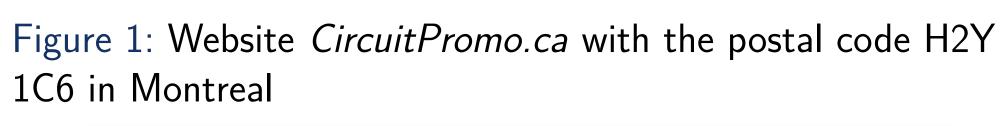
An intelligent shopping list based on the application of partitioning and machine learning algorithms


Objectives

- Predict which groceries the consumer will want to buy again or will try to buy for the first time, and in which store(s) in a given area he will shop;
- Create a smart shopping list by offering the consumer a personalized weekly shopping list based on their shopping history and current promotions;
- Depending on the user u and the user's purchase history (order_{t-h:t}, <math>h > 0), predict</sub> the probability that a product i is included in the next order_{t+1} of u.

Introduction

A shopping list is an integral part of the shopping experience for many consumers. A typical grocery retailer offers consumers thousands of promotions every week to attract more consumers and thus improve their sales [1].

Dataset

MyGro	oceryTour.com	🕼 Grocery list 👻	希 H2Y 1C6 (5 km) 🙉 Map 🤤) English		🖂 🕑 Tweet	f Share
Week	ly deals by store 🔻	Weekly deals by ca	tegory 🔹 📎 Cou	pons		Search (ex. bread, m	ik) Q Search	•
• w	eekly deals by sto	re for H2Y 1C6 (5	km) - 6891 produ	cts			☑ Your grocery list	2 0
II COUTU	· -45%	*	2 -36%	34%	• -34%	>	Your grocery list is empty. Add some products to star your savings.	t v
JEN	Rince-bouche - Scope - Max : 6 par \$3.33	Nettoyant écologique / 1,04 L \$2.99	Essuie-tout - Tuff - Max : 3 par client / \$4.49	Savon liquide - Eco Smart / 1,18 L \$3.99	Nettoyant tout usage / 800 ml \$2.99 Add O		Show nearby stores	
	1058	8 Quick Tips to Save or	1					
XIRCIUN	• -53%	- 50%	• -50%	- 4.49%	Dove	>	Groceries	
	Papier hygiénique /	Nettoyant tout	Nettoyant tout	Pains de savon / 2	Pains de savon -			
	8 doubl. \$2.99	usage / 1 L \$1.67	usage / 700 ml \$1.67	x 113 g \$1.99	Men Care / 2 x 113 \$1.99			
				X 1N8 (~0.49 km) / Ur				
IGA	clic •-61%	•-59%	-55%	53%	•- 53%	>		
	Asperges vertes - Du Pérou	Bâtonnets de	Burgers de poitrine	Lanières de poitrine	Languettes de			
	\$1.99	fromage - Ficello / 8 \$1.88	de poulet surgelés / \$5.00	de poulet surgelées \$5.00	poulet panées \$5.00			

Nadia Tahiri¹, Bogdan Mazoure² and Vladimir Makarenkov¹

¹Université du Québec à Montréal and ²McGill University

 \mathcal{X})

Methods

Representation	Description	\mathbf{Type}
Products	Model $P(\text{product}_i \in \text{order}_{t+1})$	LSTM
roducts	with $\operatorname{orders}_{t-h,t}, h > 0.$	(300 neurons)
tororiog	\mathbf{D} radiata $\mathbf{D}(\exists i \cdot \mathbf{p} raduat)$	LSTM
ategories	Predicts $P(\exists i : \text{product}_{i,t+1} \in \text{category}_r)$.	(300 neurons)
ze	Dradict the size of the order	LSTM
ze	Predict the size of the $\operatorname{order}_{t+1}$.	(300 neurons)
Jsers	Decomposed $V_{-} - W_{-} - H^{T}$	Dense
oducts	Decomposed $V_{(u \times p)} = W_{(u \times d)} H^T_{(p \times d)}$	(50 neurons)
-	Table 1:Top-level models used.	

Model	Embedding Dimensions		
LSTM Products	Products	$49,684 \times 300$	
LSTM Products	Categories	24×50	
LSTM Products	Users	$1,374 \times 300$	
NNMF	Users	$1,374 \times 25$	
NNMF	Products	$49,684 \times 25$	

 Table 2:
 Dimensions of the representations learned by
different models.

Products/Baskets

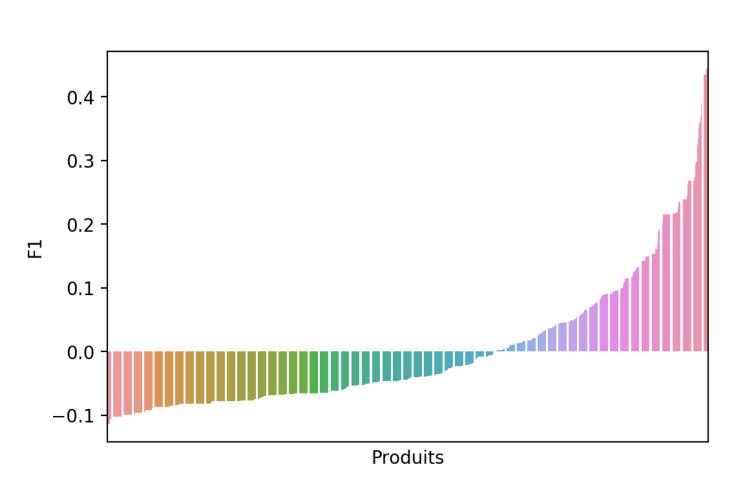
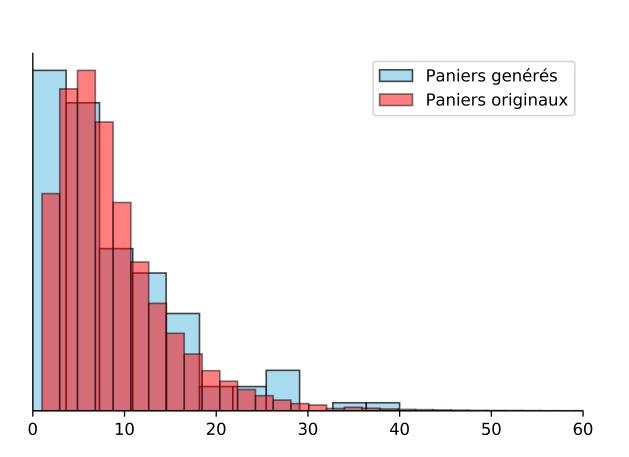
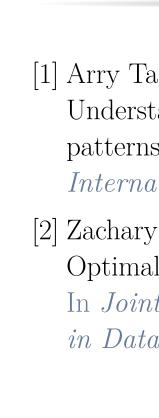



Figure 2: Distribution of F_1 measures relative to products, around average.

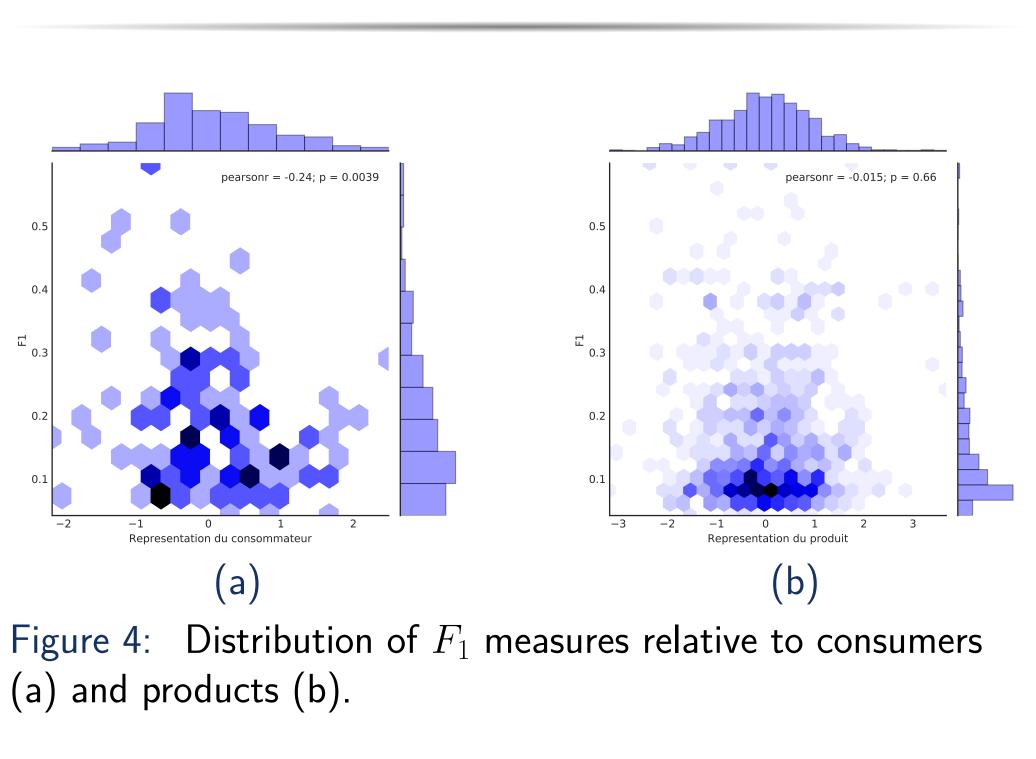
Distribution of the size of the predicted and original Figure 3: baskets.

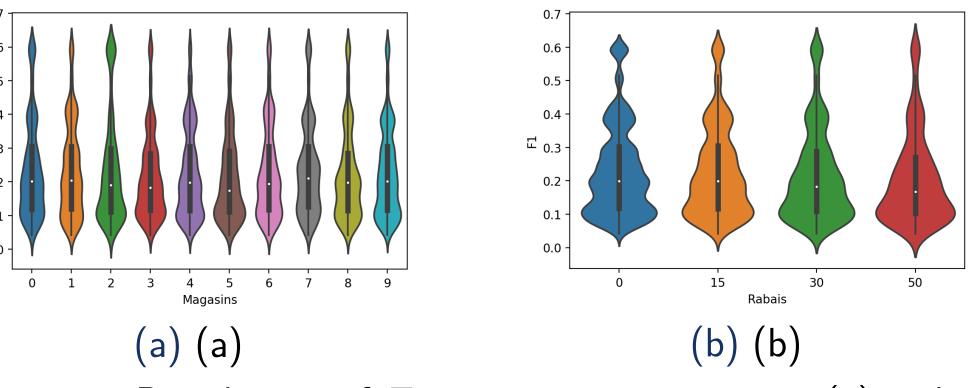
Figure 5: Distribution of F_1 measures against stores (a) and rebates (b).


Validation step

'he final basket is chosen according to the final robabilities of reorganization, choosing the subset products with the maximum expected F_1 score

 $\max_{\mathcal{P}} \mathbb{E}_{p' \in \mathcal{P}}[F_1(\mathcal{P})] = \max_{\mathcal{P}} \mathbb{E}_{p' \in \mathcal{P}} \left| \frac{2 \Sigma_{i \in \mathcal{P}} \operatorname{TP}(i)}{\Sigma_{i \in \mathcal{P}} (2 \operatorname{VP}(i) + \operatorname{FN}(i) + \operatorname{FP}(i))} \right|,$


- where TP= $\mathbb{I}[|p(i)] = 1]\mathbb{I}[R_i = 1]$, $FN = \mathbb{I}[|p(i)] = 0]\mathbb{I}[R_i = 1],$ $FP = \mathbb{I}[|p(i)] = 1]\mathbb{I}[R_i = 0]$ and $R_i = 1$ if the product *i* was bought in the cart $p' \in \mathcal{P}$, otherwise 0. We was used $\mathbb{E}_X[F_1(Y)] = \sum_{x \in X} F_1(Y = y|x) P(X = y|x)$


- home.

• We
• Em
• Ph

Consumers

Conclusion

• We modeled the habits of consumers on

CircuitPromo.ca by using deep neural networks. • We used two types of neural networks during learning: recurrent neural networks (RNN) and Feedforward neural networks.

• The value of the F_1 statistic that represents the quality of our model is 0.22. The constant influx of new data on *CircuitPromo* will improve the model over time.

• The originality of our approach, compared to existing algorithms, is that in addition to the purchase history we also consider promotions, possible purchases in different stores and the distance between these stores and the consumer's

References

[1] Arry Tanusondjaja, Magda Nenycz-Thiel, and Rachel Kennedy. Understanding shopper transaction data: how to identify cross-category purchasing patterns using the duplication coefficient.

International Journal of Market Research, 58(3):401–419, 2016.

[2] Zachary C Lipton, Charles Elkan, and Balakrishnan Naryanaswamy.

Optimal thresholding of classifiers to maximize f1 measure. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 225–239. Springer, 2014.

Contact Information

eb: CircuitPromo.ca

nail: nadia.tahiri@gmail.com

none: +1 (514) 629 1474

