.11), both u∗(x1) and ϵ∗11 vanish. It should be emphasized that for the consid-

ered film, both Gurtin and Murdoch (1975)’s surface elasticity and Mindlin’s first

strain gradient elasticity lead to the trivial solution when the in-plane loadings are

absent.
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4.1. Residual surface stress tensor and surface elastic constants in the mathematical

framework of second strain gradient theory

As it was alluded to, the mathematical framework of Gurtin and Murdoch (1975)

surface elasticity gives rise to residual surface stress tensor and surface elastic con-

stants. The relation between these surface parameters and Mindlin’s additional

constants in second strain gradient elasticity pertinent to the film under considera-

tion is of particular interest. By using the displacement field (4.1), the generalized

strain and stress tensors are calculated via Eqs. (3.1) and (3.5), respectively. Sub-

sequently,
s
τ is obtained from Eq. (3.9b). It is observed that for the considered

displacement field, the nonzero components of
s
τ on x1 = ±t/2 are

s
τ 11 and

s
τ 22 =

s
τ 33

which are constant within the top and bottom surfaces. To simulate the infinitely

extended film under uniform in-plane loadings, it is assumed that on the film sur-

faces with unit normal vectors (0, ±1, 0) and (0, 0, ±1) at infinity, the surface body

force be = n.τ is applied, where τ is obtained from Eqs. (4.10). Noting that S is

constant within the film surfaces, x1 = ±t/2, by employing the relation (3.37) one

may obtain the nonzero components of the surface stress tensor as below

S22 = S33 = σ̄
[
b0 − (A2 + A3)

(
λℓ210 − c1

)]
, (4.12a)

S23 = S32 = 0, (4.12b)

where

σ̄ =
(c1 − λℓ210) (ℓ

2
12 − ℓ211) / (λ+ 2µ)

ℓ11 (ℓ210 + ℓ212)
2
coth

t

2ℓ11
− ℓ12 (ℓ210 + ℓ211)

2
coth

t

2ℓ12

. (4.13)
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With due attention to Eq. (4.3b) and Eqs. (4.12) and assuming an arbitrary choice

of constants A2, A3, and A4, the components of the residual surface stress tensor,

M and surface elastic constants, C are obtained as

M22 = M33 = b0σ̄, (4.14a)

M23 = M32 = 0, (4.14b)

and

C2222 = C3333 = −σ̄
(
b0 + λℓ210 − c1

)
, (4.15a)

C2233 = −σ̄
(
λℓ210 − c1

)
, (4.15b)

C2323 = −b0σ̄

2
, (4.15c)

C2322 = C2333 = 0, (4.15d)

respectively. As noted by Mindlin (1965), the modulus of cohesion, b0 which is the

coefficient of the term linear in
3
ϵ in the expression (3.13) for the strain energy density

gives rise to self-equilibrating components of cohesive force, and has dimension of

force. In the context of the present formulation, as it is seen from Eq. (4.14a),

modulus of cohesion is related to the normal components of the residual surface stress

tensor (surface tension). For a detailed discussion on the physical interpretation and

the origin of surface tension as well as the source of confusion between the notions of

surface tension and surface energy, the reader may refer to the work of Shuttleworth

(1950). An important note emphasized by Shuttleworth (1950) is that, although

surface tension and surface energy have the same dimension, they are physically
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different entities. These parameters become equivalent in the special case of one-

component liquids.

From Eqs. (4.15), it is observed that the requirement for isotropic surfaces,

C2323 = (C2222 − C2233) /2 is satisfied. In view of Eqs. (3.21), (4.14), and (4.15),

it is deduced that for isotropic surfaces

σ0 = b0σ̄, (4.16a)

λ0 = C2233, (4.16b)

µ0 = C2323, (4.16c)

and hence, C2222 = C3333 = λ0 + 2µ0. It should also be noted that the residual

surface stress tensor, M takes the form of isotropic surface tension. Moreover, since

σ̄ depends on the film thickness, then both the residual surface stress and surface

elastic constants depend on the film thickness. However, if the thickness is large

in comparison to the characteristic lengths ℓ11 and ℓ12, then the expression for σ̄

reduces to the following form

σ̄ =
(c1 − λℓ210) (ℓ

2
12 − ℓ211) / (λ+ 2µ)

ℓ11 (ℓ210 + ℓ212)
2 − ℓ12 (ℓ210 + ℓ211)

2 , (4.17)

which no longer varies with the film thickness.

4.2. The overall elastic constants

In this section, an estimation for the overall elastic constants of the film including

the surface effect is pursued. As it was alluded to, even in the absence of external
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loadings, a nontrivial solution within the film exists merely due to the surface effect.

This effect gives rise to the change in the film thickness, ∆t according to the following

relation

∆t =
2b0ℓ

2
10 (ℓ

2
12 − ℓ211)

(λ+ 2µ)

(
ℓ11 (ℓ210 + ℓ212)

2
coth

t

2ℓ11
− (ℓ210 + ℓ211)

2
ℓ12 coth

t

2ℓ12

) . (4.18)

Therefore, the average longitudinal strain in the direction of x1 over the film thick-

ness stemming from the surface effect measures as ϵ̄ ∗11 = ∆t/t. Moreover, the result-

ing average residual stresses along the film thickness are

τ̄ ∗22 = τ̄ ∗33 =
λℓ210 − c1

ℓ210

∆t

t
. (4.19)

To estimate the effective elastic constants Ceff
1111 and Ceff

2211, we first allow the film to

relax and reach its equilibrium deformed shape under the surface effect. Then, an

additional external uniform uniaxial strain loading, A1 is applied. Therefore, the

total average uniaxial strain is

ϵ̄11 = A1 (1 + ϵ̄ ∗11) . (4.20)

The resulting average stress components in the directions x1 and x2 obtained from

classical effective constitutive law are made equivalent to the average of those ob-

tained from second strain gradient theory as below

Ceff
1111ϵ̄11 = A1(λ+ 2µ), (4.21a)

Ceff
2211ϵ̄11 = A1

(
λ+

λℓ210 − c1
ℓ210

∆t

t

)
, (4.21b)
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which lead to

Ceff
1111 =

λ+ 2µ

1 + ∆t/t
, (4.22a)

Ceff
2211 = Ceff

3311 = λ− c1
ℓ210

∆t/t

1 + ∆t/t
. (4.22b)

It is noteworthy to mention that for large enough thicknesses of the film coth
t

2ℓ11
→

1 and coth
t

2ℓ12
→ 1 and hence according to Eqs. (4.18) and (4.22), Ceff

1111 → λ+ 2µ

and Ceff
2211 → λ. Note that due to the symmetry Ceff

3311 = Ceff
2211. However, as it will

be shown shortly, Ceff
1122 ̸= Ceff

2211 for small thicknesses of the film. To determine Ceff
2222

and Ceff
1122, the displacement field (4.1) with A3 = A4 = 0 is applied to the film. For

this type of loading, the averages of the nonzero normal strains are as below

ϵ̄11 = − λA2

λ+ 2µ
− A2

λℓ210 − c1
b0

∆t

t
+ ϵ̄ ∗11, (4.23a)

ϵ̄22 = A2. (4.23b)

The equivalency between the components of the stresses obtained from the effective

constitutive relation and second strain gradient theory yield

Ceff
1122ϵ̄22 + Ceff

1111 (ϵ̄11 − ϵ̄ ∗11) = 0, (4.24a)

Ceff
2222ϵ̄22 + Ceff

2211 (ϵ̄11 − ϵ̄ ∗11) =
4µ(λ+ µ)A2

λ+ 2µ
− (λℓ210 − c1)

2

b0ℓ210

∆t

t
A2, (4.24b)

resulting in

Ceff
1122 =

λ

1 + ∆tf/t
+ (λ+ 2µ)

λℓ210 − c1
b0

∆t/t

1 + ∆t/t
, (4.25a)

Ceff
2222 = λ+ 2µ+

c1
ℓ210

(
λℓ210 − c1

b0
− λ

λ+ 2µ

)
∆t/t

1 + ∆t/t
. (4.25b)
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From Eqs. (4.22b) and (4.25a) it is seen that Ceff
1122 ̸= Ceff

2211 - a manifestation of

surface effect which clearly becomes important for small thicknesses. It is readily

observed that for large enough thickness of the film, Ceff
1122 → λ and Ceff

2222 → λ+2µ.

Moreover, Ceff
1133 = Ceff

1122 and Ceff
3333 = Ceff

2222 in view of the symmetry considerations.

To derive the expression for Ceff
2233, the displacement field (4.1) with A4 = 0 is

employed. Following a similar procedure as explained above, it is obtained that

Ceff
2233 = Ceff

3322 = λ+
c1
ℓ210

(
λℓ210 − c1

b0
− λ

λ+ 2µ

)
∆t/t

1 + ∆t/t
. (4.26)

4.3. Calculation of surface characteristic length and modulus of cohesion

As noted in Section 3.4 on energy considerations, the general expression for the

total elastic strain energy via surface elasticity reformulated in the context of second

strain gradient theory is given by (3.40); it should be noted that in the absence of

any external loadings it reduces to

UB + U∂B = −1

2

∫
∂B

M : E+
b0
2

∫
B

∇2∇.u, (4.27)

which inherits the physical interpretations given in the works of both Gurtin and

Murdoch (1975) and Mindlin (1965). In the above relation, the first and second

terms stem from the presence of surface strain tensor, E and the modulus of cohesion,

b0, respectively. In general, the first term which is due to surface elasticity theory

survives only if the projection of u
↼

∇s on the surface and subsequently, the surface

strain tensor, E given by Eq. (3.2) is nonzero. On the other hand, the second

term has entered the formulation from consideration of the second strain gradient
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theory and, in general, is nonzero due to the modulus of cohesion. Mindlin (1965)

considered a free-standing half-space and obtained an expression for the surface

energy in terms of modulus of cohesion. Recently, Ojaghnezhad and Shodja (2013)

expressed the surface energy in terms of modulus of cohesion by analyzing a free-

standing thin films; they calculated the involved second strain gradient characteristic

lengths with the aids of first principles calculations. In the current work, the surface

energy for the free-standing film can be obtained by setting A2 = A3 = A4 = 0 in

Eq. (4.8); under this condition, the surface strain tensor is identically equal to zero,

and so the surface energy, γ in the context of second strain gradient is related to

modulus of cohesion as

γ = b20

(
C∗

1

ℓ211
sinh

t

2ℓ11
+

C∗
2

ℓ212
sinh

t

2ℓ12

)
. (4.28)

Moreover, for the free-standing film, the surface stress tensor given by Eqs. (4.12)

represents the surface residual stresses (surface tension) as given by Eqs. (4.14).

The available experimental works on the surface energy and residual surface stresses

have not examined the effect of the film thickness on these parameters. Utilization

of the available experimental values of these parameters and neglecting the effect

of film thickness, Eqs. (4.14a) and (4.28) lead to two equations for c1, b0, ℓ10, ℓ11,

ℓ12, λ, and µ. But, the bulk characteristic lengths, ℓ11 and ℓ12 as well as Lamé

constants, λ and µ are calculated based on some formulations derived from the

atomistic consideration; the details of the formulations and discussion are given

in the next section. Subsequently, their numerical values are obtained via ab initio
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calculations in Section 6. Thus, by employing the approximation c1 = (λ+2µ)ℓ210/3,

Eqs. (4.14a) and (4.28) boil down to two equations for modulus of cohesion, b0

and surface characteristic length, ℓ10. It is noteworthy to mention that the surface

parameter, ℓ10 and modulus of cohesion, b0 are influenced by the internal length

scales of the crystalline material. Moreover, the distinction between the surface

tension and surface energy, as emphasized by Shuttleworth (1950), is clearly observed

from Eqs. (4.14a) and (4.28).

5. First principles calculations of Lamé constants and bulk characteristic

lengths

In this section, for centrosymmetric crystals, an atomistic consideration is pre-

sented to link the pertinent Lamé constants and bulk characteristic lengths, ℓ11,

ℓ12, ℓ21, and ℓ22 with the atomic force constants as defined in the context of lat-

tice dynamics. Employing these relations and the atomic force constants obtained

from ab initio calculations, one would be able to evaluate Lamé constants and bulk

characteristic lengths of the crystal.

5.1. Atomistic consideration

Let x denote the position of an arbitrary primitive unit cell within the bulk of

a centrosymmetric crystal with perfect lattice of infinite extension in space. Fur-

thermore, suppose that the distance between the mentioned primitive unit cell and

the αth-unit cell is indicated as Rα. If K
α
ij is the atomic force constant between the
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unit cells which are located at x and x+Rα and, moreover, v is the volume of the

primitive unit cell, then for any perturbation of the atomic arrangement from the

equilibrium, the potential energy density function pertinent to the unit cell at x to

within a harmonic approximation may be expressed as

Φ(x) = − 1

4v

∑
α

Kα
ij (ui(x+Rα)− ui(x)) (uj(x+Rα)− uj(x)) , (5.1)

The above relation was arrived based on the assumption that the unit cells consist

of one atom, and so the summation over α represents the total potential energy at

x, accounting for the interactions between the atom located at x with every atom

α located at x+Rα, α = 1, 2, . . .. If the primitive unit cell of the crystal contains

more than one atom, then the potential energy density of the unit cell is obtained

by addition of the potential densities of all the atoms included in the unit cell.

Let u̇(x) denote the velocity of the primitive unit cell at x, and for simplicity

assume to have one atom per unit cell. For a system occupying the entire three

dimensional space and with a continuously distributed unit cells, the total potential

energy and kinetic energy of the system, respectively, may be written as

W =

∫ ∞

−∞
Φ(x), (5.2a)

K =
1

2

∫ ∞

−∞
ρu̇iu̇i, (5.2b)

in which ρ is the ratio of the mass of the atom in one primitive unit cell to its

volume. By Taylor expansion of u(x+Rα) about x, one can write

ui(x+Rα)− ui(x) =
∂ui

∂xp

∣∣∣∣
Rα=0

Rαp +
1

2

∂2ui

∂xp∂xq

∣∣∣∣
Rα=0

RαpRαq
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+
1

6

∂3ui

∂xp∂xq∂xr

∣∣∣∣
Rα=0

RαpRαqRαr + . . . . (5.3)

By substituting Eq. (5.3) into Eq. (5.1) and employing the Hamilton’s principle∫ t1
t0

δ(W − K)dt = 0, the equations of motion for centrosymmetric crystals are

obtained as

ρüi = C̃ijmnuj,mn + C̃ijmnpquj,mnpq + C̃ijmnpqrsuj,mnpqrs + . . . , (5.4)

where “,” in the subscript denotes differentiation with respect to x; for example,

uj,mn(x) = ∂2uj(x)/ (∂xm∂xn). The coefficients C̃ appearing in the above relation

depend on the atomic force constants and the equilibrium positions of the atoms as

follows

C̃ijmn = − 1

2v

∑
α

Kα
ijRαmRαn , (5.5a)

C̃ijmnpq = − 1

24v

∑
α

Kα
ijRαmRαnRαpRαq , (5.5b)

C̃ijmnpqrs = − 1

72v

∑
α

Kα
ijRαmRαnRαpRαqRαrRαs . (5.5c)

The atomic force constants, Kα
ij are equivalent to the components of the Hessian

matrix which are in turn equal to the value of the second derivative of the total

potential energy with respect to the corresponding atomic positions at the equilib-

rium. The Hessian matrix is obtained by first principles density functional theory

(DFT), and subsequently, the fourth, sixth, and eighth order constants given by

relations (5.5) are evaluated. In the next section, the fourth and the higher order

tensors pertinent to the second strain gradient elasticity will be related to the tensors
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C̃.

5.2. Relations of bulk characteristic lengths and Lamé constants to C̃

As it was alluded to, formulation of surface elasticity in the context of second

strain gradient theory and subsequent consideration of the film problem lead to sev-

eral physical expressions relating the surface parameters, namely, surface stresses,

surface energy, and surface elastic constants to second strain gradient parameters,

namely, surface and bulk characteristic lengths in addition to the usual Lamé con-

stants of the crystalline material. For an accurate determination of ℓ11, ℓ12, λ, and

µ which are among the core parameters for the calculations of the above-mentioned

physical entities, one should account for the electronic structure of the crystal. This

can be achieved by relating the internal length-scales as well as Lamé constants to

the tensors C̃, calculated using first principles DFT as explained in the previous

section. To this end, consider the most general form of the strain energy density

function for centrosymmetric materials in the context of second strain gradient elas-

ticity as

U0 =
1

2
Cijklϵijϵkl + Fijklmnϵijϵklmn +

1

2
Gijklmnϵijkϵlmn +

1

2
Iijklmnpqϵijklϵmnpq

+B◦
ijklϵijkl. (5.6)

With the aids of Eqs. (3.1), (3.5), (3.7), (3.9a), and (5.6), and in the absence of body

forces, one can obtain the equations of motion as below

ρüi = Cijkluk,lj + (Fpqjkli + Fliqjkp −Gklijqp)up,qjkl + Ijklimnrsus,mnrjkl. (5.7)
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From comparison of Eqs. (5.4) and (5.7), the following general relations are obtained

Cimjn = C̃ijmn + C̃mjin − C̃mijn, (5.8a)

C̃ijklmn =
1

4

(
Fjkmnli + Fjlmnki + Fjmknli + Fjnmkli + Flikmnj + Fkilmnj + Fmiklnj

+ Fnikmlj

)
− 1

6

(
Gnlimkj +Gnkimlj +Gklimnj +Gnmilkj +Gmlinkj

+Gmkinlj

)
, (5.8b)

C̃ijklmnpq =
1

20

(
Iqklimnpj + Iqmliknpj + Iqnlimkpj + Iqplimnkj + Iqkmilnpj + Iqknimlpj

+ Iqkpimnlj + Imkliqnpj + Inklimqpj + Ipklimnqj + Iqmniklpj + Iqmpiklnj

+ Iqnpimklj + Imkniqlpj + Imkpiqnlj + Inkpimqlj + Imnliqkpj + Impliqnkj

+ Inplimqkj + Imnpiqklj

)
. (5.8c)

With the aids of comparison of Eqs. (3.13), (5.6), and (5.8), a set of equations for

ā − 2c̄, ā′ − c3, b̄, b̄
′, λ, and µ, pertinent to isotropic materials, in terms of the

components of the tensors C̃ is obtained. Subsequently, the bulk characteristic

lengths are readily available via Eqs. (3.14).

6. Numerical values for Lamé constants, bulk and surface characteristic

lengths, modulus of cohesion, and surface and effective elastic con-

stants of Ag, Au, and Pt

The evaluation of the surface characteristic length, ℓ10 and modulus of cohesion,

b0 for solids is at the stake of the availability of the experimental values of their
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Figure 2: Residual surface stress, M22 = M33 in units of eV/Å2 versus the film thickness in units

of Å.

corresponding surface residual stress M and surface energy, γ. For this reason, the

properties of interest associate with the fcc crystals, Ag, Au, and Pt are studied

in this section. In particular, Lamé constants, bulk characteristic lengths, surface

characteristic length, and modulus of cohesion of these elements are obtained via

first principles DFT in conjunction with second strain gradient theory. Then, for Ag,

Au, and Pt films, one can go on to evaluate the surface elastic constants as well as

the components of the effective elastic moduli tensor according to the formulations

given in Sections 4.1 and 4.2, respectively.

The employed ab initio calculations are based on DFT (Hohenberg and Kohn,

1964; Kohn and Sham, 1965) incorporated in Vienna ab initio simulation package

(VASP) (Kresse and Hafner, 1993, 1994a; Kresse and Furthmller, 1996a,b). This

package employs the plane-wave basis set with ultrasoft pseudopotentials (Kresse

and Hafner, 1994b). In all the calculations performed in this study, the kinetic

energy cutoff is considered to be equal to 300 eV and the Brillouin zone is meshed

according to Monkhorst-Pack method (Monkhorst and Pack , 1976). The exchange-

correlation energy is estimated using the generalized gradient approximation (GGA)
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Figure 3: Surface energy, γ in units of eV/Å2 versus the film thickness in units of Å.

through the Perdew-Burke-Ernzerhof (PBE) potential revised for solids (Perdew et

al., 2008).

Based on the approach presented in Section 5 and the ab initio calculations, the

values of Lamé constants in units of eV/Å3 and bulk characteristic lengths in units

of Å for Ag, Au, and Pt are calculated and summarized in Table 1. The values of

Lamé constants calculated in the present work are in reasonable agreement with the

pertinent experimental results (Freund and Suresh, 2003) which are given within

the parentheses in Table 1.

According to the discussion in Section 4.3, by exploiting the experimental values

for surface energy and residual surface stress tensor available in the literature, one

can calculate the surface characteristic length, ℓ10 and modulus of cohesion, b0.
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Table 1: Lamé constants in units of eV/Å3 and bulk characteristic lengths in units of Å for Ag,

Au, and Pt. The values for Lamé constants calculated in the present work are compared with

the available experimental results at room temperature, given in parenthesis (Freund and Suresh,

2003).

element λ (eV/Å3) µ (eV/Å3) ℓ11 (Å) ℓ12 (Å) ℓ21 (Å) ℓ22 (Å)

Ag 0.56 (0.58) 0.24 (0.29) 0.91+1.03i 0.91-1.03i 1.37+1.66i 1.37-1.66i

Au 1.08 (1.02) 0.26 (0.26) 0.56+0.63i 0.56-0.63i 0.69+0.69i 0.69-0.69i

Pt 1.55 (1.56) 0.60 (0.48) 0.81+0.91i 0.81-0.91i 1.44+1.45i 1.44-1.45i

Employing the experimental values for surface residual stress of Ag, Au, and Pt

reported by Wassermann and Vermaak (1970), Mays et al. (1968), and Wassermann

and Vermaak (1972), respectively, and the values of surface energy of these elements

given by Tyson and Miller (1977), the modulus of cohesion and surface characteristic

length of these elements are evaluated and summarized in Table 2.
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Figure 4: The normalized change of the film thickness,
∆t

t
versus the film thickness in units of Å.

Once the bulk material properties, λ, µ, ℓ11, ℓ12, the additional parameter, c1,

surface characteristic length, ℓ10, and modulus of cohesion, b0 are evaluated, the

variation of residual surface stress, M22 = M33, surface energy, γ, and the normal-

ized change in film thickness,
∆t

t
with the film thickness is obtained. Each of the

Figs. 2, 3, and 4 displays the variation of, respectively, M22 = M33, γ, and
∆t

t

with thickness for three different elements of Ag, Au, and Pt. It is seen that for

Table 2: Surface energy and surface residual stress in units of eV/Å2, surface characteristic length

in units of Å, and modulus of cohesion in units of eV/Å for Ag, Au, and Pt.

element surface energy (eV/Å2) surface stress (eV/Å2) ℓ10 (Å) b0 (eV/Å)

Ag 0.082 0.088 2.16i -1.87

Au 0.096 0.073 0.259+0.420i -0.157+0.314i

Pt 0.155 0.160 0.271+0.936i -0.984+0.622i
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Figure 5: Surface relaxation delineated by strain component, ϵ∗11 versus normalized coordinate

x1/a0 for (a) Ag, (b) Au, and (c) Pt; film thickness is assumed to be 6a0. The available values of the

average strain computed via tight-binding scheme (Rosato et al., 1989) as well as the experimental

data measured via high-energy ion scattering (Kuk and Feldman, 1984) are plotted for comparison.

these crystals the maximum value of the residual stress, M22 = M33 occurs for the

film thickness of about 4 Å. For thicknesses beyond about 8 Å, the variations as-

sociated with Ag, Au, and Pt, respectively, reach their corresponding experimental

plateaus of 0.088, 0.073, and 0.160 in units of eV/Å2; the experimental values are

due to Wassermann and Vermaak (1970), Mays et al. (1968), and Wassermann and

Vermaak (1972), respectively. Furthermore, Surface energy associated to each ele-

ment Ag, Au, and Pt is also calculated using the package LAMMPS with embedded

atom potentials and depicted in Fig. 3. It is noteworthy to mention that due to the

fact that the bulk characteristic lengths are complex numbers (Table 1), the varia-
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Figure 6: The normalized inter-layer relaxation (a) ∆12, (b) ∆23, (c) ∆34, and (d) ∆45 with respect

to the inter-layer distance in percent versus the normalized film thickness t/a0.

tions of the surface residual stress, surface energy, and change in film thickness are

oscillatory which damp rapidly as the film thickness increases. Rosato et al. (1989)

who employed a simple TB model have reported oscillatory relaxation of surfaces for

fcc transition metals; they found satisfactory agreement between their theoretical

results and those of the available laboratory experiments. Rosato et al. (1989) have

compared the data from their simulations with the available experimental results in

Table 3 of their paper. From this table it is evident that the oscillatory relaxation of

surfaces, in all the reported cases, incur with the contraction of the first inter-layer

followed by dilation of the second inter-layer and so on. The amplitude of the abso-

lute value of the contraction in the first inter-layer is the largest and decreases with

distance from the surface. The trend of their data reveals that the ratio of the net
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change of the inter-layer thicknesses to the total thickness of the film decays with in-

creasing number of atomic inter-layers within the film. To the end of comparison of

the results obtained from the present theory with the computational and experimen-

tal results, the variation of ϵ∗11 through the depth of the film is plotted against the

normalized coordinate x1/a0 for a film of thickness t = 6a0 in Figs. 5(a)-(c) for Ag,

Au, and Pt, respectively. The presented experimental results for Ag were obtained

by Kuk and Feldman (1984) employing the high-energy ion scattering. It is observed

that the results of the present continuum theory are in reasonable agreement with

the available computational and experimental data. Moreover, using the current

theoretical approach, one can determine the inter-layer relaxations as a function of

film thickness, as shown in Figs. 6(a)-(d). In these figures, ∆ij is the normalized

relaxation between the atomic layers i and j with respect to the inter-layer distance

given in percentage. In these plots, the inter-layer distances are assumed equal to

the average value of about 0.5a0.

As explained in Section 4, the top and bottom surfaces of an infinitely extended

planar film, after relaxation, remain flat and their pertinent curvature tensors are

zero. Figs. 7(a) and (b) compare the deformed configurations for Ag films of three-

atomic-layer thick of infinite extent and finite extent obtained by employing the

package LAMMPS; there are no external loadings and the observed deformations

are solely due to the surface effects. It is observed that in contrast to the film of finite

extent, the infinitely extended film has no curvature on its surfaces. From Fig. 7(b),
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(a) (b)

Figure 7: Modeling of (a) infinite and (b) finite extent Ag films consisting of three-atomic-layers

via LAMMPS.

it is evident that associated with the Ag film of finite extent there is a mild gradation

of curvature from the center of the top surface towards the edges. Another important

parameter in the context of the present work is the surface elastic constants given

according to Eqs. (4.15). Figs. 8(a), (b), and (c) show, respectively, the variations

of the components of the surface elastic constants, C2222, C2233, and C2323 in units

of eV/Å2 with the thickness of the films in units of Å; three different variations

pertinent to Ag, Au, and Pt films are displayed in each figure. The absolute values

of these surface parameters attain their maximum for the film thickness of about 4

Å. As t becomes large, the surface parameters approach the values they have when

the two surfaces of the film are far apart and don’t interact.

In continue, by employing the discussions of Section (4.2), one can determine

the components of the effective elastic constants of the film in terms of its thick-

ness. Each of the Figs. 9(a)-(e) provides the indicated normalized component of the

effective elastic moduli for Ag, Au, and Pt films.

As mentioned previously, since the bulk characteristic lengths are complex num-

bers (Table 1), the variations of the surface elastic constants and effective elastic

constants of the film are oscillatory which damp rapidly as the film thickness in-

creases. As it is observed from Figs. 8 and 9, for ultra-thin films with small enough

thicknesses the size dependent character of surface elastic parameters as well as
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t (Å)
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Figure 8: The components of surface elastic constants, (a) C2222, (b) C2233, and (c) C2323 in units

of eV/Å2 versus the thickness of the film in units of Å.
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Figure 9: (a)-(e) The components of the normalized effective elastic constants, Ceff versus the

thickness of the film in units of Å for Ag, Au, and Pt.

effective elastic constants is captured.
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7. Conclusion

Second strain gradient theory was given by Mindlin (1965) mainly in an effort to

account for the surface effects which could not be detected via Mindlin’s first strain

gradient theory. Gurtin and Murdoch (1975) who developed surface elasticity the-

ory account for the surface effect from a completely different viewpoint. In surface

elasticity where consideration of the equilibrium conditions for the bulk and surface

gives rise to two sets of equations - one set of equations for the bulk material and an-

other set for its complementary surface material - three surface parameters, namely,

tangential surface strain tensor, surface stress tensor, and surface elastic modulus

tensor reveal. On the other hand, the mathematical framework of second strain

gradient theory gives rise to a surface characteristic length as well as modulus of

cohesion; Mindlin (1965) and Ojaghnezhad and Shodja (2013) showed that modulus

of cohesion is expressible in terms of surface energy, surface and bulk characteristic

lengths, and Lamé constants. The determination of all the above-mentioned param-

eters has posed serious challenges, both experimentally and theoretically. Moreover,

a valid concern is whether there are some physically sensible relationships between

the hereditary parameters of these two frameworks, which were both primarily pro-

posed to capture the surface effect. To fulfill this concern, the present work revisits

surface elasticity in the context of second strain gradient theory. The reformulations

in the new framework lead to two new key equations; one for the net surface stress

on the boundary which is instrumental in relating the surface parameters in surface
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elasticity to the Mindlin’s gradient theory parameters, and another for the total

elastic energy which aids finding an expression for the surface energy. In continue,

an estimate for the effective elastic constants is presented. Furthermore, the current

work provides a theoretical remedy for the calculations of Lamé constants, surface

and bulk characteristic lengths, modulus of cohesion, surface elastic constants, and

effective elastic constants. First principles DFT is used to calculate Lamé constants

and bulk characteristic lengths of crystalline solids. Having the values of Lamé con-

stants and bulk characteristic lengths, then by exploiting the experimental values

for surface energy and surface residual stress tensor available in the literature, one

can evaluate the surface characteristic length and modulus of cohesion using the

pertinent closed-form expressions derived in this article. In continue, the compo-

nents of surface elastic modulus tensor and effective elastic constants of thin film

are computed for different thicknesses of films made of fcc crystals, Ag, Au, and Pt.
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