
Genetic Algorithm for the 0/1 Multidimensional Knapsack Problem

Shalin Shah
sshah100@jhu.edu

shah.shalin@gmail.com
Johns Hopkins University

The 0/1 multidimensional knapsack problem is the 0/1 knapsack problem with m constraints which makes it
difficult to solve using traditional methods like dynamic programming or branch and bound algorithms. We present
a genetic algorithm for the multidimensional knapsack problem with Java code that is able to solve publicly
available instances in a very short computational duration. Our algorithm uses iteratively computed Lagrangian
multipliers as constraint weights to augment the greedy algorithm for the multidimensional knapsack problem and
uses that information in a greedy crossover in a genetic algorithm. The algorithm uses several other
hyperparameters which can be set in the code to control convergence. Our algorithm improves upon the algorithm
by Chu and Beasley in that it converges to optimum or near optimum solutions much faster.

Keywords:
Multidimensional knapsack problem, Genetic algorithms, Utility ratio, Greedy algorithms

1. Introduction

Solving the multidimensional knapsack problem using branch and bound or dynamic programming is difficult.
Because of the multiple constraints, it is also difficult to obtain a good approximation to the solution such as a
greedy algorithm. However, it is possible to use the greedy algorithm as part of a genetic algorithm, and our results
show that it works really well. Not only is our algorithm able to exceed the greedy estimate, but for most problem
instances, it is able to find the optimum solution. Our algorithm is similar to [2] which uses greedy crossover for
the 0/1 knapsack problem. Since the multidimensional knapsack problem has multiple constraints, we assign a
weight to each constraint using iteratively computed Lagrangian multipliers. This is similar to the approach in [1]
which uses surrogate multipliers. The difference is that we use the multipliers in a greedy crossover which is highly
constructive and can find optimum solutions much quicker.

2. Problems and Background

The 0/1 multidimensional knapsack problem is the 0/1 knapsack problem with m constraints which makes it
difficult to solve using traditional methods. The 0/1 multidimensional knapsack problem can be stated as: Given n

objects each with a value and m constraints (or knapsacks) each with a capacity constraint , maximize the

value such that each of the m constraints are satisfied. Each of the m constraints have i weights associated with it.
This makes it a general 0/1 integer programming problem.

Maximize:

Such that: , j: 1…m

Our algorithm generates the initial population with the probability of choosing an object 0.5. In a problem
with n objects, are chosen on an average. The higher this probability, the faster the algorithm converges;

iv jc

i

n

i
i vxå

=1

j

n

i
jii cwx £å

=1
,

}1,0{Îix

2/n

however, the higher this probability, the more are the chances that the algorithm will converge around the greedy
estimate. This way of generating the initial population introduces a lot of invalid solutions (noise) into the
population. (Strategies for initial population generation are discussed in [5]). To compensate for invalid solutions,
we investigated the use of a highly constructive greedy crossover. The greedy crossover takes the objects with the
best utility ratio from parents and constructs one offspring such that it is always a valid solution.

We use Lagrangian multipliers to augment the utility ratio for the multidimensional knapsack problem according to
the following steps:

1. For each object and for each constraint (for that object) the weight (constraint) value is multiplied with
the corresponding Lagrangian multiplier and the sum of these values is obtained.

2. The value obtained in step 1 is then divided by the number of constraints (optional step).
3. Then, the ratio of the value (profit) and the value obtained in step 2 is obtained which is the profit-weight

ratio for that object

Where is the jth Lagrangian multiplier and m is the number of constraints. The greedy crossover simply takes

objects from the two parents in non-increasing order of the ratio and constructs one offspring such that it satisfies
all constraints.

3. Software Framework

Our code is written in Java. Any JDK compiler should work. Benchmark instances that we use in this paper are
available at [3]. Our code is available at [4]. The code requires a data.DAT file in the directory in which the
executable resides. Change Constants.java to increase or decrease the number of generations
(Constants.GENERATIONS). Change the data file name in Constants.java to use some other Weing/Weish/Sento file.
Change the DataProcessor in GeneticAlgorithm.java to ORLIB if required.

4. Implementation and Empirical Results

We ran our algorithm on publicly available instances. Some results are shown below. More results are available in
our git repository [4]. Our algorithm is able to solve most instances completely, reaching the global optimum.

Table-1: Our algorithm applied to some benchmark instances [3].

Instance m n Solves
Completely

Time
(mean)

%
gap

Sento1 30 60 13\20 4.8 seconds 0

Sento2 30 60 20\20 0.2 seconds 0

Weing1 2 28 11\20 3.5 seconds 0

Weing5 2 28 20\20 0.6 seconds 0

Weing7 2 105 1\20 27.4 seconds 0

Weing8 2 105 11\20 2 seconds 0

Weish05 5 30 20\20 0.02 seconds 0

jl

)/)*/((
1

, mwlvratio
m

j
jijii å

=

=

jl

Weish10 5 50 16\20 0.1 seconds 0

Weish15 5 60 16\20 1.2 seconds 0

Weish20 5 70 10\20 10 seconds 0

Weish25 5 80 10\20 1.9 seconds 0

Weish30 5 90 13\20 3.6 seconds 0

m is the number of constraints and n is the number of objects.

5. Illustrative Examples

Our algorithm can be applied to any 0/1 integer programming problem and the utility ratio is general enough for
most types of inequality constraints. We haven’t tried running our algorithm in equality constraints though it
should be trivial. Our algorithm is fast and can find optimum solutions quite fast. Instances with larger number of
objects are shown in our git repository [4].

6. Conclusions

Traditional evolutionary algorithms are more suitable for problems in which domain specific knowledge is not
available. For problems with partial knowledge of the domain, a genetic algorithm, which uses this domain
knowledge, is more likely to succeed, as the results clearly indicate. A good search algorithm should be global in
nature with a heuristic introduced to give constructive direction to the algorithm. We introduced a new technique
of greedy crossover; it forms the core of our genetic algorithm. As table-1 shows, our algorithm is able to solve to
optimality, all of the instances in a short amount of time. Some problems like Weing7 are harder. Future work
could be to run the algorithm on larger instances for which optimum solutions are available. Our algorithm is
trivially parallelizable and future work could be to implement the algorithm on Apache Spark or Map-Reduce.

References

[1] Chu, Paul C., and John E. Beasley. "A genetic algorithm for the multidimensional knapsack problem." Journal of
heuristics 4.1 (1998): 63-86.

[2] Shah, Shalin. "Genetic Algorithm for a class of Knapsack Problems." arXiv preprint arXiv:1903.03494 (2019).

[3] http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/mknap2.txt

[4] https://github.com/shah314/gamultiknapsack

[5] “A Monte-Carlo study of genetic algorithm initial population generation methods”, R. Hill, Proceedings of the
31st conference on winter simulation: Simulation---a bridge to the future - Volume 1, 1999, 543--547 (1999)

[6] “Optimization by simulated annealing”, S. Kirkpatrick, Science, Number 4598, 13 May 1983, volume 220, 4598,
671--680 (1983)

[7] “Theoretical and Numerical Constraint Handling Techniques used with Evolutionary Algorithms: A Survey of the
State of the Art”, C. Coello, Computer Methods in Applied Mechanics and Engineering, 191 (11--12), 1245-1287,
January 2002 (2002)

B- Software Metadata
B1 Current executable software version
Table 2 – Software executable metadata
Nr (executable) Software

metadata description
https://github.com/shah314/gamultiknapsack/tree/v1.5

S1 Current software version V1.5
S2 Permanent link to

executables of this version
https://github.com/shah314/gamultiknapsack/tree/master/java/classes

S3 Legal Software License MIT License
S4 Computing platform /

Operating System
The executable is for Java classes on a Mac. The code can be easily compiled
using a Java compiler on other platforms.

S5 Installation requirements
& dependencies

Run “java GeneticAlgorithm”. The code requires a data.DAT file in the current
directory. This file should have the format as given in the publicly available data
sets as described in the references [3]. See “Constants.java” and
“GeneticAlgorithm.java”.

S6 If available Link to user
manual - if formally
published include a
reference to the
publication in the
reference list

https://github.com/shah314/gamultiknapsack

S6 Support email for
questions

shah.shalin@gmail.com

B2 Current code metadata
Table 3 – Code metadata
Nr Code metadata description https://github.com/shah314/gamultiknapsack/tree/v1.5

C1 Current Code version V1.5
C2 Permanent link to code /

repository used of this code
version

https://github.com/shah314/gamultiknapsack/tree/master/java

C3 Legal Code License MIT License
C4 Code Versioning system used Git
C5 Software Code Language used Java (C++ also available)
C6 Compilation requirements,

Operating environments &
dependencies

See GeneticAlgorithm.java and Constants.java. The code requires a
data.DAT file in the current directory. This file should have the format
as given in the publicly available data sets as described in the
references [3]. Change the data file name in Constants.java. Change the
number of generations in Constants.java. Change the data processor to
Weing/ORLIB in GeneticAlgorithm.java (which is the main class).

C7 If available Link to developer
documentation / manual

https://github.com/shah314/gamultiknapsack

C8 Support email for questions shah.shalin@gmail.com

