

Jerom Aerts¹ (J.P.M.Aerts@tudelft.nl), Rolf Hut¹, Nick van de Giesen¹, Niels Drost², Berend Weel², Inti Pelupessy², Martine de Vos², Yifat Dzigan², Stefan Verhoeven², Gijs van den Oord², Ronald van Haren², Janneke van der Zwaan², Maarten van Meersbergen², Willem van Verseveld³ and Albrecht Weerts^{3,4}

¹Delft University of Technology ²Netherlands eScience Center, ³Deltares, ⁴Wageningen University

Introduction

Global hydrological models have transitioned from global scale to hyper-resolution (5 arc minutes or less).

Benefits:

- Greater applicability for stakeholders (e.g., comprehensive flood prediction)
- Better understanding of hydrological system

Challenges^{1,2,3,5}

- Scaling issues that require explicit spatial modelling and parameterized processes
- Require lateral connections between compartments of the hydrological system
- Increased uncertainty from insufficient parameter data quality

Guiding Question

How is the hydrological model Wflow SBM impacted by changes in spatiotemporal resolutions?

Project Goal

Evaluate hyper-resolution global hydrology using the Wflow SBM model⁴ and the eWaterCycle II platform

References:

Evaluating hyper-resolution global hydrology by comparing spatial and temporal resolutions

Exfiltration

table

Why Wflow SBM?

- Physically based distributed hydrological model
- Can run with any time step
- Spatial distribution within the
- hyper-resolution domain
- No calibration required

¹Beven and Cloke ,2012: Comment on "Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water" by Eric F. Wood et al. ²Bierkens et al., 2015: Hyper-resolution global hydrological modelling: what is next?

³Melsen et al., 2016: HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models ⁴Samaniego et al., 2017: Toward seamless hydrologic predictions across spatial scales

⁵Wood et al., 2011 : Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

State Comparison

T: Total of time series

- S: Total of basin grid cells

Going Forward

Next steps:

- Include: soil moisture and snow pack validation, global basin, multiple global hydrological models
- Perform benchmark testing
- Compare the effect of different precipitation products

Streamflow Validation (USGS) and statistics:

$$\sum_{k=1}^{S} \left(\frac{W(t,s) - w(t,s)}{W(t,s)} \right)^2$$

W: Sum of coarse resolution grid cells w: Sum of high resolution grid cells

> Share your thoughts on: Explicit spatial hydrological modelling on high spatial resolutions Effects of higher temporal resolutions on comparison variables

