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Abstract

The human cytomegalovirus (HCMV) genome was sequenced by hierarchical shotgun almost 30 years ago. Over these years,
low and high passaged strains have been sequenced, improving, albeit still far from complete, the understanding of the cod-
ing potential, expression dynamics and diversity of wild-type HCMV strains. Next-generation sequencing (NGS) platforms
have enabled a huge advancement, facilitating the comparison of differentially passaged strains, challenging diagnostics and
research based on a single or reduced gene set genotyping. In addition, it allowed to link genetic features to different viral
phenotypes as for example, correlating large genomic re-arrangements to viral attenuation or different mutations to antiviral
resistance and cell tropism. NGS platforms provided the first high-resolution experiments to HCMV dynamics, allowing the
study of intra-host viral population structures and the description of rare transcriptional events. Long-read sequencing has
recently become available, helping to identify new genomic re-arrangements, partially accounting for the genetic variability
displayed in clinical isolates, as well as, in changing the understanding of the HCMV transcriptome. Better knowledge of the
transcriptome resulted in a vast number of new splicing events and alternative transcripts, although most of them still need
additional validation. This review summarizes the sequencing efforts reached so far, discussing its approaches and providing
a revision and new nuances on HCMV sequence variability in the sequencing field.

Keywords Human cytomegalovirus - Human herpesvirus 5 - Genomics - Transcriptomics - Long-read sequencing - Genetic
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Introduction

In 1881, Hugo Ribbert found the first evidence of cytomega-
lia and body inclusions in kidney and paratiroid gland cells
[1]. Nevertheless, it was only in 1904, and in parallel with
Jesionek and Kiolemenoglu, that the evidence was properly
reported [1, 2]. Years later, between 1956 and 1957 Smith,
Rowe and Weller collaborated in the isolation of the virus,
known thereafter as “cytomegalovirus” [3-5]. In 1984,
28 years after its first isolation, the first sequence of human
cytomegalovirus or HCMV (strain AD169) was published
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[6], and only 6 years after, in 1990, the first draft of an anno-
tated HCMV genome was published [7], at that time the
biggest contiguous genome sequenced (GenBank accession
number BK000394.5, additional information in Table 1).
Since 1990 and until the submission of this original work,
305 full-length distinct complete HCMV genomes have
been published, including low and high passaged strains,
lab-attenuated strains, or artificial genomes (NIAID Virus
Pathogen Database and Analysis Resource, ViPR) [8].
Human herpesvirus 5 (HHV-5) or HCMV, a member of
the family Herpesviridae subfamily Betaherpesvirinae, is
a human-infecting ubiquitous host-restricted virus with a
world-wide seroprevalence between 45 and 100% in adult
population [29]. Primary infections of healthy children and
adults are frequently asymptomatic but the virus can estab-
lish lifelong persistence as a latent infection, from which
it can reactivate and spread new infectious particles [30].
Latency is characterized by an absence or low-level presence
of virus replication and the appearance of viral genomes
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Fig.1 Structure and isomerization of HCMV genome. Representa-
tion of the HCMV genome (not on scale) with its four possible iso-
mers (panels a—d). In panel a, the orientation of U; and Uy is based
on U; - and Us- orientation of the HCMV wild-type reference Mer-
lin (GenBank AY446894). Panels b—d correspond to the other three
possible isomer orientations. Genome regions that are characteristic
for HCMV: IR}, IRg, TR;, TRy, OriLyt repetition (OriLytRep) and a’

as circularized episomes inside the nuclei of bone-marrow
cells CD33+ and CD34+ and peripheral blood mononuclear
cells [31]. Reactivation of latent forms of the virus, as well
as reinfections of the same are common [32], especially
for susceptible groups, as immunocompromised patients,
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are colored in red, purple, gray, green, black and yellow, respectively.
Small black arrows correspond to the direction of selected ORFs
(UL1, UL145, US1 and US34) which help to illustrate the orientation
of the unique regions (big black arrow) between the different isomers.
Dashed gray lines connect the specific a’ sequences that contributed
to the isomerization

pregnant women, newborns, and elderly. Moreover, in some
cases there can be sequelae after infection [33].

HCMYV consists of a linear double-stranded DNA
genome with an average longitude of 235 kbp + 1.9 kbp
(see genome size variation at Table 1), one of the largest
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Fig.2 Genome structure of classic HCMV strains. Whole-genome
alignments of classical HCMV strains (AD169, Merlin, TB40/E,
Toledo and Towne) are presented. Linear maps were build using
AlTV visualization software [45], based on whole-genome align-
ments with Lastz aligner [46]. Both panels a, b depict pair-wise com-
parisons, expressed as percentage of similarity (green to red), that
connect different homologous genomic regions. Genomes are pic-
tured in blue. As shown in the legend, the different type E genome
repetitive regions (IR;, IRg, TR;, TRg, OriLyt and a’ sequence) are
colored. Color pattern is shared with Fig. 1 for comparison purposes.
Genome length and repetitive regions are on scale. Length units are
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expressed in base pairs, as shown in the superior part of both panels.
Genomes are ordered by descending genome length. Panel a repre-
sents the pair-wise genome comparison of AD169, Merlin, TB40/E,
Toledo and Towne genomes sequenced from BACs (excluding
wild-type reference Merlin). GenBank accession numbers, ordered
as represented in panel a, are AY446894, FJ616285, AC146999,
EF999921, and AC146905. Panel b illustrates the pair-wise compari-
son of the same strains from panel a, but sequenced using NGS short-
read technology (with the exception of Towne). GenBank accession
numbers, ordered as represented in panel b are F297339, AY446894,
FJ616285, GU937742, and F1527563
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of all human-infecting viruses. The GC content of HCMV
genome (57.5%) is the highest among human Betaher-
pesvirinae, alike the GC content of Gammaherpesvirinae
(53.8-59.5%) [34]. The genome is packaged in an icosa-
hedral capsid (7= 16) surrounded by a matrix of proteins,
the tegument, and enclosed by lipid bilayer, consisting of a
mixture between host and virus proteins [35]. Although the
genome is linear inside the nucleocapsid, it is circularized
during replication; first through theta-like replication and
subsequently by rolling circle amplification, generating mul-
tiple linked copies in tandem [35]. Thereafter, the genome
is cleaved, linearized and introduced inside the nucleocap-
sid, following a headfull type packaging [35]. HCMYV has a
type E genome architecture [36], therefore composed by 2
big inverted domains: long (L) and short (S). In turn, each
domain is composed of a central unique region (U, thus U
and Ug respectively) and by two repeated regions, one at the
terminal end and the other at the intersection with the other
unique domain (thus TR;/IR; and TR¢/IRg, respectively),
resulting in TR; —U; -IR; -IR¢—U—TRg as a genome organi-
zation (Fig. 1). Recombination between repetitive regions is
possible, changing the orientation of each unique domain,
yielding four possible combinations, thereafter referred
as genomic isomers [37, 38] (detailed in Fig. 1). All four
genomic isomers can be found in any infective viral popula-
tion in equimolar proportion [38].

In this review, an overview of HCMV next-generation
sequencing (NGS) applications will be given, emphasizing
the advances in genomic diversity, strain genotyping, full-
length genome methodologies, and coding potential based
on transcriptomic and translatomic analysis. In this review,
we present the current state-of-the-art and promote future
steps in the field.

HCMV variability

I am very concerned about the use of the same strains,
such as Davis or AD169, in different countries and
over long periods of time. I wonder how much these
could have changed since their initial isolation.—T.H.
Weller [39].

HCMYV has been regarded as being highly variable
between isolates. As early as 1960, T.H. Weller already
stated that serological differences between cytomegalic
inclusion disease (CID) isolates are sufficiently different to
differentiate classes, thus being an antigenically heterogene-
ous group [5]. Later in 1976, Huang and colleagues quanti-
fied this variability using DNA-DNA hybridization of 12
different HCMYV strains and herpes simplex 1 (HSV-1) and
herpes simplex 2 (HSV-2) [40]. It was found that the similar-
ity at nucleotide level was of at least 80%, when comparing
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different strains of HCMV, in comparison with the 50%
when compared to either HSV-1 or HSV-2 [40]. Restriction
endonuclease typing also supported moderate divergence
between different clinical isolates, without any clear group-
ing or subtyping between isolates, diverging in concurrence
of restriction sites, position and size of the digested frag-
ments [37, 40]. In 1980, Pritchett and colleagues found simi-
lar results comparing HCMV AD169 and Towne strains by
DNA-DNA hybridization and restriction profiling, implying
a similarity of at least 90% at nucleotide level [41].

In 1990, when first feasible applications of sequencing
came available, Chee and colleagues published the first ver-
sion of HCMV genome (AD169 strain, GenBank X17403,
Table 1 for related information) [7], which lead to sequence
and genome-wide comparison of different isolates and its
coding potential [7, 9, 42]. Based on comparative genomics
and open-reading frame (ORF) analyses, Cha and colleagues
in 1996 discovered 19 genes that were missing from high-
passage isolates (strains AD169 and Towne) compared to
the low-passage Toledo strain and five clinical isolates. As
depicted in Fig. 2, large genomic re-arrangements between
AD169 (GenBank AC146999), Towne (GenBank FJ616285)
and Toledo (GenBank AC146905) bacterial artificial chro-
mosomes (BACs) can be observed. These re-arrangements,
excluding the different possible genome isomers fixed into
BAGC:s, are inversions and deletions at the internal end of the
U, region, known as the U; /b’ sequence, and correspond
to missing genes ranging from UL133 to UL154, where
several HCMV specific glycoproteins are found in clini-
cal isolates [42, 43]. Likely, U, /b’ is lost by recombination
and excision with the terminal a' sequence during long-
term passage of clinical isolates, thus changing the levels
of virulence and cell tropism of the viral population [42].
AD169 and Towne attenuation is thought to have appeared,
partially, as consequence of U; /b’ deletion [43]. Later works
by Hahn et al. and Bradley et al. described heterogeneous
populations of both Towne and AD169 in regards to U; /b’
deletion, as well as other mutations [13, 44]. Hahn et al.
provided a method for cloning both the Towne varS (Gen-
Bank AC146851) and varL (GenBank FJ616285), short
and long Towne variants, into BACs as a mean to produce
genetically stable viral stocks. Towne varS, as AD169, lacks
the U, /b’ region, meanwhile Towne varL contains U /b,
resembling an uninverted U; /b’ sequence from Toledo and
clinical isolates obtained in that period [42, 44]. A similar
phenomenon is also observed in AD169, one of the most
extensively passaged HCMYV isolates [13]. In Bradley et al.
three AD169 stocks were sequenced: AD169 varUK (Gen-
Bank BK000394), AD169 varATCC VR-997 (GenBank
AC146999), both derived from NIH 76559 original stock,
and AD169 varUC (GenBank FJ527563), using for the first
time in HCMV genomics an Illumina sequencing platform.
AD169 varATCC proved to be a mixture population of two
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variants: varS and varL, the later containing U, /b’ region,
as AD169 varUC. In 2004, Dolan and colleagues sequenced
using Sanger method what would become the reference
genome for the wild-type HCMYV, the highly productive
Merlin strain (GenBank AY446894), isolated from urine
of a congenital infected infant and passaged three times on
human foreskin fibroblasts (HFFs) [14]. In addition, Dolan
et al. expanded the comparison between isolates with dif-
ferent passage histories, complementing Cha et al. results
[42], by defining the genomic features of a wild-type HCMV,
as opposed to high-passage attenuated HCMV strains. The
Merlin strain has been extensively used as wild-type HCMV
reference genome, especially as a backbone for genome
annotation and annotation transfer. Since the publication of
the first HCMV genome and its coding potential, hetero-
geneity has been studied either through the genotyping of
a selected list of genes, viral markers, or through whole-
genome comparisons.

Genotyping of viral markers

HCMYV co-evolved with its human host since diverging from
other Betaherpesvirinae, circa 120 million years ago [47],
and displays a wide array of molecular strategies that allow
for survival and perpetuity. All members of the family Her-
pesviridae, but especially HCMYV, have acquired functions
that favor persistency, immune evasion and molecular mim-
icry. Some of those functions have been co-opted from host
pre-existing machinery [43], as well as other viruses [11,
48] which may account for their considerable genome size.
Genes that are linked to persistency, evasion, resistance, or
mimicry have been recurrently genotyped in different popu-
lations, to assess HCMV variability and its potential thread.
These genes of interest, also known as viral markers, can be
classified between (i) drug-resistance genes, (ii) virulence,
immune evasion, molecular mimicry, and (iii) surface gly-
coprotein receptors.

Genotyping of HCMV can be distinguished in two
approaches: (i) non-PCR and (ii) PCR-based methods. Non-
PCR-based methods group direct restriction enzyme diges-
tion [37, 40] and southern blot [41, 42]. Both methods were
mostly used in the early days to analyze HCMV variabil-
ity and to generate the first genetic maps [49]. PCR-based
methods group (i) amplicon sequencing and (ii) molecular
amplification. Amplicon sequencing has preferentially been
conducted with Sanger/dye terminator chemistry sequenc-
ing [50-56], whereas variability assessments have been
performed using NGS, concretely with second-generation
454 pyrosequencing [55, 57, 58]. Molecular amplification
groups PCR techniques that (i) qualitatively and (ii) quanti-
tatively characterize mutations. Qualitative genotyping was
predominantly conducted by RFLPs [59, 60]. Quantitative

or semi-quantitative genotyping has been exclusively con-
ducted by qPCR [61, 62].

Methods based on restriction enzymes (enzyme diges-
tion, Southern blot, or RFLPs) can fail to detect sequence
variability, as only sites sensible to restriction enzymes are
analyzed. Conversely, PCR-based methods (including ampli-
con sequencing) are less prone to miss sequence variability,
although only variability found in the amplified region can
be studied and poor primer design may reduce the sensibility
to detect new variants. Amplicon sequencing has preferen-
tially been conducted with Sanger sequencing, as sequenc-
ing base accuracy can reach a maximum of 99.999% with
this technique [63]. NGS, specifically second-generation
pyrosequencing, has also been used for genotype explora-
tion [55, 57]. Despite having a lower base accuracy and read
length, it can provide more reads, hence more sequencing
depth of the sample to call for multiple variants. Under this
scenario, NGS platforms are more informative, due to the
higher read yield and their increased sensibility to multiple
variants. Genotyping of multiple loci from clinical isolates
can be scalable by using amplicon NGS. These sequenc-
ing platforms can analyze and later reconstruct different
sequences, while keeping traceability of sequence origin
by using molecular identifiers, or barcodes. Complete gene
genotyping should be considered, as genotyping only spe-
cific regions of the gene increases the likelihood to lose
unknown polymorphic sites [64] or to overlook new recom-
bining genotypes between different polymorphic sites, as
already been described for UL55 (gB) [65]. Other existing
sequencing platforms have yet to be tested on HCMV ampli-
con genotyping, as sequencing technologies improved fast
and full-length genomes where soon available.

Currently, there is no consensus on the classification of
HCMV strains based on genotype, evolutionary relation-
ship, or clinical relevance. Loci genotyping should pro-
ceed with caution, as the costs of sequencing a full-length
HCMYV genome have decreased in the last years. Not aiming
to sequence a full clinical isolate genome might be an unre-
pairable opportunity to understand this complex pathogen.
Whole-genome sequencing can simultaneously capture all
variants and remove the need to design and optimize PCR
assays for multiple variant detection, allowing e.g., for a
parallel antiviral-resistance testing in a single experiment
[66] or for predicting changes to epitopes for vaccine devel-
opment [67].

Next-generation sequencing in HCMV
research
...[A] knowledge of sequences could contribute much

to our understanding of living matter—F. Sanger [68].
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Since the apparition of the first massively parallel
sequencing technologies in the 2000s, new possibilities for
HCMV research emerged after each technological break-
through. 454 Life Sciences, later known as Roche 454, and
Illumina Inc independently created the first massively par-
allel sequencing platforms, used in the first deep sequenc-
ing on HCMYV [13]. These technologies, not only created a
new way to recompose full-length HCMV genomes without
sequence cloning, but allowed a better understanding of its
population variation and coding capacity during infection
[69]. Recently, a new opportunity to differently understand
the HCMV genome has appeared with the application of
third-generation sequencing, based on long-read real-time
sequencing [27, 70, 71].

Whole-genome sequencing

Up to the submission of this review, 305 full-length dis-
tinct HCMV genomes have been published (NIAID Virus
Pathogen Database and Analysis Resource, ViPR) [8], 251
of them derived from clinical isolates (GenBank accession
numbers and sequence relevant information can be consulted
at Table 1), and of these sequences only 205 correspond to
unpassaged or low-passage isolates (<4 passages). Since
Chee et al. published the first HCMV genome, Sanger
sequencing has been regarded as the standard for HCMV
drug-resistance detection [72].

Currently, the most precise full-genome cloning system
consists of an embedded complete genome in a BAC with
Cre/LoxP self-excising system, amplifying the genome in a
bacterial system with very low mutation rates, as the BAC is
amplified by the bacterial DNA polymerase. Cre/LoxP self-
excising system does not modify the original virus sequence
with the exception of a 34 bp insertion downstream of the
US28 gene [73]. Although, BAC cloning can produce long-
lasting stable strain amplification systems [20, 73], cloning
and sequencing by primer walking can be time-consuming,
inefficient and might not be an optimal method for explor-
ing virus diversity within a clinical sample. Interestingly,
HCMYV genome BAC cloning captures genomes individu-
ally, as they are contained inside the viral particles, creating
fixed genetically stable viral genomes. These stable genomes
faithfully represent the individual variants of that viral par-
ticle, including its genome isomerization (represented in
Fig. 1), as well as multiple genomic variants, which may
not necessarily represent the most abundant form in the
viral population or its infective capacity. In Fig. 2, many
genomic re-organizations become apparent when compar-
ing different HCMV strain genomes. In Fig. 2a, different
BAC isolated HCM Vs are represented, characterizing inver-
sions spanning the entirety of unique regions when com-
paring two genomes. These apparent inversions are in fact
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a result of comparing different HCMV isomered genome
sequences, fixed and stabilized in BACs (i.e. TB40/E—BAC
vs. Toledo—BAC, in which Uj has different directions). In
addition, in Fig. 2a, inversions or translocations that reor-
ganize the classical structure TR;—U; —IR; -IR—U¢—TR¢
should be taken with caution, as they may arise from the
introduction of the genome into the BAC vector. AD169-
BAC (GenBank AC146999) offers a clear example, as its
Ug region appears to be fragmented and translocated to the
terminus of the genome. Once these previous re-organiza-
tions are considered, other re-arrangements can be recog-
nized in Fig. 2. These re-organizations arise from imperfect
homologous recombination during HCMV genome repli-
cation, being focus of HCMV infective variation studies.
Interestingly, these re-organizations can be found in both
Fig. 2a, b, as the same strains are illustrated in both panels
but with their genome sequence is derived from either BAC
cloning and posterior sequencing or by second-generation
sequencing from a pool of viral particles. This comparison
between both sequencing methods exemplifies the differ-
ences between re-organizations derived from (i) technical
procedures (BAC cloning), (ii) viral replication (genome iso-
mers), or by (iii) imperfect homologous recombination and
mutation. In this regard, the deletion (and/or inversion) at
the U /b’ region, characteristic for high-passage attenuated
strains, can be observed when comparing AD169, Towne
and Toledo strains in both panels of Fig. 2, as previously
discussed in this review.

Despite the benefit of capturing, fixing and genetically
stabilize single viral genomes that BAC cloning can offer,
most of the partial or full-length genomes have been derived
from second-generation sequencing platforms, mainly due
to BACs poor scalability for viral population research.
These platforms enabled the discovery of different vari-
ants in HCMV viral populations (as previously discussed
for Towne varS and varL) [13], and a substantial decrease
in time and resources needed for genome sequencing.
High-throughput NGS allowed to increase the number of
clinical HCMV genomes to more than 170. Sequencing of
full-length HCMV genomes was initially performed with
Roche 454 pyrosequencing [17, 19, 25], coupled to either or
both Sanger and [llumina sequencing to polish low quality
regions, producing 57 HCMV genomes. [llumina sequenc-
ing platform rapidly outperformed its competitors with
its improved chemistry, yield and base quality, generating
most of the available genomes (158 out of 251) [15, 20,
22-24, 26]. Albeit NGS boosted the sequencing of HCMV
genomes, direct sequencing of clinical HCMV remained an
issue, due to its low viral particle yield of during infection.
Common sources of clinical material for HCMV sequencing
include: blood, urine, bronchoalveolar liquid, tissue (mostly
kidney or liver), and amniotic fluid (a relationship between
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sequenced genomes and tissue of isolation can be found in
Table 1).

Short-read second-generation sequencing provides a solid
working approach to the study of single-nucleotide variants
(SNVs) due to its high read yield, increased read coverage
along the genome and improved sequence error (correction,
improving variant detection). Unfortunately, the charac-
terization of genome re-arrangements or structural variants
(SVs) with second-generation sequencing can be challeng-
ing due to (i) its association with (low-complexity) repeti-
tive regions, (ii) the difficulty of short-reads to span large
genomic events, and (iii) to precisely localize breakpoint
coordinates [74].

The reconstruction or assembly of a HCMV genome
can be a complex task as (i) clinical material has low viral
genome copy numbers, directly affecting sequencing cover-
age and the overall genome quality. Additionally, (ii)) HCMV
genome contains three regions with low-complexity repeti-
tions at the unique terminal and unique internal end, increas-
ing the difficulty to correctly align and recruit reads during
genome assembly. Finally, (iii) mixed HCMV populations
are expected, either as a result of co-infection of different
strains or activation of latent HCMYV infections, generating
a genetically heterogeneous (or heteroclonal) population
[55]. Discerning which variants co-concur (co-linearize) and
belong to the same viral genome may benefit the examina-
tion of clonal heterogeneity of the viral population.

Different techniques have been coupled to second-gen-
eration sequencing platforms, to increase the yield of viral
reads. Most strategies use (i) multiple sequence displace-
ment amplification (MDA) [19, 22] to increase the input
viral DNA in the sample, or (ii) target enrichment to enrich
the sample by capturing viral DNA using DNA or RNA
probes (also known as bait libraries) [26, 66, 70, 75].
MDA kits use high-fidelity polymerases (generally a ¢29
polymerase) in conjunction with a set of random hexam-
ers to amplify DNA at isothermal conditions [19, 76, 77].
Although, this technique amplifies viral genomic fragments
between one to three orders of magnitude [19], biases have
been reported specifically linked to a high allelic drop-out
effect (ADO, preferential amplification of a subset of alleles
in a heteroallelic sample) and non-uniform amplification of
linear double-stranded DNA (related to the GC content of
the amplified sequence) [19, 76, 78]. Both Marine et al.
and Roux et al. conducted genome coverage analysis on
MDA dsDNA amplified viruses [76, 78], providing clear
evidence that MDA amplification is one of the disturbing
factors in completing a full-length genome. A recent study
by Borgstrom and colleagues compared four different MDA
available kits during single-cell human DNA amplification:
AMPLII1, MALBAC, Repli-G and PicoPlex, taking cov-
erage, SNP calling and ADO to test the reliability of the
kits [77]. Borgstrom et al. showed that Repli-G produced

the most uneven low coverage genome amplification, fol-
lowed by PicoPlex. AMPLI1 and MALBAC had compa-
rable even coverages [77]. SNP calling performed poorly
by Repli-G kit, only 3% of the variants were detected, in
comparison with the 25% detected by MALBAC [77]. The
Repli-G ADO effect is probably linked to the poor perfor-
mance during SNP calling. Only one allele in all studied
loci and replicates was detected [77]. Target enrichment,
conducted mainly with SureSelect*" library enrichment, has
been used to obtain over 50 unpassaged HCMV genomes
[26, 66, 70]. By designing custom bait libraries that cover
the entire HCMV genome, it is possible to capture (by
hybridization and streptavidin bead separation) the fraction
of a given NGS library that corresponds to the virus, and
further amplify it [79]. This technique allows to sequence
viral genomes directly from clinical samples, avoiding virus
culturing (used to increase the yield of the virus at cost of
virus adaptation to the growing cell line [16]). SureSelect*®
enrichment has been extensively used in the last years [23,
26, 66, 70, 80]. There are at least two different custom bait
libraries being currently used, one developed at the Center
for Virus Research, University of Glasgow [26] and a sec-
ond designed by the PATHSEEK consortium, jointly with
Oxford Gene Technology™ [23, 66, 70], albeit none of them
is publicly available. Both MDA and target enrichment rely
on additional PCR amplifications, hence susceptible to
introduce a new sequence bias to the sequencing library.
Regardless of the increased HCMV sequencing performance
that both techniques offer, the omission of infrequent viral
variants should be a cause of concern. MDA methods, espe-
cially Repli-G, have a known preference to amplify certain
regions and variants, leading to uneven low coverage regions
and narrowed variant diversity, hence likely over-looking
the intrinsic variation in a viral population. Theoretically,
a narrowed variant diversity could also be found if target
enrichment was used, as its efficiency relies on a library
design for known but also unknown variants.

Assembly of herpesviruses, such as HCMV, can be inac-
curate due to its low-complexity repetitive regions as well
as its local deviant GC content, producing discontinuities, or
gaps, in the assembly [15]. This inaccuracy is linked to the
read length [74]. A longer read size is more likely to produce
reads that can span or bridge regions where the library or
sequencing platform might be infra-represented, and cor-
rectly characterize repetitious regions, both its boundaries
and number of repeats [74].

Poor connectivity between distinct assembled regions,
or contigs, is a major challenge for assembling full-length
HCMYV genomes. As previously stated, assembly inaccu-
racy can be linked to low-complexity repetitive regions
as well as a local deviant GC content [74, 81], such is the
case for type E genomes like HCMV. GC deviant regions
may produce read miss-representation in those regions,
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potentially failing to assemble a full-length genome. Differ-
ent parts of the sequencing scheme can be responsible for
this phenomenon, PCR amplification of the library, clus-
ter amplification, or the reading during sequencing [81].
However, library amplification by PCR plays the major
role in generating GC bias, especially affecting short-read
synthesis-based sequencing (i.e., [llumina sequencing plat-
form) [81]. Likewise, low-complexity repetitive regions can
impair an assembly by generating multiple possible positions
where reads could align and in that way, generating new
sub-alignments, increasing the complexity of the assembly
and reducing the accurateness of certain regions [74]. Poor
region connectivity (i.e., an assembly with too many short
contigs) can challenge full-length HCMV genome assembly
when different viral variants are present in the same sample.
Improving this connectivity would increase the recovery of
complete and distinct genomes at sub-strain level, as well as
sequencing through repetitive regions [74]. Consequently,
longer reads are desirable, as the longer a given read is, the
longer the contigs in the assembly would be, hence increas-
ing the assembly connectivity. Furthermore, improved read-
length would likely increase the chance to contain multiple
(distant) variants in the same read, providing direct evidence
of their co-linearity in a given single virus genome from a
clonal heterogeneous HCMYV population.

Third-generation long-read sequencing platforms, such
as SMRT™ from Pacific Biosciences™ and Nanopore
sequencing from Oxford Nanopore Technologies™ open
the possibility to improve assembly connectivity, provid-
ing a promising platform for single virus (partial) genome
sequencing, due to its extended read-length. Until the sub-
mission of this review, only 3 different long-read HCMV
sequencing projects have been published, 2 in 2017: (i)
Bal4zs and colleagues with a hybrid approach using the
Pacific Biosciences™, PacBio RS II system and Oxford
Nanopore Technologies™, MinlON™ platform [27, 28,
82], and (ii) Eckert et al. with the Oxford Nanopore Tech-
nologies™, MinlON™ platform [70]. The last project,
published in 2018, by Karamitros and colleagues, also used
Oxford Nanopore Technologies™, MinION™ platform
[71]. In Balazs et al., HCMV Towne varS strain (passaged
more than 125 times with the 180,887-191,406 region of
the original genome substituted with the 1-11,996 region,
GenBank LT907985) full-length genome was assembled
using cDNA transcripts and the reference Towne (GenBank
FJ616285) [27, 28]. In Eckert et al., HCMV genomes were
sequenced, directly from clinical material, with and without
target enrichment (SureSelectXT, without downstream ampli-
fication). In contraposition with Balazs et al., only 1.2% of
the reads (from non-enriched samples) could be assigned
to HCMV; meanwhile for viral enriched samples, 98.7%
of the reads were assigned to the virus, reconstructing the
HCMV genome up to 99.4% with a mean coverage of 89.9x
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[70]. In Karamitros et al., HCMYV TB40/E strain (GenBank
EF999921) clone Nano, was sequenced using cell-associ-
ated replication, without in vitro amplification, and a pos-
terior viral concentration with ultracentrifugation. A 48-h
run produced close to 47,000 reads with a uniform average
coverage of 100x. The full-length genome was obtained
by a co-assembly (or “hybrid de novo assembly”, as the
authors refer to) of the same filtered reads by a fast long-read
assembler, SMARTdenovo [83], and a short-read assembler,
SPAdes [84]. With this approach Karamitros et al. (raw Min-
ION™ data are available at NCBI—SRA project number
PRIEB25285) provide for the first time, using NGS, evi-
dence of viral genome isomers from a type E genome [71].
Long-read sequencing enabled Karamitros and colleagues to
find several SVs in a BAC-derived TB40/E polyclonal sam-
ple: (i) a deletion spanning UL144-UL145, (ii) one inver-
sion, (iii) two relocations, and (iii) several short insertions
or deletions (deriving in local misalignments) [71].

Hitherto, no method combines all characteristics to ana-
lyze variation in a HCMV polyclonal infection as, or close
to, single virus genomes. The ideal method for studying
HCMYV would have to (i) sequence directly from clinical
material (no cell or in vitro amplification), (ii) to be unbi-
ased (either by enrichment or uneven amplification), and
(iii) to provide direct evidence of variant co-linearity to an
individual viral genome.

Transcription, translation and regulation analysis
through RNA-sequencing

Since the publication of the first studies of HCMV tran-
scriptomics by Gatherer and colleagues, the advancements
on HCMV RNA-sequencing have highlighted new aspects
on its behavior: regulatory small RNAs [85, 86], new RNA
splice variants [27, 69] and newly detected ORFs [69, 87].
Early estimates ranged from 164 ORFs [14, 69, 88] to 220
ORFs [89], although ribosome profiling identified up to 751
individual ORFs [87]. Those 751 translationally active ORFs
may be a more precise estimate of coding capacity, as it is
likely to account for over the (i) 100 splice junctions that
HCMYV genome contains [69, 87], (ii) transcript polycistrony
(i.e., UL138) [90] and (iii) short ORFs [87]. Despite the
obvious codifying complexity of HCMYV, the wild-type ref-
erence Merlin (GenBank NC_006273.2) currently has 173
annotated genes, of which 168 are protein-coding genes and
5 non-protein-coding genes.

According to Gatherer et al. (BioProject PRIEB2543,
see Table 2 for additional project information) 3 differ-
ent types of transcripts can be expected when analyzing
HCMYV infections: (i) protein-coding transcripts, (ii) non-
coding non-overlapping transcripts (RNA2.7, RNAS.0,
and RNA1.2 long non-coding RNA or IncRNA), and (iii)
antisense transcripts (transcribed antisense with respect
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to protein-coding regions) [69, 85]. Studying the infec-
tious behavior of HCMV Merlin strain in HFFs at 72 h post
infection showed that the presence of antisense transcripts
throughout the HCMV genome, by strand-specific RNA-
seq (in [69] referred as “directional sequencing or DDS”)
and strand-unspecific RNA-seq (in [69] referred as “non-
directional transcript sequencing NDS”), represented a
8.7% of the overall transcription [69]. In addition, RNA2.7,
RNAS5.0, and RNA1.2 transcripts account for 65.1% of the
overall transcription, especially RNA2.7 that represents the
46.8% of the overall transcription. Strikingly, protein-coding
transcripts only account for a third of the overall transcript
production [69]. New splicing sites were discovered, lead-
ing to the description of new alternative splicing events and
confirmation of four novel gene transcripts (RL8A, RLIA,
UL150, and US33A) [69]. A year later, Stern-Ginossar and
colleagues (BioProject PRINA177721) used ribosome pro-
filing (sequencing of mRNA protected within the ribosomes)
to study Merlin transcription in HFFs at 5, 24, and 72 h post
infection [87]. 751 translated ORFs were found with only
147 being previously described. These novel putative ORFs
where derived from (i) nested ORFs (in and out of frame),
(ii) upstream short ORFs, (iii) antisense ORFs, and (iv) short
unpredicted ORFs (ORFs coding for protein between 100
and 200 aminoacids [91]). Multiple ORFs were translated
from RNA1.2, RNA2.7 and RNA4.9 IncRNA, acting as a
precursor polycistronic mRNA [87].

MicroRNAs (miRNAs) are small RNAs of 22 nucleo-
tides long, transcribed by RNA polymerase II [92], related
to RNA silencing and post-transcriptional regulation of gene
expression. Both functions have been studied for their pos-
sible regulatory role during an HCMV infection [10, 85,
103]. While miRNAs are known to be non-immunogenic,
some are known to have a regulatory function in viruses
[86]. HCMYV is known to produced mature miRNAs dur-
ing infection [10, 103]. Stark and colleagues (BioProject
PRINA148583) studied host (HFFs) and HCMV Towne
miRNAs profiles at 24 and 72 h post infection. Up to 20%
of the miRNAs were from viral origin, providing evidence
of 22 miRNAs being incorporated into the endogenous host
silencing machinery [85]. In contrast, Meshesha and col-
leagues described the fraction of miRNA dropped to only 5%
[86]. Even if Stark et al. and Meshesha et al. identified the
same seven top most abundant transcripts (miR US5-2-3p,
US25-1-5p, US25-2-3p, US25-2-5p, UL22A-3p, UL22A-
5p, and UL36-5p), their abundances substantially differed.
Those changes in abundance could be attributed to 3 differ-
ent causes: firstly, (i) two different HCMV strains were used
(Towne in Stark et al. vs. AD169 and 3 clinical isolates in
Meshesha et al.). Secondly, (ii) RNA was collected at differ-
ent time points (72 h vs. 96 h post infection), and finally (iii)
different methods of miRNA assignment were used (map-
ping reads with Bowtie v0.12 to miRBase v16.0 vs. mapping

reads with BWA v0.5 miRBase v17.0) [85, 86]. Using previ-
ously published ribosome profiling data by Stern-Ginossar
et al., Ingolia and colleagues (BioProject PRINA257463)
found evidence of novel polypeptide production in RNA2.7
transcript, capable to induce immune responses from the
host [101]. Kim et al. (BioProject PRINA269099) found that
a large fraction of human miRNAs targets was shared with
viral miRNAs in HFFs infected with Towne varL after 24, 48
and 72 h post infection [99]. In 2016, Buzdin and colleagues
(BioProject PRINA304028) could link a complete suppres-
sion of host miRNAs regulation during early stages (3 h) of
an HCMYV infection, by infecting embryonic lung fibroblasts
(HELF-977) and skin fibroblasts (HAF-1608) with AD169
[98]. Lastly, Stark et al. found evidence of miRNAs being
derived from the IncRNA RNA2.7, contributing to profile
HCMYV long RNAs as precursors to other functional RNAs.
Interestingly, Stern-Ginossar et al. found similar results
applying ribosome profiling techniques, describing IncRNAs
as precursors for putative short proteins [87].

Transcriptomics can also be used to understand the pro-
cesses of cell tropism and infection in different cell types.
Van Damme et al. (BioProject PRIEB15199) compared
differences in expression between TB40/E infected mac-
rophages and dendritic cells (DCs) derived from whole
blood donations [96]. Interestingly, in primary cell types,
differentially expressed genes often belong to clusters,
suggesting a functional coordination between those tran-
scripts coming from genes of the same family. Concretely,
the decrease in expression of RL11-RL13-RL14-UL1
and UL4-UL11; and the increase of UL120-UL121,
UL148D-UL149, and US33-US34A in DCs were strik-
ingly pronounced [96]. In macrophages type 1, the clus-
ter UL81-UL86 appeared to have its expression generally
decreased (although UL81-UL82 and UL85 did not reach
clear significance). Contrary, in macrophages type 2, the
same cluster, UL82—-UL86 had its expression increased
(UL84 was not significant), as well as RL11-RL12, UL2-3,
and UL148A-UL149 loci. Similarly, the unique short region
US7-US9 had their expression increased [96]. Possibly,
US1-US6 region would have its expression increased, as
the whole region is generally related to immunomodulation,
but was deleted in the production of TB40/E BAC on which
Van Damme and colleagues based their study. As expected,
most of the differentially expressed genes were related to
immunomodulation, cell tropism (prominently UL74, US9,
and US27) and adaptability to different cell types (as UL4
and UL5) [96].

Batra et al. (BioProject PRINA342503) proposed some
advances on alternative therapeutic targets in 2016 [97].
Cytoplasmic polyadenylation element binding protein 1
(CPEB1), responsible for cytoplasmic polyadenylation, was
found to have a major role in infection-related cytopathol-
ogy and post-transcriptional changes in different strains of
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HCMV (TB40/E and Towne) and in Herpes Simplex virus 2
in different tissue types [97]. Decreased transcription levels
of CPEB1 reduced viral RNA polyadenylation (shortening
poly-A tails), alternative splicing and other RNA process-
ing events, which leaded to a decrease of HCMYV titers and
shift in the transcription profile in comparison with a mock
infection [97].

Although pending for experimental validation, Zhang
and colleagues (BioProject PRINA340198) described the
latent HCMYV Towne infection cell transcriptome in THP-1
cells [100], defining more than 2000 host differentially
expressed genes, with approximately half of them with
an upregulated expression profile. As expected, those dif-
ferentially expressed genes were involved in pathways of
apoptosis, inflammatory response and cell cycle progression
[100]. Interestingly, IncRNAs were differentially expressed
with an ongoing HCMYV latent infection [100]. A year later,
Cheng et al. (BioProject PRINA389726) compared the
expression of natural infection (healthy peripheral blood
mononuclear cells latently infected with clinically unchar-
acterized HCMV) and experimental latency system in a
transcriptome-wide study using positive strand SureSelect*"
target enrichment [80]. The experimentally latent system
used mutated TB40/E strains: AUL135-TB40/E (latent-
like) and AUL138-TB40/E (strict-lytic). The SureSelectXT
enrichment represented a viral RNA increase between
74.35 and 81.2%, increasing viral read yield more than
6000 fold, without biasing the read distribution of the tran-
scriptome [80]. Strikingly, wild-type TB40/E and recombi-
nant AUL135 were very similar in transcript composition
and abundances [80]. Alternatively, recombinant AUL138
infected cells harbored transcripts being antagonistically
expressed in wild-type or AUL135 infected cells. Finally,
the authors proposed a list of 30 core differentially “low
to moderate levels” expressed genes in HCMV latent sam-
ples (AUL135 or clinical latent samples). Unfortunately,
no IncRNA were analyzed [80]. Shnyder and colleagues
(BioProject PRINA394123) used publicly available data-
sets and single-cell transcriptomics to define HCMYV latency
dynamics in infected cell populations. Interestingly, Shnyder
et al. did not find any “clear restricted latency-associated
expression program” [102] or set of genes, that could clearly
explain the transitions from lytic-to-latent or latent-to-lytic
during infection. Furthermore, transcription levels in latent
cells resembled more those of very late infection, with low
to medium transcription rates. This overall change in tran-
scriptional rate, as cause of transition between the two states,
apparently conflicts with Cheng et al. 30 latency-associated
candidate genes list [80]. Further research is needed to
understand the dynamics of latency in HCMV.

In 2017, Balazs and colleagues (BioProject PRIEB22072)
reported the first HCMV transcriptome sequenced with long-
read technology, the SMRT Bell™ Pacific Biosciences™

@ Springer

single molecule consensus platform. In this study, more
than 291 novel transcript isoforms, 13 transcriptional start-
ing sites (TSS), 22 transcriptional ending sites (TES) and
11 novel splicing events were characterized [27]. Most iso-
forms displayed unique combinations of ORFs, modifying
the length of the transcript. Most of the length differences
between isoforms were caused by an N-terminal truncation,
losing an additional ORF upstream of the main ORF. Moreo-
ver, 8 novel antisense transcripts to canonical ORFs (UL20,
UL36, UL38, UL54, UL115, US1, US17, and US30), and a
new partially antisense transcript (RS2) in the short repeat
region [27]. Balazs and colleagues also described transcript
diversity in UL38 locus (i.e., hypothetical UL38A, longer
form of UL38 with a putative non-canonical start codon),
which has already been hypothesized to have a role in
latency-to-replication transition in Cheng et al. [80]. Oxford
Nanopore Technologies™ direct RNA-sequencing could
provide extra evidence, as it can allow for (i) sequencing
RNA directly (no retrotranscription or amplification) and
(ii) keeping strand specificity. Additionally, (iii) it permits
sequence transcripts with very different fragment sizes (as
opposed to SMRT Bell™ Pacific Biosciences™ approach
in Bal4zs et al. where analyzed transcripts range between
1 and 2 kbp).

Conclusions and future challenges

Almost 30 years have passed since the first full-length
genome of HCMV was published [7], and the amount of
knowledge gathered with different NGS experiments has
been invaluable to detangle the nature of this ubiquitous
virus. Even with all information that has been collected
and technologies developed, some challenges are yet to be
addressed: (i) the centralization and integration of informa-
tion, and (ii) the production of improved assemblies, notably
in complex clonally heterogeneous samples.

HCMYV genome-, expression- and translation informa-
tion is scattered in literature, but by (i) improving pro-
tein orthology, (ii) collecting and unifying clinical data,
and (iii) creating a dynamic and collaborative annotation
environment, the scattered available information may be
reconstructed and contextualized, providing a valuable
broad picture of HCMV. Different annotation nomencla-
tures have existed for the past years [7, 104] and recently,
a new protein orthology has been published [8]. This new
annotation, promoted by ViPR, is based on Domain-archi-
tecture Aware Inference of Orthologs (DAIO, Forester
library) [105], and already available phylogenetic classifi-
cations, offering a manually high-quality curated database
of Strict Orthology Groups (SOG). Orthology groups may
help to identify and classify new Herpesviridae genes and
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to understand the functional differences between the dif-
ferent orthologs.

Over the years, the number of sequenced clinical isolates
has greatly increased, albeit clinical metadata linked to the
viral isolates (i.e., gender, age, patient cohort, ethology of
the disease or isolation year) has not. Most of this informa-
tion remains unavailable or heavily scattered in the bibli-
ography. Some resources, as ViPR [8], provide centralized
access to part of this metadata by automatically accessing
GenBank records, although it remains incomplete as relies
on non-standardized GenBank entries. An environment to
deposit relevant clinical data with the corresponding viral
information (i.e., isolate characteristics and genome) would
provide high-quality information, helping to identify patho-
genic determinants, as already has occurred for other viruses
[106]. Currently, most of HCMV genome and transcriptome
are annotated by automatic or semi-automatic tools, based
on pre-existing references (custom databases or annotation
transfer tools, such as RATT [107]). Unfortunately, not all
annotations are updated with the current discoveries in
HCMV expression and translation. A centralized and inte-
grative RNA-seq platform would benefit the current state of
annotation, as it would offer a constantly updated HCMV
annotation contextualizing the available evidence from dif-
ferent experiments.

Finally, assemblies can be improved using different strate-
gies, although connectivity, as previously discussed in this
review, is one of its key aspects. Long-read technologies can-
not only, connect scattered or unfinished regions of HCMV
assemblies and characterize complete transcription events;
but it can also provide a better understanding of structural
and point variation in HCMYV infections. Recently the term
“ultra-long reads” (ULR), reads longer than 100 kbp, has
been introduced [108]. Theoretically, ULR could (partially)
cover any of the unique regions (U or Ug) of HCMYV, or
in exceptionally cases, bridging both unique regions, as
reads longer than 1 Mbp have already been reported [108].
Reads longer than 100 kbp may help to unambiguously con-
nect distant variants from a clonally heterogeneous HCMV
population.
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