INTERACTIVE SUPERCOMPUTING

WITH

Anderson Banihirwe (@andersy005), Software Engineer

National Center for Atmospheric Research (NCAR)

SciPy 2019, Austin, TX.

Slides: https://andersonbanihirwe.dev/talks/dask-jupyter-scipy-2019.html

- Alice, project scientist @ NCAR
- Field of Expertise: Hydrology/Hydrometeorolgy

3 INTERESTING THINGS ABOUT ALICE'S NOTEBOOK

1) NCAR INFRASTRUCTURE

С	Jupyt	erLab		×	+	
←	\rightarrow	C (https://jup	yterhu	hub.ucar.edu/ch/user/abanihi/lab	É :
()	File	Edit	View Run	Kernel	nel Hub Tabs Settings Help NCAR infrastructure/JupyterHub running on	
la l	💌 gi	met_ens	emble-zarr.ipy	nb ×	× Cheyenne	
		+ %			C Markdown Y	Python [conda env:analysis]
* P *		[1]:	Analys For this exa Link to data Try running matplotli import war warnings.1 import num import num import at import das from distr import hyp	sis (mple, w set: htt this no b inl: nings filterv py as ray as plot1: k to lot.pa	<pre>c of Gridded Ensemble Precipitation and Temperature Estimates over the Contiguous United State , we'll work with 100 member ensemble of precipitation and temperature data. https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html notebook in the cloud: https://binder.pangeo.io/v2/gh/pangeo-data/pangeo-tutorial-agu-2018/master?filepath=notebooks%2Fgmet_ensemble.ipynb nline gs erwarnings('ignore') as xr tlib.pyplot as plt ted.utils import format_bytes .pandas .pandas</pre>	es

2) DISTRIBUTED COMPUTING RESOURCES

Connect to Dask Distributed Cluster

[2]: from dask.distribu	2]: from dask.distributed import Client									
from dask_jobqueue	e import PBSCluster									
cluster = PBSClust	ter(memory="109GB", cores=12, processes=12, walltime="00:30:00",									
	aueue="economy")									
# Scale adaptively	(minimum of 10 nodes = 120 dask workers)									
cluster_adapt(mini	$m_{m=12*10}$ maximum=12*20 wait count=60)									
cluster	lindin=12#10) mdx1mdin=12#20) wd10_00din(=00)									
ctuster										
DDCOluctor										
PBSCluster										
Washara 100										
workers 120	Manual Scaling									
0										
Cores 120	Adaptivo Scaling									
	r Adaptive Scalling									
Memory 1.09 TB										

3) ACTUAL SCIENCE

WHAT DO WE MEAN BY SUPERCOMPUTING?

WHAT DO WE MEAN BY SUPERCOMPUTING?

- MPI, batch processing...
- Lots of heavy machines managed by sysadmins...

Cheyenne is a 5.34-petaflops, high-performance computer operated by NCAR.

- Need for more "human-in-theloop" workflows, rapid iteration due to huge growth in data creation
- Jupyter notebooks, interactive visualization, etc
- Adaptive scaling of computing resources based on the load

- Need for more "human-in-theloop" workflows, rapid iteration due to huge growth in data creation
- Jupyter notebooks, interactive visualization, etc
- Adaptive scaling of computing resources based on the load

This combination would be powerful...

- Need for more "human-in-theloop" workflows, rapid iteration due to huge growth in data creation
- Jupyter notebooks, interactive visualization, etc
- Adaptive scaling of computing resources based on the load

This combination would be powerful...

But it is hard...

INTERACTIVE SUPERCOMPUTING CHALLENGES

- Every high performance computing (HPC) system is unique:
 - Security policies
 - Container experience/policy
 - Queue configuration
 - External node access policies
- Tension between interactive availability and machine utilization (HPC centers often measured on this)...
- Lack of "elastic scaling" support in HPC workload managers...

ENABLING TECHNOLOGIES FOR INTERACTIVE SUPERCOMPUTING

...back to oxygen

Set contour levels to non-uniform intervals and make the colormap centered at the hypoxic threshold using DivergingNorm.

norm = colors.DivergingNorm(vmin=levels[0], vmax=levels[-1], vcenter=60.)

Add a cyclic point to accomodate the periodic domain.

In [8]: from cartopy.util import add_cyclic_point
 field, lon = add_cyclic_point(ds.02, coord=ds.lon)
 lat = ds.lat

Putting it all together...

In [9]: fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(1, 1, 1, projection=ccrs.Robinson(central_longitude=305.0))

contour lines

add contour labels

lb = plt.clabel(cs, fontsize=6, inline=True, fmt='%r');

land

land = ax.add_feature(
 cartopy.feature.NaturalEarthFeature('physical', 'land', 'l10m', facecolor='black'))

colorbar and labels
cb = plt.colorbar(cf, shrink=0.5)
cb.ax.set_title('mmol m\$^(-3)\$')
ax.set_title('Thermocline dissolve oxygen');

 Interactive, web browser-based computing environment

• Reproducible document format.

Code

Prose

- Equations (LaTeX)
- Visualizations

6.2

JUPYTER NOTEBOOKS ON HPC SYSTEMS

Q: But isn't Jupyter already usable on HCP systems?

Q: But isn't Jupyter already usable on HCP systems?

A: Yes, But.....

- SSH-in
 - \$ ssh <remote_user>@<remote_host>
- Launch Jupyter on a remote machine

\$ jupyter lab --no-browser --ip=`hostname` --port=<port>

• Set up SSH-tunnel to the remote machine

\$ ssh -N -L <port>:<hostname>:<port> <remote_user>@<remote_hos</pre>

• Open the notebook in a browser on the local machine

\$ open http://localhost:<port>/

JUPYTER NOTEBOOKS ON HPC SYSTEMS

What is missing?

- Multi-user support
- Pure web-access to HPC resources

to the rescue...

- Manages authentication
- Spawns single-user servers ondemand
- Each user gets a complete notebook server

JUPYTERHUB @ NCAR

JupyterHub @ NCAR: Login

JupyterHub @ NCAR: Specifying Job Configuration

× +

 \leftarrow \rightarrow C \triangleq https://jupyterhub.ucar.edu/ch/hub/spawn

NCAR Home Token

🕩 Logout

Spawner Options

Job Name (-N)

Jupyter

Enter Queue or Reservation (-q)

share

1

Specify your project account (-A)

Specify N node(s) (-I select=N)

Specify N CPUs per node (-I ncpus=N)

1

1

1

Specify N MPI tasks per node (-I mpiprocs=N)

Specify N threads per process (-I ompthreads=N)

Specify wall time (-I walltime=HH:MM:SS) (12 Hr Maximum)

02:00:00

Spawr

JupyterHub @ NCAR: A Running Jupyter Server

JUPYTERHUB LIVE DEMO

(if live demo gods are in a good mood...)

Accessing JupyterHub running on Cheyenne Supercomputer.

- Parallel programming library for Python
- Scales data libraries like Numpy, Pandas, Scikit-Learn, Xarray...
- Deploys on HPC systems
- Culturally native to Scientific Computing

• Provides schedulers for executing task graphs

- Easily deploy Dask on job queuing systems like PBS, Slurm, MOAB, SGE, and LSF, etc...
- Created as a spinoff of the Pangeo project.
- Pythonic user interface that manages dask workers/clusters

Note: The cluster object stores a configuration for a block of worker nodes that you will be requesting...

Note: The cluster object stores a configuration for a block of worker nodes that you will be requesting...

DASK-JOBQUEUE LIVE DEMO

(if live demo gods are in a good mood...)

Interactive Supercomputing with Dask-Jobqueue, Dask, an...

ADAPTIVE/ELASTIC SCALING, RESILIENCE, ETC...

ADAPTIVE/ELASTIC SCALING

Challenges:

- Balancing cluster resources and performance
 - is challenging
 - requires a lot of experimentation...
- Computational workloads fluctuate throughout the analysis...

ADAPTIVE/ELASTIC SCALING

Challenges:

- Balancing cluster resources and performance
 is challenging
 - requires a lot of experimentation...
- Computational workloads fluctuate throughout the analysis...

Dask thinks about ...

- Scaling up and down
- Resilience
- Load balancing

ADAPTIVE/ELASTIC SCALING ON HPC SYSTEMS

Solution:

- 1. Start your Jupyter Notebook
- 2. Instantiate your dask cluster
- 3. Let dask determine when to scale up and/or down
- 4. Do science

ADAPTIVE/ELASTIC SCALING ON HPC SYSTEMS

Benefits:

- Adaptive scaling improves HPC systems' occupancy / utilization...
- Resilience against the death of all or part of computing resources provides new ways of leveraging job preemption...

ADAPTIVE/ELASTIC SCALING ON HPC SYSTEMS

Benefits:

- Adaptive scaling improves HPC systems' occupancy / utilization...
- Resilience against the death of all or part of computing resources provides new ways of leveraging job preemption...

Dask thinks about these benefits...

NOT ALL JOBS ARE INTERACTIVE

dask / dask-mpi				O Unwatch →	7 🖈 Sta	ar 11 ⁹ Fork 6	
↔ Code ① Issues 5 î F	Pull requests 0 🛛 🕅 P	rojects 0 🔲 Wik	i 🕕 Security	Insights			
eploy Dask using MPI4Py							
T 243 commits	🖗 1 branch	♡ 4 releas	ses	acontributors 22		কু BSD-3-Clause	
Branch: master - New pull req	uest		Create new	file Upload files	Find File	Clone or download -	
🛃 kmpaul Merge pull request #36	from andersy005/sync_dro	op_py2			Latest com	mit 781229e 8 days ago	
.circleci	Add click & jupy	rter-server-proxy to a	lependencies			8 days ago	
dask_mpi	Use Worker.clos	e instead of the old	Workerclose			8 days ago	
docs	Pinning distribut	Pinning distributed until upstream issues are resolved					
.coveragerc	Add list of files	to omit from coverag	е			7 months ago	
juitattributes	Adding setup ar	nd versioneering				7 months ago	
.gitignore	Adding Mac .DS	_Store files to gitigne	ores			7 months ago	
LICENSE.txt	Adding license					7 months ago	
MANIFEST.in	Update MANIFE	ST				6 months ago	
README.rst	Add conda-forg	e badge to README				23 days ago	
environment-dev.yml	Add click & jupy	ter-server-proxy to d	lependencies			8 days ago	
environment.yml	Add click & jupy	rter-server-proxy to a	lependencies			8 days ago	
readthedocs.yml	Adding readthee	docs config				7 months ago	
setup.cfg	Adding setup ar	nd versioneering				7 months ago	
setup.py	update CI infras	tructure				8 days ago	
versioneer.py	Adding setup ar	1d versioneering				7 months ago	

Deploying Dask using MPI4Py

Easily deploy Dask Distributed in an existing MPI environment, such as one created with the mpirun or mpiexec MPI launch commands. See documentation for more details.

FUTURE

- Heterogeneous resources handling
- Coarse-Grained Diagnostics and History
- Scheduler Performance on Large Graphs

RESOURCES

- https://jobqueue.dask.org/
- https://mpi.dask.org
- Dask-jobqueue workshop materials
- Jupyter for Science User Facilities and High Performance Computing workshop

Participate

- https://github.com/dask/dask-jobqueue/issues
- https://github.com/dask/dask-mpi/issues

ACKNOWLEDGMENTS

- Jupyter/JupyterHub development teams
- NCAR/CISL Supercomputer Systems, Consulting Services Groups
- Pangeo collaborators