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Abstract: Entropy is a quantity which is of great importance in physics and chemistry. The concept comes out of 

thermodynamics, proposed by Rudolf Clausius in his analysis of Carnot cycle and linked by Ludwig Boltzmann to 

the number of specific ways in which a physical system may be arranged. Any physics classroom, in its task of 

learning physics, has therefore to face this crucial concept. As we will show in this paper, the lectures can be 

enriched by discussing dimensional equations linked to the entropy of some physical systems.  
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1. Introduction 

In physics and engineering, dimensional analysis helps 

finding relationships between different physical 

quantities by determining some equations based on a 

few fundamental quantities. Usually, these fundamental 

quantities are length, time, mass, temperature and 

electric charge and are represented by symbols L, T, M, 

  and Q, respectively  [1]. The dimensions of any 

physical quantity can be expressed as products of these 

basic quantities, each raised to a rational power [2]. 

 

Any physically meaningful equation requires the same 

dimensions on its left and right sides, a property known 

as "dimensional homogeneity". Checking this 

homogeneity is a common application of dimensional 

analysis,  routinely used to verify the plausibility of 

calculations. In this analysis, equations are turned into 

“dimensional equations”. 

 

In this paper we discuss some dimensional equations 

related to the entropy of some models of physics 

systems. In thermodynamics, entropy (usual symbol S ) 

is the physical quantity linked to the second law of 

thermodynamics, the law which is telling that the 

entropy of an isolated system never decreases. This 

system will spontaneously proceed towards 

thermodynamic equilibrium, which is the configuration 

with maximum entropy. 

 

Entropy is an extensive property. It has the dimension 

of energy divided by temperature, having a unit of 

joules per kelvin ( 1KJ ) in the International System 

of Units.  However, the entropy of a substance can be 

given also as an intensive property, entropy per unit 

mass (SI unit: 11  kgKJ  ) or entropy per unit 

amount of substance. 

 

The change in entropy ( S ) of a system was originally 

defined for a thermodynamically reversible process as 

 TdQS rev / , where T  is the absolute 

temperature of the system. This temperature is dividing 

an incremental reversible transfer of heat into that 

system ( revdQ ). This definition is sometimes called 

the macroscopic definition of entropy, because it is used 

without regard to any microscopic description of the 

thermodynamic system. 

 

The most remarkable property of entropy is that of 

being a function of state. In thermodynamics, a state 

function is a property of the system which is depending 

only on the state of the system, not on the manner this 

system acquired that state. Several state functions exist 

besides entropy, all able of describing quantitatively an 

equilibrium state of a  system. For this reason, besides 

the change of entropy, an absolute entropy ( S  rather 

than S ) was defined. In this case, an approach using 

statistical mechanics is preferred. Let us remember that 

the concept of entropy, which came out of 

thermodynamics, as proposed by Rudolf Clausius in his 

analysis of Carnot cycle, was linked by Ludwig 

Boltzmann to the number of specific ways in which a 

physical system may be arranged, in a statistical 

mechanics approach. 

 

In fact, the modern statistical mechanics was initiated in 

the 1870s, by the works of Boltzmann, mainly collected 

and published in his 1896 Lectures on Gas Theory [3].  
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Entropy is then a fundamental quantity for any physics 

classroom, in its tasks of learning and teaching physics. 

As we are showing in this paper, lectures on this subject 

can be enriched by a discussion of  dimensional 

equations related to the entropy of some models of 

physical systems. We will see some examples based on 

the entropy of the blackbody radiation and of the black 

holes, among others. Before examples, let us discuss 

shortly the concepts of thermodynamic and statistical 

entropies. 

 

2. Entropy and Carnot cycle 

The physical concept of entropy arose from the studies 

of Rudolf Clausius on the Carnot cycle [4]. This cycle is 

a theoretical thermodynamic reversible cycle proposed 

by Nicolas Léonard Sadi Carnot in 1824. It is composed 

of an isothermal expansion, followed by an adiabatic 

expansion. Then we have an isothermal compression 

followed by an adiabatic compression. When the Carnot 

cycle is represented on a pressure volume diagram (pV 

diagram), the isothermal stages are given by  isotherm 

lines of the working fluid. The adiabatic stages move 

between isotherms. The area bounded by the cycle 

represents the total work  done during one cycle. A 

Carnot cycle is also represented by using a temperature-

entropy diagram (TS diagram). In such diagrams, the 

adiabatic reversible stage is an isentropic stage. 

 

In a Carnot cycle, heat HQ  is absorbed at temperature 

HT  from a reservoir in the reversible isothermal 

expansion, and given up as heat CQ  to a  reservoir, 

with the reversible isothermal compression, at CT , 

where CH TT  . 

 

Through the efforts of Clausius and Lord Kelvin 

(William Thomson, 1st Baron Kelvin, 1824-1907), it is 

now known that the maximum work that a system can 

produce is the product of the Carnot efficiency   and 

the heat absorbed from  the hot reservoir:  

H
H

C
H Q

T

T
QW 








 1    (1) 

From the first law of thermodynamics, over the entire 

cycle, we have: CH QQW  . Therefore, we have: 

C

C

H

H

T

Q

T

Q
    (2) 

This implies that there is a function of state which is 

conserved over the complete Carnot cycle. Clausius 

called this state function as “entropy”. 

 

In the Carnot cycle, we have two entropies:  

C

C
C

H

H
H

T

Q
S

T

Q
S  ;    (3) 

They have opposite signs and therefore, from (2), 

adding them we have zero. This results is generalized to 

generic reversible cycles as: 

 







0

revT

dQ
   (4) 

3. Entropy and statistical mechanics 

The statistical definition was given by Ludwig 

Boltzmann in the 1870s.  Boltzmann showed that his 

entropy was equivalent to that coming from Carnot 

cycle, within a constant number, the Boltzmann's 

constant. 

In the Boltzmann approach,  entropy is a measure of the 

number of ways in which a system may be arranged. 

This definition describes the entropy as being 

proportional to the natural logarithm of the number of 

possible microscopic configurations of the individual 

atoms and molecules of the system (microstates) which 

could give rise to the observed macroscopic state of the 

system. 


i

ii ppkS ln  (5) 

The sum is over all the possible microstates of the 

system, and ip  is the probability that the system is in 

the i-th microstate [5].  The constant of proportionality 

k  is the Boltzmann constant. It is a  constant relating 

energy at the individual particle level with temperature. 

It is also the gas constant R , divided by the Avogadro 

constant AN . 

 

The Boltzmann constant is linking macroscopic and 

microscopic physical quantities; for instance, for an 

ideal gas, the product of pressure p  and volume V  is 

proportional to the product of amount of substance n  

(in moles) and absolute temperature T : nRTpV  , 

where R  is the abovementioned gas constant. 

Introducing the Boltzmann constant k  transforms the 

ideal gas law into an alternative form: NkTpV  , 

where N  is the number of molecules of gas. Therefore, 

the equation of the ideal gas is given in a microscopic 

formalism: 

NkTnRTpV     (6) 

For a gas, the internal energy coming from the first law 

of thermodynamics, is linked to the entropy by the 

second law, in the following equation:  

dVpTdSdU     (7) 

Let us remember that, for a fixed mass of an ideal gas, 

the internal energy is a function only of its temperature, 

whereas the entropy depends on temperature and 

volume. 

 

4. Dimensions of entropy 

The Boltzmann constant k  has the dimensions of 

energy divided by temperature, the same of entropy 

then. Its value in SI units is KJ /10380.1 23 . 

Any dimensionless quantity, multiplied by this constant, 

becomes an entropy.   

 

Let us use the symbol E  for the dimension [energy] 

and start from the Clausius entropy. The dimensional 

analysis gives: 
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   (8) 

Let us note that dimensional equations are characterized 

by the square brackets. 

 

In the case we start our discussion from the statistical 

entropy, we have the presence of the logarithmic 

function too. The discussion proposed in this paper will 

be in the framework of Eq.8. 

 

We have a clear example of (8) in the entropy of an 

ideal Fermi-Dirac gas. In a Fermi-Dirac system of 

particles, only one particle may occupy each non-

degenerate energy level. Let us consider first the 

absolute zero. If there are N particles, the lowest N 

energy states are occupied up to the level oE . At low 

temperatures, we have the entropy given by [6]: 













oE

kT
NkS

2

2
   (9) 

Here we can see explicitly one of the dimensional 

equations in (8): 






















E

k
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E

kT
NkS

o


][][

2
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   (10) 

Of course, we can also have different dimensional 

equations as the following:  






































][][][ k

E

E
kS    (11) 

In (11),  is a given power. Here, we have energies and 

temperature: in fact, we can find several other 

dimensionless ratios too, for instance of lengths, as we 

will see in this paper.  

 

5. Entropy of the Debye model of solids 

First of all, let us find an entropy which contains a ratio 

of temperatures.  

 

In the Debye model, a solid is treated as an isotropic 

elastic continuum in which the velocity of the sound is 

constant. For the longitudinal and transverse waves, 

Peter Debye (1884-1966) put a cut-off at the upper limit 

of frequency to justify the fact that the solid is 

considered as an elastic continuum. The upper angular 

frequency of waves is D . 

 

The model is characterized by a temperature, the Debye 

temperature, which is given by  kDD /  . Let 

us define the dimensionless variable kTx / . 

2/h  is the reduced Planck constant. 

The heat capacity of the solid is [7]: 
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e
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The lattice entropy is defined as: 
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In general: 
d

D

T
NkS 











   (14) 

In (14), d  is the dimension of lattice. In the case of a 

two-dimensional layer 2d . For a wire, 1d . We 

can have therefore different powers as in the 

dimensional equation (11). 

 

6. Entropy and condensed matter 

Let us consider other two examples from condensed 

matter physics: one is concerning the vibrational 

entropy, the other the entropy of paramagnets.  

 

In the previous section, we have discussed the entropy 

of Debye models. Of course, we can have models 

considering not only the elastic waves having a constant 

speed of the sound, but containing phonons and their 

true dispersions.  

 

A phonon is a collective excitation in a periodic 

arrangement of atoms or molecules, such as in 

crystalline solids. Phonons are obtained from the second 

quantization of the displacement field of solids. An 

assembly of phonons possesses an entropy given by : 

  




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
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e
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k

ekS

1

/

1ln

/

/











   (15) 

The sum is over all the frequencies and polarizations of 

the system  [8] . 

 

Einstein proposed in 1907 that a solid could be 

considered an assembly of a large number of identical 

oscillators. All atoms oscillate with the same frequency. 

If we use the Einstein model of solids, and introduce the 

Einstein temperature:  

EE k   (16) 

The entropy is: 

 T

T

E

E

E

eNk

e

T
NkS

/
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1ln3
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/
3











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   (17a) 
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And also: 

)1ln(3
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T
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E
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eNk
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e

T
NkS
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
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
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   (17b) 

Here we have a simple ratio of temperatures: 













EkS ][][    (18) 

The vibrational entropy of Eqs.17 appears also in the 

calculation of the entropy of diatomic gases. For these 

gases we have the contribution of rotational modes too. 

If the molecules have a moment of inertia I , at low 

temperatures we have that [9] : 













2

2
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2





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e
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NkS kTI
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 (19) 

In (19), we have, as in (11), the following dimensional 

equation: 
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   (20) 

 

Let us now discuss an example of entropy of materials 

having a magnetisation, in particular  of a spin 1/2 

paramagnet in terms of temperature and applied 

magnetic field [6]:  

 

 1ln
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






   (21) 

In (21), we have the magnetic field and the magnetic 

moment  . At low temperatures, the first term is 

negligible and then: 


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




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







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e
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B
NkS kTB
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2 /2

   (22) 

Here we have a ratio as in Eq.8.  

 

7. Black-body radiation 

A quite interesting example of dimensional equation is 

coming from the entropy of the black-body radiation. 

 

Calculating the properties of radiation from a black-

body was a major challenge in theoretical physics of the 

late nineteenth century. The problem was solved in 

1901 by Max Planck in the approach which is known 

today as the Planck's law of black-body radiation [10]. 

The thermodynamics of homogeneous and isotropic 

electromagnetic radiation in a cavity with given volume 

and temperature is analysed in [11]. In this reference we 

find that the entropy is: 

 

3

33

45

15

8

3

4
VT

ch

k
S


    (23) 

Besides the Planck constant h , we have also the speed 

of light c . 

 

The Planck constant is the quantum of action, 

introduced to describe the proportionality constant 

between the energy of a charged atomic oscillator in the 

wall of the black body, and the frequency  , of its 

associated electromagnetic wave. Its relevance is now 

fundamental for quantum mechanics, describing the 

relationship between energy and frequency in Planck-

Einstein relation: 




  2
2

h
hE    (24) 

In (24), we have the angular frequency   and the 

reduced Planck constant  . Action has the dimensions 

of [energy]·[time], and its SI unit is joule-second. 

Therefore, the corresponding dimensional equation is 

(let us remember that in the dimensional equation T  

means time): 
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8. An ideal Bose gas 

In fact, we can write the last equation in (25), in a 

different form: 
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   (26) 

In (26), we used  LcT ][ . 

From (26), we have that the entropy can be the 

Boltzmann constant multiplied by a ratio of a given 

power of lengths (in this specific case, the third power). 

Let us discuss an example, that of an ideal Bose gas. 

 

An ideal Bose gas is the quantum-mechanical version of 

a classical ideal gas which is composed of bosons. 

These particles have an integer value of spin and obey 

Bose–Einstein statistics. This statistics,  developed by 

Satyendra Nath Bose for photons, was considered by 

Albert Einstein for massive particles. 

 

In 1924 [12], Einstein deduced that an ideal gas of 

bosons can form a condensate at a low enough 

temperature. This condensate is known as the  Bose–

Einstein condensate. This condensate is a state of matter 

in which separate atoms or subatomic particles, cooled 

to near 0 K, coalesce into a single quantum mechanical 

entity,  described by a wave function. As discussed in 

[13], there is a first-order transition, having a critical 

temperature CT . 
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The entropy of this gas is given by: 

 
















C

C

TTg
v

Nk

TTzzg
v

Nk

S

)1(
2

5

ln)(
2

5

3

3



     (27) 

In (27), NVv / , where V is the volume of the gas 

and N the number of particles. We find also the thermal 

wavelength  , which is given by: 

mkT

22 
     (28) 

In (28), we find the mass m  of the particle. 

The  quantity  z , which is named “fugacity”, is 

dimensionless: vz /3  and its values are ranging 

from 0 to 1. The function )(zg  is given by: 
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In (29), we see clearly that the entropy of the Bose gas 

has dimensions: 
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9. Bekenstein-Hawking entropy of black holes  
Can we find entropies, whose dimensional equations 

have a different power of lengths? The answer is 

positive. We have it in Ref.14, which gives the entropy 

of a black hole in a specific formula. 

 

As proposed by Jacob Bekenstein, if a black hole were 

an object having no entropy, this fact would lead to a 

violation of the second law of thermodynamics [15]. In 

fact, when a hot gas with entropy enters a black hole, 

once it crosses the event horizon, its entropy would 

disappear. To save the second law, the black hole must 

be an object having an entropy, the increase of which is 

greater than the entropy carried by the gas. This entropy 

depends on the observable properties of the black hole: 

mass, electric charge and angular momentum. These 

three parameters enter only in a combination which 

represents the surface area of the black hole, as a 

consequence of the "area theorem" [16,17]. This 

theorem tells that the area of event horizon of a black 

hole cannot decrease. It is reminiscent of the law 

concerning the thermodynamic entropy of closed 

systems. As a consequence, the black hole entropy is 

proposed as a monotonic function of area: if A  stands 

for the surface area of a black hole (area of the event 

horizon), then the black hole entropy is given by: 

G

Ac
k

L

A
kS

P
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44

3

2
    (31) 

This entropy is known as the Bekenstein-Hawking 

entropy. In (31), PL   stands for the Planck length: 

3c

G
LP


    (32) 

while cG ,,  denote, respectively, Newton's gravity 

constant, reduced Planck-Dirac constant and the speed 

of light.  

From this equation, it is clear that: 
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In this  entropy, the black hole is identified with a 

constant times its surface area [14]. This fact was clear 

after Stephen Hawking discovered that a black hole  

emits radiation at a well-defined temperature : 

GM

c
kT

8

3
  (34) 

This temperature is also known as the Hawking 

radiation temperature. M is the mass. The radius of a 

black hole is 
2/2 cGMR  , which is the 

Schwarzschild radius. The surface area is then:  

4

22
2 164

c
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RA      (35) 

 

The entropy is 
T

dMc

T

dQ
dS

2

 where the heat 

increment is identified with the energy equivalent of the 

in-falling mass [18]. After integration we can obtain 

(31). 

Let us continue our dimensional analysis: 
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Then: 
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In (36), F means [force] and c a [speed]. 

Let us show that, starting from the dimensions of the 

classical Clausius entropy, we can arrive to BH-entropy. 

E is the energy and W the work, which have the same 

dimensions. 
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The volume V is the product of area A  and length L , 

then: 
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





















LAGM

LAk
k

LAF

Ak
kS

2

2

][][][


   (39) 

The force F has the same dimension of the gravitational 

force. Considering that ][ k has the same dimension of 

an internal energy U of a perfect gas, which is 

dimensionally the same of a kinetic energy: 
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Then: 
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And these are the dimensions of Bekenstein-Hawking 

entropy GAkc 4/3
. 

Using again (35):  
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About the amount of entropy, in [14] an example is 

given. A one-solar mass Schwarzschild black hole has 

an horizon area of the same order as the municipal area 

of Atlanta or Chicago. Its entropy is about k77104 , 

which is about twenty orders of magnitude larger than 

the thermodynamic entropy of the sun [14]. 

 

10. The Bekenstein bound 

Bekenstein bound is the upper limit of the entropy S  

that can be contained within a given finite region of 

space which has a finite amount of energy. It is also the 

maximum amount of information required to perfectly 

describe a given physical system down to the quantum 

level [19]. 

 

The universal form of the bound was originally found 

by Jacob Bekenstein as the inequality [19]: 

c

REk
S



2
    (43) 

where R  is the radius of a sphere that can enclose the 

given system, E  is the total mass–energy including 

any rest masses. Note that the expression for the bound 

does not contain the gravitational constant G . The 

Bekenstein-Hawking entropy of black holes exactly 

saturates the bound. 

Let us consider the dimensional equation of this bound:  
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The bound is closely associated with black hole 

thermodynamics. 

 

11. Entropy of vacuum 

The vacuum has entropy too. In quantum mechanics 

and in quantum field theory, the vacuum is defined as 

the state of considered system with the lowest possible 

energy. This energy is known as the zero-point energy. 

Since all quantum mechanical systems undergo 

fluctuations, because of their wave-like nature, the 

vacuum is subjected to fluctuations too. The 

fluctuations are temporary changes in the amount of 

energy, as given by the Werner Heisenberg's uncertainty 

principle. 

 

The zero-point energy of quantum electrodynamics was 

an important result in the theory of quantized fields 

[20,21]. The Casimir effect deals with the modification 

of this energy. The original analysis, proposed in [22], 

provided the basic problem by calculating the force 

between two conducting plates, due to the modification 

imposed by their presence, to the possible 

electromagnetic modes. 

 

For an electromagnetic field, the vacuum may be 

considered as its equilibrium state in the limit of 

vanishing temperature: in [20], the authors have studied 

the extension to finite temperatures.  Once the Casimir 

free energy had been calculated, by the standard 

thermodynamic formulae, the pressure on the plates can 

be obtained from it [20]. In this reference, the radiation 

is supposed confined between two conducting plates. 

The edge size of both plates is L. The first is placed at 

0z  in the XY plane. The second plate is placed at 

az   parallel to the XY plane. Let us suppose 

aL  .  The entropy of the zero-point fluctuations of 

the fields is [20]:  
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   (45) 

Eq.(45) is given in the limit of high temperature. As in 

(26), this entropy is a ratio of cubic powers of lengths. 

In (45), we have: 







1

1
)(

m
nm

n    (46) 

In [20], it is stressed that, while the Casimir energy 

density vanishes in the high temperature limit,  the 

Casimir free energy density does not. Thus, the resultant 

force of attraction between the plates is of entropic 

origin [20]. 
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12. Entropic forces 

Let us conclude the paper with another quite attractive 

problem, that of a force which, like the Casimir force, 

has its origin in the entropy of the corresponding 

physical system. 

 

An entropic force is a phenomenological force coming 

for the statistical tendency of increasing entropy, rather 

than from a particular underlying microscopic force 

[23]. The first entropic approach was proposed for the  

Brownian motion  in Ref.24.  

 

To have a force from entropy, we can use the following 

dimensional equation:  
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Let us determine the entropic force for a specific 

phenomenology, that of the elasticity of polymers. 

Polymers can be modelled as freely jointed chains with 

one fixed end and one free end [25]. The length of a 

rigid segment of the chain  is b ; n  is the number of 

segments of length b . r   is the distance between the 

fixed and free ends, and cL  is the contour length, equal 

to  bn . When the polymer chain oscillates, distance r  

changes over time. 

The probability of finding the chain ends a  distance r  

apart is given by the following Gaussian distribution f  

: 

dre
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




    (48) 

In (48), 2/3 . By using entropy and the Helmholtz 

free energy, we can obtain a force which is like that of 

the Hooke’s law. Let us consider the entropy [25]: 

fkS ln    (49) 

The entropy is linked to the Helmholtz free energy:  

bL

r
kTTSA

c

2
    (50) 

And then [25]:  

r
bL

kT

dr

dA
F

c

    (51) 

This is the law corresponding to the dimensional 

equation previously proposed in Eq. 47.  

 

This example on the entropic force helps us to conclude 

the paper stressing the importance of dimensional 

analysis too. In fact, a guessed   dimensional equation 

can suggest a new approach to solve a specific problem.  
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