

TRURL
Reverse Polish Notation for Object Pascal

RPN Engine

Lazarus and Free Pascal Edition Version 1.0

Document version 1.0.1
2019-07-13

Johannes W. Dietrich

2 TRURL RPN engine

The TRURL RPN engine is a library of Object Pascal types, classes and
procedures that can be used as a foundation for virtual calculators using
Reverse Polish Notation (RPN).

The unit “rpnengine.pas” is the basis of the library. It is necessary for all
projects using the RPN engine and sufficient for both command-line and
text-mode user interfaces. For applications based on a graphical user
interface (GUI), the optional unit “rpnwidgets.pas” provides additional
functionality, which facilitates linking to pre-defined interface elements.

About Reverse Polish Notation

Reverse Polish Notation, abbreviated RPN, also known as Polish postfix
notation or postfix notation is a mathematical notation, in which operators
follow their operands. It goes back to the older Polish Notation, which was
suggested in 1924 by the philosopher, mathematician and logician Jan
Łukasiewicz.

For programming computers and calculators RPN has many advantages
over the more common algebraic notation, since it makes parenthesis
unnecessary and saves time and key strokes. Additionally, it facilitates
detection and correction of errors.

These reasons motivated producers of advanced scientific calculators
including Hewlett-Packard (HP), Elektronika, Semico, SwissMicros and
others to base their models on RPN logic.

RPN is also used by some well-known software packages including dc,
xcalc, RPL and Calc in Emacs, and by stack-oriented programming
languages, e.g. Forth and PostScript.

More information on RPN is available from:

https://www.swissmicros.com/what_is_rpn.php

https://www.calculator.org/articles/Reverse_Polish_Notation.html

http://www.hp-prime.de/files/composite_file/file/192-hp_rpn_en.pdf

https://www.hpmuseum.org/rpn.htm

TRURL RPN engine 3

Unit rpnengine.pas

The basic unit rpnengine.pas is required for every project, irrespectively
whether or not it uses a graphical user interface (GUI). It provides the
following constants, types, data structures, classes and functions:

Basic types

TBinOperator = (PlusOp, MinusOp, MultOp, DivOp, PowerOp);

TUniOperator = (PlusMinusOp, InvertOp, SinOp, CosOp, TanOp,
ASinOp, ACosOp, ATanOp, sqrtOp);

TAngleMode = (Degree, Radian, Turn, Grad);

These global types are necessary for the engine, but also usable by your
code. TUniOperator and TBinOperator represent unary and binary
operators, respectively, which are used by TEngine.rpn. TAngleMode
determines the mode, how angles are encoded.

Global constants

Version information:

 RPNEngine_major = 1;
 RPNEngine_minor = 0;
 RPNEngine_release = 0;
 RPNEngine_patch = 0;
 RPNEngine_fullversion = ((RPNEngine_major * 100 +
RPNEngine_minor) *
 100 + RPNEngine_release) * 100 + RPNEngine_patch;
 RPNEngine_version = '1.0.0.0;
 RPNEngine_internalversion = 'Aleph';

4 TRURL RPN engine

TStack

TStack = class
private
 {private fields}
protected
 {protected fields and methods}
public
 constructor create;
 destructor destroy; override;
 procedure Clear;
 procedure RollDown;
 procedure DropDown;
 procedure RollUp;
 procedure Push(operand: extended);
 function Pop: extended;
 procedure Error(msg: String);
public
 property x: extended read fx write fx;
 property y: extended read fy;
 property z: extended read fz;
 property t: extended read ft;
 property lastx: extended read fl;
end;

TStack implements a virtual stack with four registers (x, y, z and t) and a
special lastx register, which holds the content of the x register as it was
before execution of certain operations.

T 7.89
Z 4.56
Y 3.14
X 1.23 (Shown in the display by most calculators)

L 1.23

TStack.Clear clears the virtual stack. This method sets all registers to 0.

T 0.00
Z 0.00
Y 0.00
X 0.00

L 0.00

TRURL RPN engine 5

TStack.Rolldown rolls the registers in the virtual stack down and recycles
the contents of the x register in the t register.

T 7.89

↓↑	 ➡
T 1.23

Z 4.56 Z 7.89
Y 3.14 Y 4.56
X 1.23 X 3.14

L 1.23 L 1.23

TStack.DropDown drops the registers in the virtual stack down. It doesn’t
recycle contents, so that the t register receives the value 0.

T 7.89

⤓ ➡
T 0.00

Z 4.56 Z 7.89
Y 3.14 Y 4.56
X 1.23 X 3.14

L 1.23 L 1.23

TStack.Rollup rolls the registers in the virtual stack up. This method copies
the contents of the x register to the y register.

T 7.89

↑	 ➡
T 4.56

Z 4.56 Z 3.14
Y 3.14 Y 1.23
X 1.23 X 1.23

L 1.23 L 1.23

TStack.Push pushes the content of an operand to the stack, i.e. the x
register gets the value of the operand and the stack is lifted.

 T 7.89

↑	➡
T 4.56

 Z 4.56 Z 3.14
 Y 3.14 Y 1.23

Operand: 2.72 ➡ X 1.23 X 2.72

 L 1.23 L 1.23

6 TRURL RPN engine

TStack.Pop delivers the contents of the x register and drops down the
stack.

 T 7.89

⤓	➡
T 0.00

 Z 4.56 Z 7.89
 Y 3.14 Y 4.56

Result: 1.23 ⬅ X 1.23 X 3.14

 L 1.23 L 1.23

TStack.Error is predominantly employed by the engine itself for reporting
error conditions, but also usable by your code.

TEngine

TEngine = class
public
 Stack: TStack;
 AngleMode: TAngleMode;
 constructor create;
 destructor destroy; override;
 procedure Add;
 procedure Sub;
 procedure Times;
 procedure Divide;
 procedure CHS;
 procedure Inv;
 procedure PWR;
 procedure Sinus;
 procedure Cosinus;
 procedure Tangens;
 procedure ArcSinus;
 procedure ArcCosinus;
 procedure ArcTangens;
 procedure sqroot;
 function rpn(operand1, operand2: extended; binOp:
TBinOperator): extended;
 function rpn(operand: extended; uniOp: TUniOperator):
extended;
end;

TEngine is a class which implements a virtual calculation engine. It
provides the following variables and methods:

TEngine.Stack refers to the engine’s stack object (of type TStack). It is
automatically created by the create method of TEngine and cleared, if the
engine object is destroyed.

TRURL RPN engine 7

TEngine.AngleMode is a global variable, which holds the mode of encoding
angles. Its default value is Degree.

TEngine.Add adds the two numbers in the x and y registers and stores the
result in the x register. The lastx register is supported.

TEngine.Sub subtracts the two numbers in the y and x registers and stores
the result in the x register. The lastx register is supported.

TEngine.Times multiplies the two numbers in the x and y registers and
stores the result in the x register. The lastx register is supported.

TEngine.Divide divides the two numbers in the y and x registers and stores
the result in the x register. The lastx register is supported.

TEngine.CHS toggles the sign of the number in the x register.

TEngine.Inv inverts the number in the x register. The lastx register is
supported.

TEngine.PWR raises the number in the y register to that in the x register
and stores the result in the x register.

TEngine.Sinus calculates the sine of the number in the x register. The
result depends on the value in the TEngine.AngleMode variable. The lastx
register is supported.

TEngine.Cosinus calculates the cosine of the number in the x register. The
result depends on the value in the TEngine.AngleMode variable. The lastx
register is supported.

TEngine.Tangens calculates the tangent value of the number in the x
register. The result depends on the value in the TEngine.AngleMode
variable. The lastx register is supported.

TEngine.ArcSinus calculates the inverse sine of the number in the x
register. The result depends on the value in the TEngine.AngleMode
variable. The lastx register is supported.

TEngine.ArcCosinus calculates the inverse cosine of the number in the x
register. The result depends on the value in the TEngine.AngleMode
variable. The lastx register is supported.

TEngine.ArcTangens calculates the inverse tangent value of the number in
the x register. The result depends on the value in the TEngine.AngleMode
variable. The lastx register is supported.

TEngine.sqroot calculates the square root of the number in the x register.
The lastx register is supported.

8 TRURL RPN engine

The function TEngine.rpn is a polymorphic function, which accepts
operands and operators, and calculates the result, which is returned as
floating point number of type extended. The two variants

TEngine.rpn(operand1, operand2: extended; binOp: TBinOperator)
and
TEngine.rpn(operand: extended; uniOp: TUniOperator)

use the following binary and unary operators:

PlusOp: returns the sum of operand1 and operand2.

MinusOp: calculates the difference of operand1 and operand2.

MultOp: returns the product of operand1 and operand2.

DivOp: calculates the ratio of operand1 and operand2.

PowerOp: returns operand1 raised to the power of operand2.

PlusMinusOp: toggles the sign of operand.

InvertOp: inverts operand.

SinOp: returns the sin of operand.

CosOp: calculates the cosine of operand.

TanOp: delivers the tangent of operand.

ASinOp: returns the inverse sine of operand.

ACosOp: calculates the inverse cosine of operand.

ATanOp: delivers the inverse tangent of operand.

sqrtOp: calculates the square root of operand.

TRURL RPN engine 9

Unit rnpwidgets.pas

The unit rpnwidgets.pas helps to create a GUI-based virtual calculator:

Types

TEntryMode = (PostOper, PostEnter, Number);

TFrame

TFrame = class
private
 {private fields}
public
 Engine: TEngine;
 TRegDisplay, ZRegDisplay, YRegDisplay, XRegDisplay:
TControl;
 EntryMode: TEntryMode;
 constructor create;
 destructor destroy; override;
 procedure HandleEnter;
 procedure HandleClear;
 procedure HandleInv;
 procedure HandleAdd;
 procedure HandleSub;
 procedure HandleTimes;
 procedure HandleDiv;
 procedure HandleCHS;
 procedure HandlePWR;
 procedure HandleSin;
 procedure HandleCos;
 procedure HandleTan;
 procedure HandleASin;
 procedure HandleACos;
 procedure HandleATan;
 procedure HandleSqrt;
 procedure HandleRollDown;
 procedure DisplayRegisters;
 procedure AppendChar(ch: char);
 procedure InsertString(theString: String);
 procedure CheckEngine;
 procedure Error(msg: String);
end;

TFrame provides an object-oriented approach for creating a GUI-based
calculator with the following objects and methods:

10 TRURL RPN engine

TFrame.Engine links to an engine object of type TEngine. The engine
object is not automatically created with TFrame’s create method and not
automatically disposed of on TFrame.destroy. It is the responsibility of the
programmer to create and clear this object, where necessary.

TFrame.TRegDisplay,
TFrame.ZRegDisplay,
TFrame.YRegDisplay,
and TFrame.XRegDisplay point to an object of type TControl. Assigning
them to a control of your project (e.g. written with the Lazarus IDE)
ensures automatic output to a virtual display provided by you. The RPN
Widgets use the caption property of this control.

TFrame.EntryMode: This selector is mainly for internal purposes of the
engine, but it may be used by custom programs, too.

TFrame.Error is predominantly employed by the engine itself for reporting
error conditions, but also usable by custom code.

TFrame.HandleEnter: Handles pressing the “Enter” key by rolling the stack
up. If assigned, the display is updated automatically.

TFrame.HandleClear: Clears the x register. If assigned, the display is
updated automatically.

TFrame.HandleInv: Inverts the contents of the x register and rolls the
stack up. If assigned, the display is updated automatically.

TFrame.HandleAdd, TFrame.HandleSub, TFrame.HandleTimes,
TFrame.HandleDiv, TFrame.HandleCHS, TFrame.HandlePWR,
TFrame.HandleSin, TFrame.HandleCos, TFrame.HandleTan,
TFrame.HandleASin, TFrame.HandleACos, TFrame.HandleATan and
TFrame.HandleSqrt trigger the corresponding actions of the engine and
update the entry mode. If assigned, the display is updated automatically,
too.

TFrame.HandleRollDown: Rolls down the stack and updates the display, if
assigned.

TFrame.DisplayRegisters: Displays the register contents in a control, which
is provided by the GUI of the app. This procedure is called by most
operations automatically.

TFrame.AppendChar(ch: char): Depending on TFrame.EntryMode this
procedure inserts a digit in the x register, rolls the stack or toggles the
entry mode. If assigned, the display is updated automatically.

TFrame.InsertString(theString: String): inserts a string representing a
floating-point number into the x register. If assigned, the display is
updated automatically.

TRURL RPN engine 11

Examples

The program TRURL A, available from http://trurl.sf.net, provides an
example for a simple calculator based on the RPN Engine. Both source
code and pre-complied sample implementations for macOS, Windows and
other operating systems are provided.

12 TRURL RPN engine

Contact

PD Dr. med. Johannes W. Dietrich, Laboratory XU44, Medical Hospital
I, Bergmannsheil University Hospitals, Ruhr University of Bochum,
Bürkle-de-la-Camp-Platz 1, D-44789 Bochum, NRW, Germany

© J. W. Dietrich, 2003 – 2019

Source code released under the BSD License

Title image modified from Wikimedia Commons
(http://commons.wikimedia.org/wiki/File:Mountain-lion-01623.jpg)

http://trurl.sf.net

