Synthesizing Theory and Observation to Understand Galactic Magnetic Fields

> Luke Chamandy University of Rochester, USA

Anvar Shukurov, Luiz Rodrigues, Nishant Singh, Eric Blackman, Russ Taylor, Kandaswamy Subramanian, Rainer Beck, Ed Elson, Hongzhe Zhou

UNIVERSITY of the

WESTERN CAPE

Yunivesithi to

New Perspectives on Galactic Magnetism 10 June, 2019

Max-Planck-Institut für Radioastronomie

Outline

- Mean-field dynamo models
- Some successes of models vis-à-vis observations
- Constraining dynamo input parameters
- Interplay of small-scale and large-scale dynamos: magnetic R\u00e4dler effect
- Caveats in comparing observation and theory

2.5D vs 1.5D saturated solution

Chamandy 2016

2.5D vs analytic saturated solution

Pitch angle of large-scale field

Chamandy, Shukurov & Taylor 2016

Cosmological evolution

Rodrigues, Chamandy, Shukurov, Baugh & Taylor 2019

Magnetic arms

- Depends on nature of spiral structure & evolution
- Need to nonaxisymmetrically force the dynamo—but how?
 - spirally modulate U_z ?
 - model spiral streaming motions, which affect U_r and U_{ϕ} ?
 - spirally modulate *u*? (Moss+2015)

NGC 6946

Beck, Chamandy, Elson & Blackman 2019 (to be submitted to Galaxies)

M51 (NGC 5194)

Beck, Chamandy, Elson & Blackman 2019 (to be submitted to Galaxies)

M74 (NGC 628)

Beck, Chamandy, Elson & Blackman 2019 (to be submitted to Galaxies)

Constraining arm-interarm velocity dispersion

- No evidence for arm-interarm contrast of velocity dispersion in NGC 6946, M51 or M74: difficult to reconcile a difference of >20%.
- Using SFR or HI surface densities to define arms does not yield very different results
- But analysis could still be improved:
 - Separating out thermal component of line broadening
 - Separating "regular" component of HI from "anomolous" component, e.g. by fitting more than one Gaussian to line profile
 - Better definition of arm/interarm regions (e.g. using wavelet analysis)

ISM turbulence parameters

Want dynamo parameters u, τ , l, as functions of "observables":

	Symbol	Unit	Range	Fiducial
Ambient sound speed	$c_{ m s}$	${\rm kms^{-1}}$	10-20	10
Ambient gas number density	n	cm^{-3}	0.1 - 1	0.1
Disk scale height	H	kpc	0.2 - 1	0.4
Fraction of SNe clustered into OB associations	$f_{\rm SB}$	—	0.5 – 0.75	0.75
SN frequency per unit volume	ν	$\rm kpc^{-3}Myr^{-1}$	50 - 100	50
Number of SNe residing in a SB	$N_{\rm SB}$	—	$10^2 - 10^3$	10^{2}
Fraction of the SB energy that is kinetic energy	η	—	0.05 – 0.1	0.1
Initial SN energy	$E_{\rm SN}$	erg	$10^{50} - 10^{51}$	10^{51}

Estimate of <i>l</i>	Estimate of <i>u</i>	Estimate of $ au$	
$l_{\rm SN} \approx R_{\rm SN}(t_{\rm s}^{\rm SN}) = 142 {\rm pc} E_{51}^{16/51} n_{0.1}^{-19/51} c_{10}^{-1/3}$	$\dot{\varepsilon}^{i} = \frac{2\pi}{3} \rho_0 c_{s}^2 \nu \left[(1 - f_{SB}) l_{SN}^3 + \frac{f_{SB}}{N_{SB}} l_{SB}^3 \right]$	$ au^{\mathrm{e}} = l/u$	
$l_{\rm SB} = \min\left[R_{\rm SB}(t_{\rm s}^{\rm SB}), \xi H\right]$	$\dot{\varepsilon}^{\rm d} = \frac{\rho_0 u^2}{\tau^{\rm e}} = \frac{\rho_0 u^3}{l}$	$\tau^{\rm r} = \left(\frac{1}{1} + \frac{1}{1}\right)^{-1}$	
$R_{\rm SB}(t_{\rm s}^{\rm SB}) = 0.53 \rm kpc \eta_{0.1}^{1/3} N_{100}^{1/3} E_{51}^{1/3} n_{0.1}^{-1/3} c_{10}^{-2/3}$	$\dot{\varepsilon}^{i} = \dot{\varepsilon}^{d}$	$\tau_{ m SN}^{ m r}$ $\tau_{ m SB}^{ m r}$	
$l = l_{\rm SB} \left\{ \frac{1 + (l_{\rm SN}/l_{\rm SB})\dot{\varepsilon}_{\rm SN}/\dot{\varepsilon}_{\rm SB}}{1 + \dot{\varepsilon}_{\rm SN}/\dot{\varepsilon}_{\rm SB}} \right\}$	$u = \left[\frac{2\pi}{3}lc_{\rm s}^2\nu\left((1-f_{\rm SB})l_{\rm SN}^3 + \frac{f_{\rm SB}}{N_{\rm SB}}l_{\rm SB}^3\right)\right]^{1/3}$	$\tau = \min(\tau^{\rm r}, \tau^{\rm e})$	

Chamandy & Shukurov 2019 (to be submitted to *Galaxies*)

ISM turbulence parameters

 SN kpc⁻³ Myr⁻¹ & **1000** SN per SB SN kpc⁻³ Myr⁻¹ & **1000** SN per SB SN kpc⁻³ Myr⁻¹ & **100** SN per SB SN kpc⁻³ Myr⁻¹ & **100** SN per SB

- $\tau \sim 5$ —30 Myr, as expected
- *u* increases with *SNR* (hence *SFR*) but decreases with *n*
 - → This could help to explain low variation of u between arm and interarm regions, since arms have high n and high SFR
- But SFR and n arm-interarm contrasts still need to be measured!
- SBs are less significant for small disc scale heights, since they quickly break out
- $l \sim a \text{ few} \times 100 \text{ pc but } \tau u \sim 100 \text{ pc}$
- Hence Strouhal number \neq 1

Scale height of diffuse gas (Lockman layer)—see Mac Low & McCray 1988

SS field may affect LS dynamo

- SS dynamo is much faster than LS dynamo, leads to SS field in near-equipartition with turbulent KE while LS dynamo is still in kinematic regime.
- Can LS dynamo operate in the presence of strong magnetic fluctuations?: Yes (Sur+2008, Subramanian+Brandenburg 2014, Bhat+2019).
- But if one allows the turbulent transport coefficients of LS dynamo theory to be anisotropic (owing to LS rotation/shear), new contributions arise that depend, in part, on SS magnetic energy (Rädler+2003, Brandenburg+Subramanian 2005).

MEAN INDUCTION EQUATION

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{U} \times \boldsymbol{B} + \boldsymbol{\mathcal{E}})$$

MEAN ELECTROMOTIVE FORCE

$$\mathcal{E}_i = \alpha_{ij}B_j - \eta_{ij}J_j + (\boldsymbol{\gamma} \times \boldsymbol{B})_i + (\boldsymbol{\delta} \times \boldsymbol{J})_i + \kappa_{ijk}B_{j,k}$$

MEAN ELECTROMOTIVE FORCE IN SLAB GEOMETRY, CYLINDRICAL COORDS

'MAGNETIC RÄDLER EFFECT'

$$\delta = \delta_z = \frac{1}{6} \Omega \tau^2 \left(u^2 - b^2 \right),$$

$$\kappa = \kappa_{rrz} = \kappa_{\phi\phi z} = \frac{1}{6} \Omega \tau^2 \left(u^2 + \frac{7}{5} b^2 \right).$$

$$\delta' \equiv \delta - \kappa = -\frac{2}{5} \Omega \tau^2 b^2$$

Rädler, Kleeorin & Rogachevskii 2003, Brandenburg & Subramanian 2005 (Sec. 10), Chamandy & Singh 2017, 2018

Model	ξ	R_{Ω}	R_{α}	$q^{1/2}h/(\tau u)$	Ωau	D
$\begin{array}{c} A_{\boldsymbol{\xi}} \bullet \\ B_{\boldsymbol{\xi}} \bullet \end{array}$	varied	-14.1	0.92	3.91	0.31	-13.0
	varied	-21.1	1.38	3.91	0.46	-29.2

This also leads to a new type of feedback in the non-linear regime

This saturation mechanism is competitive with dynamical α quenching for realistic galactic parameter values

- Effect of anisotropy due to shear not yet included.
- Needs to be explored using direct numerical simulations.
- There are other effects also involving SS magnetic energy and helicity fluxes (Kandu's talk) that need to be explored.

Direct comparison of models and observations

- Mean-field electrodynamics assumes Reynolds averaging rules
- Formally valid only for $N \rightarrow \infty$ ensemble averages
- Observations involve spatial averages
- Finite scale separation so Reynolds rules not satisfied
- If infinite ensemble average is replaced with spatial average, leads to changes in mean-field equations

Direct comparison of models and observations

Adapted from Ruzmaikin, Shukurov & Sokoloff 1988

- Spatial mean of fluctuating component is not precisely zero $\sim b/(l/l_{\rm S})^{3/2}$
- Leads to random uncertainty in model that must be propagated through to yield uncertainty on theoretical prediction of observed mean (regular) field
- Relevant for seed mean fields

- Spatial average of field is not identical to "actual" (infinite ensemble averaged) mean field because of bending inside the averaging volume (non-locality)
- Leads to systematic error which results in correction terms in the theory of order $(l/l_{\rm L})^c$

Summary

- Mean-field dynamo models are useful tools to study galactic magnetic fields.
- Some success in explaining observations; models are verging on being truly predictive!
- Dynamo input parameters can and must be better constrained using observation and theory (cross-disciplinary!).
- Including anisotropy of the turbulence leads to new terms in large-scale dynamo models that may produce an alternate saturation mechanism that is competitive with alpha quenching.
- Mean-field models should really be based on explicit spatial averaging, ideally averaging that approximates that inherent in observations. Doing this results in a theoretical "uncertainty" owing to the stochastic nature of turbulence.