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The 0/1 multidimensional knapsack problem is the 0/1 knapsack problem with m constraints which makes it 
difficult to solve using traditional methods like dynamic programming or branch and bound algorithms. We present 
a genetic algorithm for the multidimensional knapsack problem with Java code that is able to solve publicly 
available instances in a very short computational duration. Our algorithm uses iteratively computed Lagrangian 
multipliers as constraint weights to augment the greedy algorithm for the multidimensional knapsack problem and 
uses that information in a greedy crossover in a genetic algorithm. The algorithm uses several other 
hyperparameters which can be set in the code to control convergence. Our algorithm improves upon the algorithm 
by Chu and Beasley in that it converges to optimum or near optimum solutions much faster. 
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1. Introduction 
 
Solving the multidimensional knapsack problem using branch and bound or dynamic programming is difficult. 
Because of the multiple constraints, it is also difficult to obtain a good approximation to the solution such as a 
greedy algorithm. However, it is possible to use the greedy algorithm as part of a genetic algorithm, and our results 
show that it works really well. Not only is our algorithm able to exceed the greedy estimate, but for most problem 
instances, it is able to find the optimum solution. Our algorithm is similar to [2] which uses greedy crossover for 
the 0/1 knapsack problem. Since the multidimensional knapsack problem has multiple constraints, we assign a 
weight to each constraint using iteratively computed Lagrangian multipliers. This is similar to the approach in [1] 
which uses surrogate multipliers. The difference is that we use the multipliers in a greedy crossover which is highly 
constructive and can find optimum solutions much quicker. 
 
2. Problems and Background 
 

The 0/1 multidimensional knapsack problem is the 0/1 knapsack problem with m constraints which makes it 
difficult to solve using traditional methods. The 0/1 multidimensional knapsack problem can be stated as: Given n 

objects each with a value  and m constraints (or knapsacks) each with a capacity constraint , maximize the 

value such that each of the m constraints are satisfied. Each of the m constraints have i weights associated with it. 
This makes it a general 0/1 integer programming problem. 

Maximize:  

Such that: , j: 1…m 

 

Our algorithm generates the initial population with the probability of choosing an object 0.5. In a problem 
with n objects,  are chosen on an average. The higher this probability, the faster the algorithm converges; 
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however, the higher this probability, the more are the chances that the algorithm will converge around the greedy 
estimate. This way of generating the initial population introduces a lot of invalid solutions (noise) into the 
population. (Strategies for initial population generation are discussed in [5]). To compensate for invalid solutions, 
we investigated the use of a highly constructive greedy crossover. The greedy crossover takes the objects with the 
best utility ratio from parents and constructs one offspring such that it is always a valid solution. 

We use Lagrangian multipliers to augment the utility ratio for the multidimensional knapsack problem according to 
the following steps: 

1. For each object and for each constraint (for that object) the weight (constraint) value is multiplied with 
the corresponding Lagrangian multiplier and the sum of these values is obtained.  

2. The value obtained in step 1 is then divided by the number of constraints (optional step).  
3. Then, the ratio of the value (profit) and the value obtained in step 2 is obtained which is the profit-weight 

ratio for that object 

 

Where is the jth Lagrangian multiplier and m is the number of constraints. The greedy crossover simply takes 

objects from the two parents in non-increasing order of the ratio and constructs one offspring such that it satisfies 
all constraints. 

3.  Software Framework  

Our code is written in Java. Any JDK compiler should work. Benchmark instances that we use in this paper are 
available at [3]. Our code is available at [4]. The code requires a data.DAT file in the directory in which the 
executable resides. Change Constants.java to increase or decrease the number of generations 
(Constants.GENERATIONS). Change the data file name in Constants.java to use some other Weing/Weish/Sento file. 
Change the DataProcessor in GeneticAlgorithm.java to ORLIB if required. 

4. Implementation and Empirical Results 

We ran our algorithm on publicly available instances. Some results are shown below. More results are available in 
our git repository [4]. Our algorithm is able to solve most instances completely, reaching the global optimum.  

Table-1: Our algorithm applied to some benchmark instances [3]. 

Instance m n Solves 
Completely 

Time 
(mean) 

% 
gap 

Sento1 30 60 13\20 4.8 seconds 0 

Sento2 30 60 20\20 0.2 seconds 0 

Weing1 2 28 11\20 3.5 seconds 0 

Weing5 2 28 20\20 0.6 seconds 0 

Weing7 2 105 1\20 27.4 seconds 0 

Weing8 2 105 11\20 2 seconds 0 

Weish05 5 30 20\20 0.02 seconds 0 
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Weish10 5 50 16\20 0.1 seconds 0 

Weish15 5 60 16\20 1.2 seconds 0 

Weish20 5 70 10\20 10 seconds 0 

Weish25 5 80 10\20 1.9 seconds 0 

Weish30 5 90 13\20 3.6 seconds 0 

m is the number of constraints and n is the number of objects. 

5.  Illustrative Examples 
 
Our algorithm can be applied to any 0/1 integer programming problem and the utility ratio is general enough for 
most types of inequality constraints. We haven’t tried running our algorithm in equality constraints though it 
should be trivial. Our algorithm is fast and can find optimum solutions quite fast. Instances with larger number of 
objects are shown in our git repository [4]. 

6. Conclusions 

Traditional evolutionary algorithms are more suitable for problems in which domain specific knowledge is not 
available. For problems with partial knowledge of the domain, a genetic algorithm, which uses this domain 
knowledge, is more likely to succeed, as the results clearly indicate. A good search algorithm should be global in 
nature with a heuristic introduced to give constructive direction to the algorithm. We introduced a new technique 
of greedy crossover; it forms the core of our genetic algorithm. As table-1 shows, our algorithm is able to solve to 
optimality, all of the instances in a short amount of time. Some problems like Weing7 are harder. Future work 
could be to run the algorithm on larger instances for which optimum solutions are available. Our algorithm is 
trivially parallelizable and future work could be to implement the algorithm on Apache Spark or Map-Reduce. 
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B- Software Metadata 
B1 Current executable software version 
Table 2 – Software executable metadata 
Nr (executable) Software 

metadata description   
https://github.com/shah314/gamultiknapsack/tree/v1.5 

S1 Current software version V1.5 
S2 Permanent link to 

executables of this version  
https://github.com/shah314/gamultiknapsack/tree/master/java/classes 

S3 Legal Software License MIT License 
S4 Computing platform / 

Operating System 
The executable is for Java classes on a Mac. The code can be easily compiled 
using a Java compiler on other platforms. 

S5 Installation requirements 
& dependencies 

Run “java GeneticAlgorithm”. The code requires a data.DAT file in the current 
directory. This file should have the format as given in the publicly available data 
sets as described in the references [3]. See “Constants.java” and 
“GeneticAlgorithm.java”. 

S6 If available Link to user 
manual - if formally 
published include a 
reference to the 
publication in the 
reference list 

https://github.com/shah314/gamultiknapsack  

S6 Support email for 
questions 

shah.shalin@gmail.com 
 

B2 Current code metadata 
Table 3 – Code metadata 
Nr Code metadata description  https://github.com/shah314/gamultiknapsack/tree/v1.5 

C1 Current Code version V1.5 
C2 Permanent link to code / 

repository used of this code 
version 

https://github.com/shah314/gamultiknapsack/tree/master/java  

C3 Legal Code License MIT License 
C4 Code Versioning system used Git 
C5 Software Code Language used Java (C++ also available) 
C6 Compilation requirements, 

Operating environments & 
dependencies 

See GeneticAlgorithm.java and Constants.java. The code requires a 
data.DAT file in the current directory. This file should have the format 
as given in the publicly available data sets as described in the 
references [3]. Change the data file name in Constants.java. Change the 
number of generations in Constants.java. Change the data processor to 
Weing/ORLIB in GeneticAlgorithm.java (which is the main class).  

C7 If available Link to developer 
documentation / manual 

https://github.com/shah314/gamultiknapsack  

C8 Support email for questions shah.shalin@gmail.com 
 

 


