
Efficient Winograd-based Convolution Kernel Implementation
on Edge Devices

Athanasios Xygkis∗

Intel Corporation, Ireland
thanasis.xigis@intel.com

Lazaros Papadopoulos
School of ECE, NTUA, Greece
lpapadop@microlab.ntua.gr

David Moloney
Intel Corporation, Ireland
david.moloney@intel.com

Dimitrios Soudris
School of ECE, NTUA, Greece
dsoudris@microlab.ntua.gr

Sofiane Yous
Intel Corporation, Ireland
sofiane.yous@intel.com

ABSTRACT

The implementation of Convolutional Neural Networks on edge

Internet of Things (IoT) devices is a significant programming chal-

lenge, due to the limited computational resources and the real-time

requirements of modern applications. This work focuses on the

efficient implementation of the Winograd convolution, based on

a set of application-independent and Winograd-specific software

techniques for improving the utilization of the edge devices com-

putational resources. The proposed techniques were evaluated in

Intel/Movidius Myriad2 platform, using 4 CNNs of various compu-

tational requirements. The results show significant performance

improvements, up to 54%, over other convolution algorithms.

1 INTRODUCTION

In the world of Internet of Things, sensors and connected devices

generate huge amount of data, on the order of petabytes per second

[3]. There is increasing need to perform significant amount of com-

putation closer to the edge rather than transferring large portions of

raw data to the cloud, due to communication cost that impacts per-

formance and energy consumption [15]. For applications deployed

in drones, autonomous vehicles, robotics and wearables, local data

processing by embedded devices is desired, since latency and secu-

rity risk of relying at the cloud are intolerable. These applications

are often enabled by machine learning algorithms, and more specif-

ically by Convolutional Neural Networks (CNNs), which are used

to extract meaningful information from raw data. Therefore, the

efficient deployment of neural networks in embedded devices will

improve near-sensor processing, avoid the expensive data transmis-

sion, enable freedom from the cloud and provide low latency along

with low energy consumption. This is a significant challenge, due

to the embedded systems resource constraints and the increased

computational requirements of neural networks.

∗Also with the School of ECE, NTUA, Greece.

Table 1: 3x3 conv. exec. time in Intel/Movidius Myriad2

Input size
Output

maps

Direct

convolution (ms)

Straightforward

Winograd (ms)

[56 × 56 × 64] 192 11.3 11.8

[28 × 28 × 96] 128 4.6 4.7

[28 × 28 × 128] 192 7.9 7.5

The growth of the embedded applications enabled by CNNs con-

tributed to the availability of various specialized architectures, such

as FPGA-based (e.g. NeuFlow [13]), ASICs (e.g. [2]) and heteroge-

neous SoCs with deep learning processing capabilities. CEVA XM

[14], Cadence Tensilica vision DSP [6] and Intel/Movidius Myriad

[11] belong to the family of programmable embedded processor-

based platforms that rely on a set of vector processing units and on

high memory bandwidth to provide computational power within

a few Watts of power envelope. Nevertheless, significant effort is

required to bring the computational load of state-of-the-art CNNs

within the power envelope of such low power edge devices.

A recent trend towards the deployment of neural networks in

edge devices is the design of CNNs with limited requirements in

computational resources, such as the SqueezeNet [8][5]. Another

approach, which is complementary to this and in which this work

focuses, is to develop techniques and methodologies for the efficient

implementation of CNNs in such systems. Although there exists

many algorithmic approaches for improving the performance of

CNNs implemented on computing architectures, such as the Wino-

grad [9] and the Strassen [4], little attention has been paid to the ef-

ficient implementation of these algorithms on edge devices. Indeed,

several recent publications conclude that the metrics of execution

time and energy efficiency are largely ignored by mainstream com-

puter vision researchers [8][7]. As an example, Table 1 presents

the execution time of 3x3 convolution for various input sizes of

GoogleNet deployed in the Intel/Movidius Myriad2 platform [11].

The table shows results for direct (i.e. conventional) convolution

and a straightforward implementation of the convolution based

on the Winograd algorithm [9]. Although Winograd requires 2.25

times less element-wise multiplications than the direct one, the

straightforward implementation, in which each processing unit

operates in isolation from the others, provides similar performance.

Architectural constraints, such as the limited local memory size of

Myriad reduce the performance of the Winograd algorithm. Since

Winograd convolution requires significantly more memory space,

(the kernel size increases by 78% due to data re-layout and the input

Acceleration Units

Vector Processing Units

Cache
controller

DMA
controller

Scalar
Processing

UnitG
lo
ba
lm

em
or
y
(D
D
R
)

Interfaces

RISC

Edge detection Resizing

Local memory (SRAM)

I2C UART SPI

Corner detection

Figure 1: Target architecture schematic diagram.

size increases by 100% due to striding), frequent DMA transfers are

required that negatively affect the execution time. Therefore, the

results of Table 1 highlight the need for techniques that enable the

efficient implementation of the Winograd convolution and similar

algorithms in edge devices, by exploiting fine-grain parallelism and

improving memory management.

This work is a contribution in "filling the gap" between the

proposed algorithmic approaches for reducing the computational

requirements of CNNs and the actual implementation of these

algorithms in modern heterogeneous edge devices. The complexity

and the constraints of these architectures (mainly imposed by the

requirements for energy efficiency at the edges of the Internet

of Things networks), along with the application requirements for

increased real-time performance (e.g. real-time object detection

and recognition) put very high requirements on the software side.

Therefore, software techniques are required to address challenges,

such as the synchronization between the vector processing units,

the efficiency of data transfers, data reusability issues andmanaging

of the limited hardware resources.

From the proposed algorithms that focus on increasing the per-

formance of CNNs, we selected the Winograd algorithm that pro-

vides efficient convolution of relatively small kernels [9]. The pro-

posed software techniques for the efficient implementation of the

Winograd algorithm on edge devices are a combination of typical

application-independent data management optimizations widely

used in embedded systems and of Winograd algorithm-specific im-

plementation techniques. The application-independent techniques

are inspired by existing methodologies for memory assignment and

data transfer optimization that have been extensively examined in

the literature [1][10] and they are used in this context to increase

the impact of the Winograd-specific techniques in the overall CNN

inference execution time reduction. The evaluation of the proposed

techniques is performed in the Myriad2 embedded platform, in

which 4 widely used and computationally intensive CNNs were

implemented using performance and energy consumption as key

metrics.

The rest of the paper is organized as follows: Section 2 briefly

describes the target architectures and their constraints. Section

3 presents the proposed software techniques and the evaluation

and discussion follows in Section 4. Finally, in Section 5 we draw

conclusions.

2 EDGE DEVICES AND CNN
IMPLEMENTATION CHALLENGES

This work focuses on the family of processor-based heterogeneous

embedded platforms, which are extremely low power (often <1W)

and are often used at the edges of IoT networks to perform tasks

enabled by deep learning algorithms, such as object detection

and recognition. It includes CEVA XM [14], Cadence Tensilica vi-

sion DSP [6] and Intel/Movidius Myriad [11]. A typical high-level

schematic diagram is depicted in Fig. 1. The most important com-

mon architectural features are the following:

• Multiple memory hierarchies: Normally, a local (scratch-

pad) memory provides low latency and high throughput

data access, while a larger global memory is often accessed

through DMA transactions. Data are normally operated in

the local memory, after being fetched from lower levels of

the memory hierarchy.

• Multiple Vector Processing Units (VPUs), which usually

support VLIW, SIMD and multiply-accumulate operations

(MACs) with high efficiency. For instance, CEVA mx-6 and

Tensilica Vision P6 integrate 128 and 256 MACs, respectively.

• RISC processor(s) that may run an operating system (Myr-

iad2 LEON-OS processor, ARM Cortex i.MX 6 in YouSiP

vision DSP based on CEVA platform) or handle tasks such

as interrupts, IO, etc..

CNN data storage and management is challenging in edge de-

vices. The Winograd algorithm requires significantly more memory

size than the direct convolution. Therefore, from the hardware per-

spective, the limited size of local memories imposes a significant

data management challenge. As a result, the overhead of frequent

DMA transaction reduces the performance and increases the energy

consumption. Furthermore, in ported memories, such as in Myr-

iad2, stalls may appear under heavy data sharing. Finally, extensive

experimentation inMyriad2 has shown that the DMA engine perfor-

mance is reduced under heavy utilization [12]. Software techniques

that optimize data management, improve the utilization of local

memories and exploit parallelism can improve both performance

and energy efficiency.

3 SOFTWARE TECHNIQUES FORWINOGRAD
CONVOLUTION IMPLEMENTATION

In this Section, we present a set of software techniques for the effi-

cient implementation of the Winograd convolution on edge devices

that belong to the family of platforms described in Section 2. The

proposed techniques focus on data organization and management

and improve the memory utilization and the exploitation of par-

allelism provided by the multiple vector processing units of the

target architectures. More specifically, from the embedded systems

domain, we selected a set of widely used data transfer and man-

agement optimizations, which increase the impact of theWino-

grad algorithm-specific implementation techniques that sig-

nificantly improve the performance of convolution based on the

Winograd algorithm.

3.1 Data transfer and management
optimizations

The data transfer and management optimizations are application-

independent. They improve the utilization of the local memory of

edge devices and reduce the frequency of data transfers. They are

depicted in Fig. 2 and are described below.

Vector
Processing

Units

G
lo
ba
lm

em
or
y
(D
D
R
) Local memory (SRAM)

cache

data buffer
DMA

VPU
instructions

feature
maps

Straightforward implementation

Vector
Processing

Units

G
lo
ba
lm

em
or
y
(D
D
R
) Local memory (SRAM)

cache

Implementation optimized using data
transfer and management techniques

cached
VPU

instructions

double buffering
kernels VPU

instructions

VP
U

in
st
ru
ct
io
ns

VP
U

in
st
ru
ct
io
ns

feature
maps

kernels

DMA

Figure 2: Data transfer and management optimizations.

3.1.1 Increasing local memory available space. Allocation of vec-

tor processors’ instruction code in the local memory is often the

default memory allocation scheme in embedded systems, such as in

Myriad2. However, this scheme imposes frequent DMA data trans-

fers between the local and the global memory during the execution

of a CNN inference, due to the limited local memory space avail-

able for data. Reducing the frequency of DMA transfers can benefit

performance significantly: The effects of DMA data transfers to the

performance and the energy consumption in Myriad have been ex-

tensively examined in [12]. Allocating the vector processing units’

instruction code in the global memory and fetching instructions

through the cache subsystem increases the local memory space

available for CNN data. Performance loss due to the allocation of

instructions in lower levels of memory hierarchy is compensated by

performance and energy consumption improvements due to more

efficient local memory utilization.

3.1.2 Double buffering and Overlapping. Increasing local mem-

ory available space for data enables double buffering and overlap-

ping techniques, which are widely used in embedded systems. More

specifically, the increased local memory space can be used to allo-

cate a second data buffer, which is used to overlap communication

and computation.

3.2 Winograd algorithm-specific
implementation techniques

The second group of software techniques focuses on the optimiza-

tion of the implementation of convolutional layers of CNNs on

edge devices. Winograd algorithm for convolution is an efficient

way to compute the convolution of small kernels on small input

sizes [9]. A typical configuration in which the Winograd algorithm

provides numerical stability and efficiency is 3x3 kernels and 4x4

input sizes. The algorithm can efficiently provide the 2x2 output

result requiring 2.25 times less element-wise multiplications than

the direct convolution. Although we focus on the aforementioned

configuration, the following techniques are applicable to other con-

figurations, as well.

The steps of the Winograd algorithm are summarized below:

(1) The input is split into 4x4 tiles with stride 2. The following

steps are applied in each tile:

(2) Each 4x4 tile D is transformed into an 4x4 intermediate input

X , as follows: X = BTDB, where B is a 4x4 matrix with

elements -1, 0 and 1 [9].

(3) The 3x3 kernel is similarly transformed offline into a 4x4

intermediate kernel F , as well.
(4) The intermediate output Y is calculated as follows:Y = X �F .

Intermediate
input of tiles

...

Aggregation groups

...
Aggregation Group 1:

...

...

...

N

1

2

N

C C

Input group i
as matrix (Xi)

...

C

N

Kernel group i
as matrix (Fi)

K

...C

Intermediate
output

 group i (Yi= Xi•Fi)
N

K
...

... ...

Aggregation Group 2:

Aggregation Group 16:

i = 1, 2, ..., 16

Figure 3: Aggregation in Winograd. N : number of input tiles, C :
number of input feature maps, K : number of output feature maps.

13
Y4

14
Y13

15
Y16

16

Y5

9
Y9

10
Y8

11
Y12

12

Y2

5

Y14

6

Y3 Y15

8

Y6

1

Y10

2

Y7

3

Y11

4

VPU Group13
VPUa VPUk
F1a F1k

Sharing

Folding and pipeline demonstration

Z1 Z3 Z2 Z4
Send Z to global memory with DMA

Yi = Xi•Fi
i = 1, 2, ..., 16

Z = AT•Y•A

Y1

7

4-
st
ag
e
pi
pe
lin
e

Figure 4: Sharing and folding in Winograd algorithm.

(5) Finally, the intermediate output is transformed into a 2x2

matrix Z , which is the result of convolution: Z = ATYA,
where A is a 4x2 matrix with elements -1, 0 and 1 [9].

The brief description of the Winograd above considers 2D inputs

and outputs. However, in the context of CNNs, the 3rd dimension

that represents the multiple feature maps should also be considered.

In this case, the dimension of each intermediate input of each tile

is Cx4x4 (Depth × Height ×Width), where C denotes the number

of input feature maps (depth). The straightforward implementation

for producing the intermediate output (Y = X � F) would be to gen-
erate the intermediate output of each map separately, followed by

stacking of the output results. However, a more efficient approach

that eliminates interdependencies and exploits the SIMD feature of

the vector processing units is to perform the transformation in a

vectorized manner, as shown in Fig. 3. The elements of the interme-

diate input of each tile are aggregated into 16 different groups, with

each group containing elements from all tiles. More specifically,

the 1st group contains vectors denoted by x00 in the 2D Winograd.

Similarly, the 2nd group contains the vectors x01 of all the tiles, ...,
the 16th group contains the vectors x33 of all the tiles. The same

is done offline for the kernels. Thus, the intermediate output is

generated by performing 16 matrix-matrix multiplications, namely

Yi = XiFi , for i = 1, 2, . . . , 16. The 16 multiplications will be per-

formed in parallel and combined together to get the final output

of the convolution. This data representation enables the sharing

and the folding software techniques, described in the following two

subsections.

3.2.1 Sharing. Sharing refers to the way that data, which do not

fit in the local memory of processing units, are efficiently shared

among processing units to retain high data locality and it is depicted

in Fig. 4.

In Myriad, although the whole local memory is accessible to all

processing units, it is divided in a number of ‘slices’ and each slice

is attached to a specific unit. Each unit can access the attached local

memory slice with lower latency compared to the others. Therefore,

in the context of Winograd, the solution that provides the highest

data locality would be to store each one of the 16 matrices Xi , Fi ,Yi
in the part of the local memory where the processing unit that

performs the multiplication has the lowest access time. However,

since the matrices usually do not fit in the slices, splitting the

multiplication among processing units can still retain data locality.

For example, the splitting among two units is performed as follows:[
Yi,a
Yi,b

]
=

[
Xi,a
Xi,b

] [
Fi,a Fi,b

]
(1)

Matrices with "a" subscript are stored in the slice of one processing

unit, while matrices with "b" subscript are stored in the slice of

another unit. As a result, the parts Fi,a and Fi,b of Fi are shared
among the two units, that compute Yi,a and Yi,b respectively. Thus,

the processing units of an edge device can be divided into groups,

with each group containing the 1/16th of the total units and sharing
Fi data to calculate equal parts of a Yi . Splitting the kernels among

the slices of memory leads to better load balancing and more fair

memory usage, improving the parallelization scalability.

3.2.2 Folding. The purpose of folding is to improve the reusabil-

ity of data already stored in the highest levels of the memory hi-

erarchy for producing the final output of the convolution. This

technique reduces dramatically the overhead imposed by DMA

transactions to/from the global memory.

The equation Z = ATYA that produces the 2x2 convolution

output (step (5) in the description of the Winograd algorithm) can

be written as follows (details can be found in [9]):

[
Z1 Z2
Z3 Z4

]
= AT

⎡⎢⎢⎢⎢⎢⎢⎣

Y1 Y2 Y3 Y4
Y5 Y6 Y7 Y8
Y9 Y10 Y11 Y12
Y13 Y14 Y15 Y16

⎤⎥⎥⎥⎥⎥⎥⎦
A (2)

where

AT =

[
1 1 1 0

0 1 −1 −1
]

The above transformation can be written as:

Z1 = Y1 + (Y5 + Y9) + (Y2 + Y6 + Y10) + (Y3 + Y7 + Y11)
Z2 = −Y4 + (Y2 + Y6 + Y10) − (Y3 + Y7 + Y11) − (Y8 + Y12)
Z3 = −Y13 + (Y5 − Y9) + (Y6 − Y10 − Y14) + (Y7 − Y11 − Y15)
Z4 = Y16 + (Y6 − Y10 − Y14) − (Y7 − Y11 − Y15) − (Y8 − Y12)
The terms grouped in parenthesis appear in more than one of

the equations. Therefore, these terms can be computed by a single

group of processing units and the result can be forwarded to others.

In other words, the final result is computed by accumulating (or

folding) a series of recurrent sub-results. The latest have also been

generated by folding as well. Generally, a common subexpression

elimination approach is an essential part of the folding technique.

Thus, while sharing is applied inside each group of processing

units and improves the locality of data fetched from the lower levels

of memory hierarchy, folding improves the reusability of results that

are computed by a single group of processing units and be reused

by others. As depicted in Fig. 4, results that are locally calculated

by each group are forwarded to the next level of processing units

groups. These groups accumulate the received results and repeat

the same process. After the folding operation of the last level is

completed, the final output is returned to the global memory with

DMA transfer. Thus, sharing and folding combined together lead

to a pipeline, in which the information is continuously propagated

through the levels of groups of processing units.

In the case where the number of processing units is not a multiple

of 16, both the sharing and the folding techniques should be ad-

justed accordingly: Kernel data Fi shared within a specific group of

processing units may be used by units that belong to other groups,

as well. Additionally, the pipeline steps may be less than four. The

suggested approach is that the groups at the top levels should accu-

mulate more produced data than the groups at lower levels, because

the reusability of the accumulated results at higher levels is reduced.

This approach is expected to reduce the performance decline caused

by the limited available processing units.

The Winograd algorithm imposes large and frequent data trans-

actions, due to the increased size of the intermediate input and

kernels. As a result, following an approach where each processing

unit operates in isolation from the other units leads to exhaustion

of the bandwidth between the global and local memory, as it can be

derived from the results of Table 1. Sharing and folding techniques

mitigate this issue, by improving the utilization of the local memory.

On the other hand, the proposed approach includes synchronization

overhead, which appears during the folding step, (i) when process-

ing units of a specific level wait for receiving data from the lower

level and (ii) in common shared resources. However, evaluation

shows that the synchronization overhead is compensated by the

overall performance gain of the CNN inference execution.

4 EVALUATION IN MYRIAD EMBEDDED
PLATFORM

The software techniques described in the previous section were

evaluated in a set of CNNs acting as critical components of real-life

use cases, implemented on the Myriad2 embedded platform.

4.1 Evaluation setup and Experimental results

Myriad2 was designed by Intel/Movidius and it is a low power SoC

for computer vision and deep learning applications. It integrates 12

vector processing units that operate at 600MHz, 2 RISC processors,

hardware accelerators (e.g. edge detection, various filters) a 2MB

multi-ported SRAM (local memory) and a 512MB DDR2 DRAM

(global memory).

The techniques for the implementation of the Winograd convo-

lution in edge devices were evaluated using 4 widely used CNNs,

which are dominated by layers of 3x3 convolution: GoogleNet,

SqueezeNet, VGG and YOLO-tiny. Details of each CNN are sum-

marized in Table 2, where execution time breakdown results show

that a significant percentage of the execution time is spent on

the 3x3 convolutional layers (from 46% up to 83%). The proposed

Table 2: Details of CNNs used for evaluation

CNN input image output vector #layers exec. time (ms) #3x3 conv. layers %ms spent in 3x3 conv. layers

GoogleNet [224 × 224 × 3] [1 × 1000] 74 96.20 10 45.51

SqueezeNet [227 × 227 × 3] [1 × 1000] 30 46.73 8 47.48

VGG [224 × 224 × 3] [1 × 1000] 15 733.49 8 83.38

YOLO-tiny [448 × 448 × 3] [1 × 1470] 15 117.49 8 62.23

Computes:
Y2, top-half Y1

P0

Computes:
Y14, top-half Y13

P1

Computes: Y5

P8

Computes: Y9

P9

Computes:
Y3, top-half Y4

P4
Computes:

Y7, bottom-half Y4

P6

Computes: Y11,
bottom-half Y16

P7
Computes:

Y15, top-half Y16

P5

Computes: Y8

P10

Computes: Y12

P11

z1

z3

z4

z2

Computes:
Y6, bottom-half Y1

P2

Computes:
Y10, bottom-half Y13

P3

Figure 5: Sharing and folding in Myriad2.

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Number of processing units
1 2 3 4 5 6 7 8 9 10 11 12

Sp
ee
du

p

Convolution scalability in Myriad
Input: 64x64x32
Output: 64x64x128

(a) Convolution exec. time vs.

number of cores.

0
10
20
30
40
50
60
70
80
90

Convolution energy
consumption in Myriad

1 2 3 4 5 6 7 8 9 10 11 12
Number of processing units

En
er
gy

co
ns
um

pt
io
n
(m

J)

Input: 64x64x32
Output: 64x64x128

(b) Convolution energy con-

sumption vs. number of cores.

Figure 6: Software techniques applied in convolution.

implementation of Winograd is compared with (i) direct convolu-

tion (i.e. nxn convolution as an accumulation of nxn times of 1x1

convolutions) (ii) im2col convolution (i.e. nxn convolution as 1x1

convolution after altering data layout) and (iii) the combination of

the direct and im2col algorithms that results in the lowest execution

time in each CNN.

The instantiation of sharing and folding techniques in Myriad2,

which integrates 12 processing units, is depicted in Fig. 5. There ex-

ist 3 pipeline stages, and each group contains a single unit. Polling

for synchronization is avoided, by leveraging Myriad-specific hard-

ware implemented buffers, which are named fifos. There are 12

fifos and each one is assigned to a single processing unit. Each

fifo consists of 16 slots of 8 Bytes. Fifos are accessible to applica-

tion level and can be used for direct message passing between the

processing units. Finally, execution time and energy consumption

were measured based on features provided by the Myriad2 SDK.

All evaluation results refer to the CNN inference execution time

and operations are performed under the IEEE 754 fp16 standard.

Before proceeding with the evaluation based on the use cases,

we examined the scalability of the Winograd convolution after

applying the proposed data transfer andmanagement optimizations.

(a) Conv. depth vs. shar-

ing/folding performance.

0
2
4
6
8

0 50 100Ex
ec

tio
n

tim
e

(m
s)

Number of iterations
56x56x64 x 192 28x28x128 x 192
14x14x160 x 320 28x28x96 x 128

(b) Conv. execution time vs.

pipeline iterations.

Figure 7: Impact of CNN and architectural specifications.

As shown in Fig. 6a, it scales almost linearly with the number of

processing units. The energy consumption evaluation results are

shown in Fig. 6b. Although power increases with the number of

active processing units, the energy consumption is dominated by

the execution time, rather than by the power: As the execution time

significantly drops with the number of active processing units, due

to the increasing parallelism, energy decreases, as well.

The evaluation results are presented in Table 3. For each one

of the 4 CNNs the execution time of the whole CNN inference

is shown (column Full Net) and for the 3x3 layers specifically, is

shown in column 3x3 layers. Each CNN is evaluated with the con-

volutional layers implemented using direct convolution, im2col,

the most efficient implementation of them (Best combination) and

the Winograd convolution based on the proposed software tech-

niques. The last 2 rows show the execution time improvement of

the Winograd implementation over the Best combination implemen-

tation. The execution time of the full inference is reduced for all

CNNs implemented using the Winograd algorithm based on the

proposed techniques: 28.8% for GoogleNet, 22.5% for SqueezeNet,

42% for VGG and 24.4% for YOLO-tiny. The execution time results

for the 3x3 layers only are presented to highlight the impact of the

proposed techniques on the convolutional layers. Significant gains

are observed for all CNNs, ranging from 31.7% (YOLO-tiny), up to

54% (GoogleNet).

4.2 Observations and discussion

The data transfer and management optimizations reduce the fre-

quency of DMA transfers by increasing the available local memory

space and mitigate their overhead by enabling the overlapping of

computation and communication. They also increase the impact

of the sharing and folding techniques which are used to efficiently

deploy Winograd 3x3 convolution on edge devices. In this sub-

section we examine the parameters that affect the performance

improvements for the proposed techniques.

Table 3: Evaluation results in ms

GoogleNet SqueezeNet VGG YOLO-tiny

Full Net 3x3 layers Full Net 3x3 layers Full Net 3x3 layers Full Net 3x3 layers

Direct conv. 127.4 50 57 30 742.3 620.5 135.3 88.7

Im2Col conv. 98.9 46 47 20.7 789.7 667.7 126.3 80

Best combination 96.2 43.8 46.7 22.2 733.5 611.6 117.5 73.1

Winograd conv. 68.5 20.2 36.2 11.9 425.6 303.3 88.8 50

Gain (ms) 27.7 23.6 10.5 10.3 307.9 308.3 28.7 23.1

Gain % 28.8% 54% 22.5% 46.5% 42% 50.4% 24.4% 31.7%

Using a pipeline to implement the Winograd based on sharing

and folding techniques, enabled by application-independent embed-

ded system optimizations provides significant improvements to the

deployment of computationally intensive CNNs in edge devices. It

can be derived from Table 3 that GoogleNet implementation im-

proves from 10fps (Best combination) to 14fps, SqueezeNet improves

from 21fps to 27fps, VGG from 1fps to 2fps and YOLO-tiny from

8fps to 11fps.

The impact of sharing and folding depends on the number

of layers in which Winograd is applicable, as well as on the

computational requirements of these layers. The performance

of Winograd varies, depending on the combination of sizes be-

tween the input and output depth. Fig. 7a presents the perfor-

mance of the Winograd convolution for a 56x56 input image with

various depth sizes. Clearly, very small depths provide poor perfor-

mance, mainly due to the inability of utilizing the SIMD features of

the vector processing units. However, for larger depths, the perfor-

mance exhibits small variations irrespective of the ratio between

input and output depth.

Another important aspect is the efficiency of the pipeline schema

shown in Fig. 5. A reduction of the available localmemory space

per processing unit, increases the number of pipeline iterations

required to compute a specific convolution. Fig. 7b presents the

execution time and the number of iterations for 3x3 Winograd

convolution (after applying all proposed optimizations) for various

input sizes used in GoogleNet, when the available local memory

size ranges from 100 KB (minimum number of iterations) and drops

up to 40 KB (maximum number of iterations). Naturally, the number

of iterations increases when the available local memory size drops.

A significant observation based on Fig. 7b is that the synchroniza-

tion overhead between the processing units is constant, as shown

by the constant slope in all lines. Also, this figure highlights the

impact of the data transfer and management optimizations: Increas-

ing the local memory available space for useful data reduces the

number of required iterations, as well as the execution time of the

CNN inference. For, example, for input size 56x56x64, increasing

memory space from 40KB to 100KB, reduces the execution time

of a single 3x3 convolution by 15%. Finally, the number of vec-

tor processing units affects the impact of all techniques, since

convolution is a compute bound operation.

With respect to the energy consumption comparison between

direct andWinograd, both implementations leverage the same num-

ber of VPUs, use the DMA engine in a similar fashion and the same

matrix-matrix multiplication assembly kernel. Indeed, GoogleNet

best combination requires 1.87W, while Winograd 1.84W.

5 CONCLUSIONS

The software techniques proposed in this work can be effectively

used to efficiently implement the Winograd algorithm for convo-

lution in CNN-based applications deployed in edge devices that

provide a set of vector processing units that access a high bandwidth

local memory. This is achieved by combining application-agnostic

datamanagement software techniques, alongwithWinograd-specific

ones. The evaluation results based on 4 widely used CNNs show

significant performance improvements, leading to efficient deploy-

ment of CNN-based applications in low power edge devices.

ACKNOWLEDGEMENTS

We would like to thank the the Eyes of Things project team (http:

//eyesofthings.eu) for the support and the fruitful discussions. This

work has received funding from the European Union’s Horizon

2020 research and innovation programmes under grant agreement

No 780572 SDK4ED (www.sdk4ed.eu) and under grant agreement

No 687628 VINEYARD (vineyard-h2020.eu).

REFERENCES
[1] F Catthoor and et al.. 2013. Data access and storage management for embedded

programmable processors. Springer Science & Business Media.
[2] L. Cavigelli, D. Gschwend, C. Mayer, S. willi, B. Muheim, and L. Benini. 2015.

Origami: A convolutional network accelerator. In Proc. GLSVLSI’15. pp. 199–204.
[3] Cisco. 2016. Cisco Global Cloud Index: forecast and methodology, 2015–2020.

Technical Report.
[4] J. Cong and Xiao B. 2014. Minimizing computation in convolutional neural

networks. In Proc. ICANN’14.
[5] O. Deniz and et al.. 2017. Eyes of Things. Sensors vol.17(5) (2017).
[6] G. Efland, S. Parkh, H. Sanghavi, and A. Farooqui. 2016. High performance DSP

for vision, imaging and neural networks. In Hot Chips 28 Symposium (HCS’16).
[7] J Huang and et al.. 2017. Speed/accuracy trade-offs for modern convolutional

objects detectors. In Proc. CVPR’17.
[8] F. Iandola and K. Keutzer. 2017. Keynote: Small neural nets Aare beautiful:

enabling embedded systems with small deep-neural-network architectures. In
Proc. ESWEEK’17.

[9] A. Lavin and S. Gray. 2016. Fast algorithms for convolutional neural networks.
In Proc. CVPR’16. pp. 4013–4021.

[10] A. Mallik and et al.. 2011. MNEMEE-An automated toolflow for parallelization
and memory management in MPSoC platforms. In Proc. DAC’11.

[11] D. Moloney. 2016. Embedded deep neural networks: the cost of everything and
the value of nothing. In Hot Chips 28 Symposium (HCS’16).

[12] L. Papadopoulos, D. Soudris, I. Walulya, and P. Tsigas. 2016. Customization
methodology for implementation of streaming aggregation in embedded systems.
Journal of Systems Architecture 66 (2016), pp. 48–60.

[13] PH. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun, and E. Culurciello. 2012.
NeuFlow: Dataflow vision processing system-on-a-chip. In Proc. MWSCAS’12. pp.
1044–1047.

[14] Y. Siegel. 2016. The path to embedded vision & AI using a low power vision DSP.
In Hot Chips 28 Symposium (HCS’16).

[15] S. Yi, C. Li, and Q. Li. 2015. A survey of fog computing: concepts, applications
and issues. In Proc. Workshop on Mobile Big Data. pp. 37–42.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 28.80 points
 Normalise (advanced option): 'original'

 32

 D:20180419081402
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 28.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

