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Abstract 

Recommender systems aim to personalize the experience of user by suggesting items to the user based on 
the preferences of a user. The preferences are learned from the user’s interaction history or through explicit 
ratings that the user has given to the items. The system could be part of a retail website, an online bookstore, 
a movie rental service or an online education portal and so on. In this paper, I will focus on matrix 
factorization algorithms as applied to recommender systems and discuss the singular value decomposition, 
gradient descent-based matrix factorization and parallelizing matrix factorization for large scale 
applications. 
 

1. The Singular Value Decomposition 
 
Matrix factorization algorithms decompose a matrix into components which can then be used for various 
purposes. Eigen-decomposition decomposes a square matrix into a matrix P and a diagonal matrix D. 
 

𝐴 = 𝑃𝐷𝑃%& 
 
Where P is a matrix that contains the eigenvectors of A and D is a diagonal matrix that contains the 
eigenvalues of A on its diagonal. This decomposition is particularly useful for computing large matrix 
powers, in applications such as Markov processes. Principal components analysis (PCA) uses eigen-
decomposition to compute the principal components which are eigenvectors of the covariance matrix ATA. 
A very related decomposition is the Singular Value Decomposition (SVD) which can factorize non-square 
matrices with a similar interpretation. SVD factorizes a rectangular m x n matrix A into three matrices, U, 
S and VT. U is an m x m matrix, S is an m x n diagonal matrix and V is an n x n matrix. U captures 
information about the rows of A and V captures information about the columns of A. The columns of U 
and V are called the left and right singular vectors and the diagonal values of S are called the singular values 
of A (square roots of the eigenvalues). U and V are orthogonal matrices which says that all columns are 
orthogonal to the other columns and are unit vectors (also, UT = U-1 and VT = V-1). The SVD takes the 
following form: 
 

𝐴 = 𝑈Σ𝑉* 
 
SVD is the same as PCA by noting the following: 
 

𝐴*𝐴 = (𝑈Σ𝑉*)*-𝑈ΣV/0 = 𝑉Σ/(𝑈*𝑈)ΣV/ = 𝑉-Σ/Σ0V/ 
𝐴𝐴* = -𝑈ΣV/0(𝑈Σ𝑉*)* = 𝑈Σ(𝑉*V)Σ*𝑈* = 𝑈-ΣΣ/0U/ 

 
U contains eigenvectors of AAT and V contains the eigenvectors of ATA. The diagonal entries of S contain 
the square roots of the eigenvalues of either (they are equal). Both AAT and ATA are square symmetric 
matrices whose eigen-decomposition exists, and the eigenvectors are orthogonal. The next section shows 
how this decomposition can be used in recommender systems. 
 
 

2. SVD and Recommender Systems 
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If A is an m x n matrix, and noting the similarity between SVD and PCA, it is clear that U contains latent 
information about the rows of A (of dimension m) and V contains latent information about the columns of 
A (of dimension n). The rank of a matrix is the number of non-zero rows (or columns) in its reduced form 
(which can be found using Gaussian-Elimination). 
 

𝑇ℎ𝑒	𝑟𝑎𝑛𝑘	𝑜𝑓	𝑎	𝑚𝑎𝑡𝑟𝑖𝑥	𝑖𝑠	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑛𝑧𝑒𝑟𝑜	𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟	𝑣𝑎𝑙𝑢𝑒𝑠. 
 

𝑃𝑟𝑜𝑜𝑓: 
𝑈	𝑎𝑛𝑑	𝑉	𝑎𝑟𝑒	𝑠𝑞𝑢𝑎𝑟𝑒	𝑓𝑢𝑙𝑙	𝑟𝑎𝑛𝑘	𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	𝑡ℎ𝑒𝑦	𝑎𝑟𝑒	𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙. 

𝑈𝑈* = 𝐼[ => det(𝑈) = 1	(because	det(𝑈) = det(𝑈*)) => 	𝑈	𝑖𝑠	𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 
=> 𝑈	𝑖𝑠	𝑓𝑢𝑙𝑙	𝑟𝑎𝑛𝑘 => 𝑟𝑎𝑛𝑘(𝑈) = 𝑚, 𝑟𝑎𝑛𝑘(𝑉) = 𝑛, 𝑟𝑎𝑛𝑘(S) = s,	 

(where	s = number	of	nonzero	singular	values) 
𝑅𝑎𝑛𝑘	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑜𝑓	𝑎	𝑓𝑢𝑙𝑙	𝑟𝑎𝑛𝑘	𝑚𝑎𝑡𝑟𝑖𝑥	𝑋	𝑎𝑛𝑑	𝑎	𝑚𝑎𝑡𝑟𝑖𝑥	𝑌	𝑖𝑠: 

𝑟𝑎𝑛𝑘(𝑋𝑌) = min(𝑟𝑎𝑛𝑘(𝑋), 𝑟𝑎𝑛𝑘(𝑌)) 
𝑆𝑜, 𝑟𝑎𝑛𝑘(𝑈S) = min(m, s) = s 

𝑎𝑛𝑑	𝑟𝑎𝑛𝑘-(US)V/0 = min(𝑠, 𝑛) = 𝑠 
𝑇ℎ𝑢𝑠, 𝑟𝑎𝑛𝑘-𝑈SV/0 = 𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑛𝑧𝑒𝑟𝑜	𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟	𝑣𝑎𝑙𝑢𝑒𝑠 

∎ 
 
By ignoring all singular values less than the kth largest (and similarly the singular vectors in U and V), a 
rank reduced matrix can be constructed from A. In the rank reduced form, U is now an m x k matrix, S is a 
k x k diagonal matrix and VT is a k x n matrix (the rank reduced form using SVD is the best rank k 
approximation to the original matrix A, as compared using the Frobenius norm of the difference). Rank 
reduction to rank k constructs k-dimensional latent factors in US and SVT. These latent factors can be 
interpreted as embeddings in some space. If A originally contained users as the rows and retail products as 
its columns, the k-dimensional rows of US contain the latent factors of the users and the k-dimensional 
columns of SVT contain the latent factors of the retail products [12] (where there are m users and n items 
i.e. the original matrix A is an m x n matrix with a 1 if the user interacted with the respective item and a 0 
otherwise).  
 
Inner products between the user and item latent factors can be interpreted as an affinity of the user for a 
specific item. Thus, the top c non-increasing inner products of a user latent factor with all item factors gives 
the top c items that can be recommended to the user. The interpretation is that these rank-reduced latent 
factors contain latent information about the user and the item, such as inclination towards categories, colors, 
style, brand etc. and that a large value of the dot product between the user and item factors implies similar 
interests and properties of the user and the item respectively. 
 
SVD for recommender systems was used by participants of the Netflix prize [1]. SVD can be computed in 
min(O(m2n), O(n2m)) time i.e. roughly cubic for a square matrix. MATLAB might have more efficient 
ways of computing the SVD. The singular values are, in some form, the relative importance of the latent 
information present in U and V. There are other ways of computing embeddings or latent factors using 
neural networks (e.g. word2vec [2]) which are not based on matrix factorization, though, there have been 
attempts to relate matrix factorization with neural embeddings [3]. All algorithms use some form of a 
context to construct the rows and columns of A (i.e. items bought by one user are somehow similar, and 
items viewed in the same web session are similar and so on). 



 
3. Matrix Factorization using Gradient Descent 

 
The disadvantage of SVD is that it cannot handle matrices with missing values. In most recommender 
systems applications, a user interacts with a very small subset of products and it is not necessarily true that 
the user is not interested in all of the remaining majority of products. And SVD, in its naïve form requires 
too many computing resources and is not easily parallelizable for very large-scale systems. 
 
It is possible to learn the latent factors of the users and items using gradient descent. By choosing an 
appropriate cost function (e.g. sum of squared errors) and then doing updates of the latent factors iteratively, 
the algorithm can learn more effectively, and it is a lot more scalable. 
 

𝑆𝑎𝑦	𝑣x = 𝑢𝑠𝑒𝑟	𝑙𝑎𝑡𝑒𝑛𝑡	𝑓𝑎𝑐𝑡𝑜𝑟	𝑎𝑛𝑑	𝑣y = 𝑖𝑡𝑒𝑚	𝑙𝑎𝑡𝑒𝑛𝑡	𝑓𝑎𝑐𝑡𝑜𝑟, 𝑎𝑛𝑑 
𝑟xy = 𝑟𝑎𝑡𝑖𝑛𝑔	𝑡ℎ𝑎𝑡	𝑡ℎ𝑒	𝑢𝑠𝑒𝑟	𝑔𝑎𝑣𝑒	𝑡𝑜	𝑖𝑡𝑒𝑚	𝑖	 

(𝑡ℎ𝑖𝑠	𝑐𝑜𝑢𝑙𝑑	𝑡𝑎𝑘𝑒	𝑜𝑛	𝑣𝑎𝑙𝑢𝑒𝑠	𝑜𝑓	0	𝑎𝑛𝑑	1, 𝑎𝑛𝑑	𝑎	 
𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐	𝑠𝑞𝑢𝑎𝑠ℎ𝑖𝑛𝑔	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑐𝑜𝑢𝑙𝑑	𝑏𝑒	𝑢𝑠𝑒𝑑	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑑𝑜𝑡	𝑝𝑟𝑜𝑑𝑢𝑐𝑡) 

 
𝐶𝑜𝑠𝑡	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑓 = (𝑟xy − 𝑣x. 𝑣y)} 

 
𝐴𝑛𝑑	𝑖𝑡𝑠	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠: 

 
𝜕𝑓
𝜕𝑣x

= 2(𝑣x𝑣y} − 𝑟xy. 𝑣y) 

 
𝜕𝑓
𝜕𝑣y

= 2(𝑣x}𝑣y − 𝑟xy. 𝑣x) 

 
In the algorithm to update the latent factors of users and items, it is sufficient to use just those items that a 
user interacted with, and negatively sampling from the items that the user did not interact with (i.e. putting 
equal emphasis on items viewed and not viewed). Then stochastic gradient descent could be used to update 
the user and item latent factors: 
 

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐	𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡	𝐷𝑒𝑠𝑐𝑒𝑛𝑡: 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒	𝑎𝑙𝑙	𝑢𝑠𝑒𝑟	𝑎𝑛𝑑	𝑖𝑡𝑒𝑚	𝑓𝑎𝑐𝑡𝑜𝑟𝑠	𝑡𝑜	ℕ(0,1) 

𝑆𝑎𝑚𝑝𝑙𝑒	𝑎	𝑢𝑠𝑒𝑟	𝑢, 𝑎	𝑣𝑖𝑒𝑤𝑒𝑑	𝑖𝑡𝑒𝑚	𝑖	𝑎𝑛𝑑	𝑎	𝑛𝑜𝑡	𝑣𝑖𝑒𝑤𝑒𝑑	𝑖𝑡𝑒𝑚	𝑗 
𝑈𝑝𝑑𝑎𝑡𝑒	𝑡ℎ𝑒	𝑢𝑠𝑒𝑟	𝑢, 𝑖𝑡𝑒𝑚	𝑖	𝑎𝑛𝑑	𝑖𝑡𝑒𝑚	𝑗	𝑓𝑎𝑐𝑡𝑜𝑟𝑠	𝑢𝑠𝑖𝑛𝑔	𝑡ℎ𝑒	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠	𝑗𝑢𝑠𝑡	𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 

𝑣x = 𝑣x − 𝜂
𝜕𝑓
𝜕𝑣	x

 

𝑣y = 𝑣y − 𝜂
𝜕𝑓
𝜕𝑣	y

 

𝑅𝑒𝑝𝑒𝑎𝑡	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑑𝑒𝑠𝑖𝑟𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑜𝑟	𝑢𝑛𝑡𝑖𝑙	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 
 
Where, h is the learning rate or step size (usually something like 0.01 or even less). This algorithm will 
learn the latent factors of all users and items. To recommend items to a user, the top c items with the highest 
𝑣x𝑣y could be used. 
Geometrically, similar users will appear in similar areas and similar items will get clustered together. The 
value of k (dimension of the latent factors) is a parameter, and usually a value between 50 and 100 works 
pretty good for many cases. 
 



4. Parallelizing Matrix Factorization using Spark 
 
Matrix factorization using stochastic gradient descent can be easily parallelized on Spark. 
 
Spark [5][6] is a parallel processing system which is based on a particular format of storing data in memory 
and disk called resilient distributed datasets (RDD). The creator of the Spark based algorithm can choose 
which RDD resides in memory and which RDD resides entirely on disk. Spark has a driver which starts the 
application and controls the compute nodes that process some parts of the data in parallel. 
 
Spark has map, reduceByKey, groupByKey and many other operations. A groupByKey operation groups 
data by keys. The rows that have the same key are collected on one compute node. This is similar to the 
reduce operation in map-reduce [7][8]. Spark also has a broadcast mechanism in which data can be 
broadcasted to all nodes of the application. A map operation can transform data from one format or schema 
to another, similar to the map operation in map-reduce.  
 
In the parallel implementation of matrix factorization, there are several alternatives possible. It might be 
sufficient to parallelize the users into an RDD and broadcast the latent factors of all products to all nodes 
(if not, randomized joins could be used). 
 
The algorithm: 
 

1. Initialize all user factors to ℕ(0,1) and create an RDD<User> 
2. Initialize all product factors to ℕ(0,1) and store on the driver 
3. Broadcast all product factors using the Spark broadcast mechanism 
4. On the compute node of the RDD<User>, sample an item that the user interacted with and a 

random item that the user did not interact with. 
5. Update the user factor and return it 
6. Update both item factors and return them 
7. Complete the iteration by updating RDD<User> with the updated user factors and updating the 

item factors on the driver 
8. Iterate from 3 till convergence 

 
Convergence can be detected when the metric used to measure the recommendations doesn’t change much 
or starts reducing (early stopping). Many metrics can be used to measure the recommendations such as 
NDCG, Hit Rate, and Area under the Curve (AUC). 
 

5. Conclusion 
 
In this paper, I gave a brief overview of SVD, argued that SVD can be used for personalized 
recommendations, gave an implementation of matrix factorization based on gradient descent and then 
showed that it can be implemented on Spark for scale. There are several variations that can be used, 
especially the cost function for gradient descent. Item and user biases could be added to the cost function. 
Bayesian Personalized Ranking [9][10] places a Gaussian prior on the latent factors. It might be interesting 
to compare pure feature based ranking algorithms such as Lambda Rank [11] with the matrix factorization 
approach. The latent factors could be compared with the ones created by neural embeddings. 
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