
Interrelations between Sotwareuality Metrics, Performance
and Energy Consumption in Embedded Applications

Lazaros Papadopoulos
School of ECE, National Technical

University of Athens, Greece
lpapadop@microlab.ntua.gr

Charalampos Marantos
School of ECE, National Technical

University of Athens, Greece
hmarantos@microlab.ntua.gr

Georgios Digkas
Department of Mathematics and
Computer Science, University of
Groningen, The Netherlands

g.digkas@rug.nl

Apostolos Ampatzoglou
Department of Applied Informatics,
University of Macedonia, Greece

apostolos.ampatzoglou@gmail.com

Alexander Chatzigeorgiou
Department of Applied Informatics,
University of Macedonia, Greece

achat@uom.gr

Dimitrios Soudris
School of ECE, National Technical

University of Athens, Greece
dsoudris@microlab.ntua.gr

ABSTRACT
Source code refactorings and transformations are extensively used
by embedded system developers to improve the quality of appli-
cations, often supported by various open source and proprietary
tools. They either aim at improving the design time quality, such
as the maintainability and reusability of software artifacts, or the
runtime quality such as performance and energy eiciency. How-
ever, an inherent trade-of between design- and run-time qualities
is often present posing challenges to embedded software develop-
ment. This work is a irst step towards the investigation of the
impact of transformations for improving the performance and the
energy eiciency on software quality metrics and the impact of
refactorings for increasing the design time quality on the execution
time, the memory and the energy consumption. Based on a set of
embedded applications from widely used benchmark suites and
typical transformations and refactorings, we identify interrelations
and trade-ofs between the aforementioned metrics.

1 INTRODUCTION
A wide variety of technologies and markets that experience rapid
growth, such as the augmented reality, medical electronics, au-
tonomous driving and wearable devices are enabled by low power,
usually heterogeneous, embedded systems. In the world of Internet
of Things (IoT), embedded systems act as low power edge devices
in IoT networks with hard constraints in terms of performance
and energy consumption. The evolution of these technologies and
the requirements for increased processing capabilities along with
power eiciency impose very high requirements on the embedded
systems design and in embedded software development.

From the embedded systems design perspective, various kinds
of heterogeneous computing architectures provide increased per-
formance at constrained energy consumption. From the embedded
software point of view, a wide variety of methodologies, techniques
and tools have been proposed to eiciently manage the resources
of heterogeneous architectures [4]. At application level, typical
data management transformations are extensively used to improve
the memory hierarchy utilization and to increase performance and
energy eiciency [5]. Other techniques, such as the identiication
of expensive system calls and the eicient memory heap utilization
may also be employed to reduce execution time and energy con-
sumption [11]. Developers often leverage proiling tools, such as
Valgrind and perf to identify suitable optimization techniques.

At the same time, the rapid evolution of the embedded systems
market, the emergence of new hardware architectures and the re-
quirements for long lifetime expectancy of embedded applications
increase the demand for highly maintainable software products
[3]. Poor design time quality may impose signiicant overhead in
maintenance activities, often termed as Technical Debt (TD) [10].
However, the efects of source code transformations and optimiza-
tions that software developers apply to improve the performance
and the energy consumption of embedded applications may afect
the maintainability of software products. In other words, employing
such techniques to improve the runtime quality of embedded ap-
plications (i.e. performance, memory requirements and the energy
consumption) may have positive or negative impact on the design
time quality of applications, such as the maintainability, reusability
and testability. Similarly, refactorings that improve code quality
may afect runtime quality. For example, by employing polymor-
phism to improve code quality, performance improves as well [7].

In this work, we investigate relations between design time and
runtime quality of embedded applications. Although the issues of
software quality in industrial embedded software have been inves-
tigated in the past [3], to the best of our knowledge, this is the
irst study of the efects of the performance/energy consumption
optimizations at source code level to the design time quality for
embedded applications and vice versa. By leveraging a set of embed-
ded applications from widely used benchmark suites and tools that
provide software quality and performance/energy consumption
indications, we apply typical source code transformations/refactor-
ings for improving various quality metrics, such as the cognitive

SCOPES ’18, May 28–30, 2018, Sankt Goar, Germany

Source
code Requirements

Design
Documents Issues

TD

management

Dependability

optimization

Energy

optimization

Forecaster

Financial
modelsSW quality models

energy
consumption

measurements

forecasting
models

embedded systems
runtime constraints

SW engineers

System engineers

Project managers

Quality managers

implementation

RT qualities

maintainability

cost and time

D
e

c
is

io
n

S
u

p
p

o
rt

SDK4ED platform
toolboxes

D
S

E

source code

refactorings

1 1

2 2

2 3

1

3

trade-off identification tool

Figure 1: SDK4ED framework and trade-of identiication.

complexity (for code quality) and the cache misses (for perfor-
mance/energy). Thus, we investigate the interrelations between
the design time quality and the runtime quality metrics and draw
interesting conclusions.

2 TRANSFORMATIONS AND REFACTORINGS
FOR DESIGN AND RUNTIME QUALITY
IMPROVEMENT

The investigation of the interrelations between design and runtime
quality at source code level will contribute to the design and the
development of a tool that will enable the identiication of trade-
ofs between their metrics. This tool will be a critical component
of the SDK4ED framework, which will be developed in the context
of the EU H2020 SDK4ED project [2] (Fig.1). In this Section we
present a set of indicative source-to-source transformations for
reducing execution time and energy consumption and a set of
typical source code refactorings for improving the design time
quality of applications.

Some of the typical source-to-source transformations for improv-
ing the performance and the energy eiciency of applications are
listed in Table 1. The irst transformation is the removal of interme-
diate variables, which are often used for temporary data storage and
in cases such as in the example shown in Table 1, they can be elim-
inated. This transformation can potentially improve the execution
time and the energy consumption. Also, if the variable is an array,
the impact on memory eiciency may be signiicant. Finally, since
it simpliies the source code, it may have positive impact on the
comprehensibility. The second transformation can be used to avoid
the unnecessary reassignment of variables. In the example of Table 1,
array arr is accessed in each inner loop to assign the arr[i] value to
a. The transformation eliminates the unnecessary memory accesses
and it is expected to positively afect the execution time and the

Table 1: Indicative source-to-source transformations for im-
proving performance and energy eiciency.

Before After

Transformation 1: Intermediate variable removal
vo id foo () {
a = f (x) ;
g (a) ;
}

vo id foo () {
g (f (x)) ;
}

Improves performance/memory/energy and code quality

Transformation 2: Avoid unnecessary variable reassignment
f o r (i = 0 ; i <N ; i ++) {
f o r (j = 0 ; j <N ; j ++) {
a = a r r [i] ;
. . .

}
}

f o r (i = 0 ; i <N ; i ++) {
a= a r r [i] ;
f o r (j = 0 ; j <N ; j ++) {
. . .

}
}

Improves performance/energy

Transformation 3: Loop interchange
f o r (i = 0 ; i <N ; i ++) {
f o r (j = 0 ; j <N ; j ++) {
. . .

}
}

f o r (j = 0 ; j <N ; j ++) {
f o r (i = 0 ; i <N ; i ++) {
. . .

}
}

Improves performance/energy

Transformation 4: Switch from dynamic to static allocation
a =(i n t ∗) ma l l o c (SZ) ;
i f (a==NULL) {
/ / e r r o r message .

}
. . .
f r e e (a) ;

i n t a [ENTRIES] ;

Improves performance/energy, code quality
May increase memory requirements.

Transformation 5: Switch from static to dynamic allocation
(The opposite of Transformation 4)
May improve memory requirements.
Increases execution time and energy consumption.

runtime consumption. Memory requirements and software quality
are not afected. Loop interchange is a typical data reuse transfor-
mation that, when properly applied, reduces execution time and
energy consumption by improving memory hierarchy utilization.
The fourth transformation is the switching from dynamic memory
allocation to static. Although this transformation may increase the
memory requirements, performance and energy are expected to
improve, due to the elimination of the overhead imposed by the
dynamic memory allocators of embedded systems. Additionally,
software metrics pertaining to comprehensibility, testability and
maintainability are expected to improve, due to the fact the static
memory allocation is simple and straightforward. Finally, switching

SCOPES ’18, May 28–30, 2018, Sankt Goar, Germany

Table 2: Indicative refactorings for improving code quality.

Before After

Refactoring 1: Extract Method

vo id foo () {
. . .
/ / f i b o n a c c i :
f o r (i = 1 ; i <n ; i ++) {
nex t_ te rm= t 1 + t 2 ;
t 1 = t 2 ;
t 2 =next_ te rm ;

}
}

vo id foo () {
. . .
f i b o n a c c i (n)

}
vo id f i b o n a c c i (n) {
f o r (i = 1 ; i <n ; i ++) {
nex t_ te rm= t 1 + t 2 ;
t 1 = t 2 ;
t 2 =next_ te rm ;

}
}

Improves understandability, complexity, cohesion
Increases execution time

Refactoring 2: Consolidate Duplicate Conditional Fragments
i f (a > 0) {
. . .
f oo () ;

}
e l s e {
. . .
f oo () ;

}

i f (a > 0) {
. . .

}
e l s e {
. . .

}
f oo () ;

Improves comprehensibility, maintainability, and code size

Refactoring 3: Replace Conditional with Polymorphism

c l a s s Movie {
. . .
doub le ge tCharge () {
sw i t ch (p r i c eCode) {

c a s e REGULAR :
/ / r e g u l a r p r i c e

c a s e CHILDREN :
/ / f o r c h i l d r e n

}
}

}

a b s t r a c t c l a s s Movie {
a b s t r a c t ge tCharge () ;

}
c l a s s RegularMovie
ex t end s Movie {
doub le ge tCharge () {
/ / r e g u l a r p r i c e

}
c l a s s Ch i ld rensMov ie
ex t end s Movie {
doub le ge tCharge () {
/ / f o r c h i l d r e n

}
}

Improves maintainability memory and execution time

from static to dynamic memory allocation (Transformation 5) has
the exact opposite efects of Transformation 4.

Some of the most representative refactorings [8] aiming at im-
proving software design time qualities, such as maintainability and
reusability, are listed in Table 2. Extract method refactoring targets
the Long method code smell [8], that is, methods which are long,

complex and non-cohesive. Such methods violate the Single Re-
sponsibility Principle according to which any module should take
over a single responsibility so that it has only one reason to change.
Extracting a cohesive set of statements to a separate method, ren-
ders the resulting methods less complex, smaller in size and more
cohesive, facilitating their maintenance. However, this refactoring
negatively impacts execution time as an additional method invo-
cation is needed and also increases the total code size afecting
memory footprint.

Code cloning is one of the most frequent and debated symptoms
in software maintenance. Code clones are considered harmful be-
cause: a) duplicates of code generally increase maintenance costs
and b) inconsistent changes to clones may lead to incorrect program
behavior. In general, removing clones can have a mixed efect on
design- and run-time qualities. However, the consolidation of dupli-
cate conditional fragments, i.e. moving clones outside the branches
of a conditional, has a positive efect on program comprehensibility,
maintainability and code size without afecting execution time.

The third refactoring refers to the application of polymorphism
in order to eliminate state-checking, which manifests itself as con-
ditionals that select an execution path by comparing the value of
a variable representing the state of an object. The corresponding
refactoring consists in the introduction of an appropriate hierarchy
of types along with the use of a polymorphic method call, drastically
improving maintainability. However, code size is signiicantly in-
reased impacting memory requirements while polymorphic method
calls have a negative efect on execution time.

In the following section we will investigate the impact of the
above transformations/refactorings for improving design time qual-
ity on runtime quality and vice versa.

3 INTERRELATIONS BETWEEN DESIGN AND
RUNTIME QUALITIES

To investigate the interrelation between design and runtime quality
metrics, we examined source code quality and performance/en-
ergy issues in the following embedded applications: i) HeartWall ii)
SRAD iii) Backprop from Rodinia [6] and iv) QSort from theMiBench
[9] embedded benchmark suite. For measuring design time qual-
ity, SonarQube [1] was selected and tools from the Valgrind suite
were used for measuring the runtime quality of the applications
under evaluation. The design time quality metric we selected is the
cognitive complexity (as measured in SonarQube). Cognitive Com-
plexity1 measures the maintainability of the code. In other words,
it shows how diicult is to understand and maintain a method.
The diference with the Cyclomatic Complexity is that the latter
measures the testability of the code. The runtime quality metrics
we selected and which are indications for performance/energy and
memory consumption, are the cache misses, the memory accesses,
the memory footprint and the CPU cycles. Valgrind v.3.13 and gcc
5.4 with default optimization were used.

In Heartwall, which is an image processing application, we ap-
plied Refactorings 1 and 2, as proposed by SonarQube, to lower
the cognitive complexity of a speciic function by 19%, as shown
in Fig.2a. The proposed refactorings were mainly the removal of

1https://blog.sonarsource.com/cognitive-complexity-because-testability-understandability

SCOPES ’18, May 28–30, 2018, Sankt Goar, Germany

0

20

40

60

80

100

120

Heartwall: Impact of code quality optimization

on performance/energy original
optimized

-19%

-5% -7% -7.5%

N
o

rm
a

li
z
e

d

kernel
cognitive

complexity

total
cognitive

complexity

I1 misses LLi misses CPU
cycles

(a) Heartwall

0

20

40

60

80

100

120

140

Quicksort: Impact of memory requirements

optimization on code quality
original
TF5

+33%

-82%

+7.9%
+1.8%

N
o

rm
a
li
z
e
d

cognitive
complexity

memory
size

memory
accesses

CPU
cycles

(b) Quicksort

Backprop: Impact of loop interchange

transformation on code quality

0

20

40

60

80

100

120

cognitive complexity

D1 misses

LLd misses

CPU cycles

N
o

rm
a

li
z
e

d

cognitive complexity

D1 misses

CPU cycles

LLd misses

orig TF3(1) TF3(2)

(c) Backprop

SRAD: Impact of transformations for

improving code quality on software quality

75

80

85

90

95

100

105

cognitive complexity

memory

CPU cycles

orig TF2 TF4TF1

N
o

rm
a

li
z
e

d

cognitive
complexity

memory size

CPU cycles

(d) SRAD

Figure 2: Experimental results that indicate the interrelations between software quality and runtime quality metrics.

unused variables, the removal of duplicate code and the simpliica-
tion of statements that improve source code understandability. By
applying the refactorings, the cognitive complexity of the whole
application improved by 5%, while the efects on the runtime quality
metrics were minor. Although cache misses were slightly reduced,
no signiicant impact on the CPU cycles was observed.

In Quicksort, a widely used sorting algorithm from the MiBench
suite, we applied Transformation 5, so that the application input
to be handled dynamically. Thus, as shown in Fig.2b, memory re-
quirements reduced by 82%. However, the total number of memory
accesses slightly increased (by 7.9%) due to the overhead imposed by
the dynamic allocation, which slightly afected the CPU cycles. Dy-
namic allocation overhead afects cognitive complexity as well (e.g.
checking the input size, detectingmalloc() failure), which increased
by 33%.

The impact of Transformation 3 on design and runtime quality
is evaluated in the Backprop application (Fig.2c). We applied loop
interchange in two diferent loops (TF3(1) and TF3(2)). TF3(1) signif-
icantly reduced cache misses and CPU cycles, up to 71% and 37.5%
respectively. For applying the same transformation in another loop
TF3(2) extra checks and utilization of extra variables were required.
Therefore, although TF3(2) reduced cache misses by up to 86% and
CPU cycles by 42%, cognitive complexity increased by 5%.

Three diferent transformations for improving performance, mem-
ory utilization and energy eiciency were applied in the SRAD
application, depicted in Fig.2d. By removing intermediate variables,
and more speciically an array used for temporary storage, memory
requirements reduced by 15%. By optimizing loops and removing
unnecessary memory accesses (TF2), CPU cycles reduced slightly.
Finally, by switching from dynamic to static allocation, CPU cycles
increased by 2%, however cognitive complexity signiicantly low-
ered by 15%. The latter, demonstrates improvement in design time
quality with minor negative impact on performance.

Finally, based on the experimental results, we identify relations
and trade-ofs between the design and the runtime quality metrics.

Observation 1: The impact of Refactorings 1 and 2 for improv-
ing source code quality on performance and energy consumption is
minor (Heartwall). However, as stated earlier, removing duplicate
code (e.g. by developing new functions) may result in higher execu-
tion times when the number of function calls increases signiicantly.
Nevertheless, no such overhead was observed in Heartwall.

Observation2: When applying Transformation 5 to switch from
static to dynamic memory allocation, there can be a trade-of be-
tween memory requirements and cognitive complexity, as shown

in QSort, since dynamic memory allocation results in more compli-
cated source code.

Observation 3: When applying Transformation 3 to perform
loop interchange and reduce the cache misses, the extra checks
and variables that may be needed to retain the application func-
tionality may increase cognitive complexity (Backprop). Therefore,
trade-of between performance/energy consumption and cognitive
complexity may be observed.

Observation 4: When applying Transformation 4, trade-of be-
tween performance/energy and cognitive complexity may be ex-
perienced. Indeed, as shown in SRAD, static memory allocation
may improve performance/energy, however it signiicantly reduces
cognitive complexity.

4 CONCLUSIONS
This work is a irst step towards the investigation of the impact of
transformations for improving runtime quality on design time qual-
ity metrics and vice versa. The identiication of interrelations and
trade-ofs between them, as demonstrated in this work, underlines
the need for further investigation that will inally lead to the design
and development of tools that will assist embedded developers to
perform optimizations considering both design and runtime quality
aspects.

Acknowledgements This work has received funding from the
EuropeanUnion’s Horizon 2020 research and innovation programme
under grant agreement No 780572 SDK4ED (www.sdk4ed.eu).

REFERENCES
[1] 2008ś2018. SonarQube website. https://www.sonarqube.org
[2] 2018. SDK4ED H2020 project. http://www.sdk4ed.eu
[3] A. Ampatzoglou and et al.. 2016. The Perception of Technical Debt in the Embed-

ded SystemsDomain: An Industrial Case Study. In Proc. 2016 IEEE 8th International
Workshop on Managing Technical Debt (MTD). pp. 9ś16.

[4] Christos Baloukas and et al.. 2010. Mapping Embedded Applications on MPSoCs:
The MNEMEE Approach. Proc. ISVLSI’10 (2010), pp. 512ś517.

[5] F Catthoor and et al.. 2013. Data access and storage management for embedded
programmable processors. Springer Science & Business Media.

[6] S. Che and et al.. 2009. Rodinia: A benchmark suite for heterogeneous computing.
In Proc. IISWC’09. pp. 44ś54.

[7] Serge Demeyer. 2003. Maintainability versus Performance: What’s the Efect of
Introducing Polymorphism?. In Proc. ICSE’2003.

[8] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA.

[9] M. R. Guthaus and et al.. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In Proc. IISWC’01. pp. 3ś14.

[10] P. Kruchten, R. L. Nord, and I. Ozkaya. 2012. Technical Debt: From Metaphor to
Theory and Practice. IEEE Software 29, 6 (2012), pp. 18ś21.

[11] S. Xydis, A. Bartzas, I. Anagnostopoulos, D. Soudris, and K. Pekmestzi. 2010. Cus-
tom multi-threaded Dynamic Memory Management for Multiprocessor System-
on-Chip platforms. In Proc. ICSAMOS’10. pp. 102ś109.

