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Outline	

•  Mean-field	dynamo	models	
•  Some	successes	of	models	vis-à-vis	
observations	

•  Constraining	dynamo	input	parameters	
•  Interplay	of	small-scale	and	large-scale	
dynamos:	magnetic	Rädler	effect	

•  Caveats	in	comparing	observation	and	theory	



2.5D	vs	1.5D	saturated	solution	

Chamandy	2016	



2.5D	vs	analytic	saturated	solution	

Chamandy	2016	



Pitch	angle	of	large-scale	field	
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Cosmological	evolution	
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|Dk/Dc |r=rmax > 1 , G14
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Rodrigues,	Chamandy,	Shukurov,	Baugh	&	Taylor	2019	



Magnetic	arms	

•  Depends	on	nature	of	
spiral	structure	&	
evolution	

•  Need	to	non-
axisymmetrically	force	
the	dynamo—but	how?	
–  spirally	modulate	Uz?	
–  model	spiral	streaming	

motions,	which	affect	Ur	
and	Uφ?		

–  spirally	modulate	u?	
(Moss+2015)	

Chamandy,	Shukurov	&	Subramian	2015	

Beck	&	Hoernes	1996,	
Beck	2012,	Frick+2000	



NGC	6946	
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Define	spiral	arms	 Velocity	dispersion	in	
arms	and	interarms	

3.6	µm	(WISE)	THINGS	

Beck,	Chamandy,	Elson	&	Blackman	2019	(to	be	submitted	to	Galaxies)	

error	bars:	inter-
quartile	range	



M51	(NGC	5194)	

HI	velocity	
dispersion	(km	s-1)	

Stellar	mass	
surface	density	

HI	surface	density	
(Msun	pc-2)	

Stellar	mass	
surface	density	

threshold	
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Beck,	Chamandy,	Elson	&	Blackman	2019	(to	be	submitted	to	Galaxies)	



M74	(NGC	628)	
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Beck,	Chamandy,	Elson	&	Blackman	2019	(to	be	submitted	to	Galaxies)	



Constraining	arm-interarm	
velocity	dispersion	

•  No	evidence	for	arm-interarm	contrast	of	velocity	
dispersion	in	NGC	6946,	M51	or	M74:	difficult	to	
reconcile	a	difference	of	>20%.	

•  Using	SFR	or	HI	surface	densities	to	define	arms	does	
not	yield	very	different	results	

•  But	analysis	could	still	be	improved:	
–  Separating	out	thermal	component	of	line	broadening	
–  Separating	“regular”	component	of	HI	from	“anomolous”	
component,	e.g.	by	fitting	more	than	one	Gaussian	to	line	
profile	

–  Better	definition	of	arm/interarm	regions	(e.g.	using	
wavelet	analysis)	



ISM	turbulence	parameters	
Want	dynamo	parameters	u,	τ,	l,	as	functions	of	“observables”:	

Estimate	of	l	 	 	 	 	 	Estimate	of	u 	 	 	 					Estimate	of	τ

Chamandy	&	Shukurov	2019	(to	be	submitted	to	Galaxies)	



ISM	turbulence	parameters	

•  τ		~ 5—30	Myr,	as	expected	
•  u	increases	with	SNR	(hence	SFR)	but	

decreases	with	n 
à This	could	help	to	explain	low	variation	of	u	

between	arm	and	interarm	regions,	since	
arms	have	high	n	and	high	SFR	

•  But	SFR	and	n	arm-interarm	contrasts	still	
need	to	be	measured!	

•  SBs	are	less	signficant	for	small	disc	scale	
heights,	since	they	quickly	break	out	

•  l ~ a	few	×	100	pc but τ u ~ 100 pc 
•  Hence	Strouhal	number	≠ 1	

50	SN	kpc-3 Myr-1 &	1000	SN	per	SB	
100	SN	kpc-3 Myr-1	&	1000	SN	per	SB	
50	SN	kpc-3 Myr-1 &	100	SN	per	SB	
100	SN	kpc-3 Myr-1 &	100	SN	per	SB	

n	=	0.1	cm-3 n	=	1	cm-3 

Scale	height	of	diffuse	gas	(Lockman	layer)—see	Mac	Low	&	McCray	1988	



SS	field	may	affect	LS	dynamo	

•  SS	dynamo	is	much	faster	than	LS	dynamo,	leads	to	
SS	field	in	near-equipartition	with	turbulent	KE	while	
LS	dynamo	is	still	in	kinematic	regime.	

•  Can	LS	dynamo	operate	in	the	presence	of	strong	
magnetic	fluctuations?:	Yes	(Sur+2008,	
Subramanian+Brandenburg	2014,	Bhat+2019).	

•  But	if	one	allows	the	turbulent	transport	coefficients	
of	LS	dynamo	theory	to	be	anisotropic	(owing	to	LS	
rotation/shear),	new	contributions	arise	that	
depend,	in	part,	on	SS	magnetic	energy	
(Rädler+2003,	Brandenburg+Subramanian	2005).	



‘MAGNETIC RÄDLER EFFECT’ !

MEAN INDUCTION EQUATION!

MEAN ELECTROMOTIVE FORCE !

MEAN ELECTROMOTIVE FORCE IN SLAB GEOMETRY, CYLINDRICAL COORDS!

UNITS	

Rädler,	Kleeorin	&	Rogachevskii	2003,	
Brandenburg	&	Subramanian	2005	(Sec.	10),	

Chamandy	&	Singh	2017,	2018	



Chamandy	&	Singh	2017	



This	also	leads	to	a	new	type	of	
feedback	in	the	non-linear	regime		

LS	field	

SS	field	

Turbulent	
tangling	

Magnetic	
Rädler	effect		



Chamandy	&	Singh	2018	

This	saturation	mechanism	is	competitive	
with	dynamical	α	quenching	for	realistic	

galactic	parameter	values	

•  Effect	of	anisotropy	due	to	shear	not	yet	included.	
•  Needs	to	be	explored	using	direct	numerical	simulations.	
•  There	are	other	effects	also	involving	SS	magnetic	energy	

and	helicity	fluxes	(Kandu’s	talk)	that	need	to	be	explored.	



Direct	comparison	of	
models	and	observations	

•  Mean-field	electrodynamics	assumes	Reynolds	
averaging	rules		

•  Formally	valid	only	for	Nà ∞	ensemble	averages	
•  Observations	involve	spatial	averages	
•  Finite	scale	separation	so	Reynolds	rules	not	satisfied		
•  If	infinite	ensemble	average	is	replaced	with	spatial	
average,	leads	to	changes	in	mean-field	equations	

TURBULENT 
OUTER SCALE!

AVERAGING 
SCALE!

SCALE OF 
VARIATION OF 
MEAN FIELD !



Direct	comparison	of	
models	and	observations	

Zhou,	Blackman	&	Chamandy	2018	

ls

l

•  Spatial	mean	of	fluctuating	component	is	
not	precisely	zero	~b/(l/ls)3/2 

•  Leads	to	random	uncertainty	in	model	
that	must	be	propagated	through	to	yield	
uncertainty	on	theoretical	prediction	of	
observed	mean	(regular)	field	

•  Relevant	for	seed	mean	fields	

•  Spatial	average	of	field	is	not	identical	
to	“actual”	(infinite	ensemble	averaged)	
mean	field	because	of	bending	inside	
the	averaging	volume	(non-locality)	

•  Leads	to	systematic	error	which	results	
in	correction	terms	in	the	theory	of	
order	(l/lL)c 

Adapted	from	Ruzmaikin,	
Shukurov	&	Sokoloff	1988	

lL
l



Summary	
•  Mean-field	dynamo	models	are	useful	tools	to	study	galactic	

magnetic	fields.	
•  Some	success	in	explaining	observations;	models	are	verging	

on	being	truly	predictive!	
•  Dynamo	input	parameters	can	and	must	be	better	constrained	

using	observation	and	theory	(cross-disciplinary!).	
•  Including	anisotropy	of	the	turbulence	leads	to	new	terms	in	

large-scale	dynamo	models	that	may	produce	an	alternate	
saturation	mechanism	that	is	competitive	with	alpha	
quenching.	

•  Mean-field	models	should	really	be	based	on	explicit	spatial	
averaging,	ideally	averaging	that	approximates	that	inherent	in	
observations.	Doing	this	results	in	a	theoretical	“uncertainty”	
owing	to	the	stochastic	nature	of	turbulence.	


