
Enabling Standalone FPGA Computing

Joshua Lant, Javier Navaridas, Andrew Attwood, Mikel Lujan, John Goodacre
School of Computer Science, University of Manchester, UK, M13 9PL. Email: {firstname.lastname}@manchester.ac.uk

Abstract—One of the key obstacles in the advancement of large-
scale distributed FPGA platforms is the ability of the accel-
erator to act autonomously from the CPU, whilst maintaining
tight coupling to system memory. This work details our efforts
in decoupling the networking capabilities of the FPGA from
CPU resources using a custom transport layer and network
protocol. We highlight the reasons that previous solutions are
insufficient for the requirements of HPC, and we show the
performance benefits of offloading our transport into the FPGA
fabric. Our results show promising throughput and latency
benefits, and show competitive Flops being achievable for
network dependent computing in a distributed environment.

Index Terms—Interconnects, FPGA, Transport Layer, HPC.

1. Introduction and Motivation

FPGAs have shown great promise for next generation
HPC systems, given their strong performance and energy
characteristics when faced with data-intensive and stream-
like workloads. Traditionally shunned due to their difficult
programmability and low off-chip memory bandwidth (vs.
GPU), maturing ecosystems, larger on-chip memories and
integrating advanced memory systems (e.g. HBM) mean
architects are now focusing on the potential of FPGAs in
HPC/data-center systems. For instance, Microsoft [1] are
turning towards the FPGA in their data-centers to improve
power-efficiency, in a domain where power consumption is
becoming an ever growing issue. For example, in [2] it is
shown that the FPGA can achieve similar performance to
GPUs on a number of the BLAS routines, but achieving
much higher energy efficiency. We anticipate that as tighter
power constraints are placed upon systems, we are likely
to see the FPGA feature as a standard component of large
heterogeneous HPC clusters. Another advantage of FPGAs
over GPUs is the flexibility for custom optimizations and
fine grained parallelism to achieve greater performance.
As an example, the feed-forward nature of computation
involved in Deep Neural Networks (DNNs) can benefit from
very deep pipelining. We can also take advantage of custom
data-types and reduced precision [3], [4].

However, a key barrier to the exploitation of FPGAs
within the context of HPC systems is they are traditionally
used as a mere co-processor [5], loosely coupled to the CPU
and network resources—attached via PCIe or other equiva-
lent bus-based interconnect (see Fig. 1a). This architectural
model exacerbates the limited off-chip memory bandwidth
of the FPGA by distancing the accelerator from the memory

CPU

FPGA

NIC NIC

FPGA

CPU

NIC NIC

CPU NIC

FPGA

N
E
T
W
O
R
K

DRAM DRAM

FPGA

N
E
T
W
O
R
K

N
E
T
W
O
R
K

CPUDRAM

FPGA

CPU DRAM

N
E
T
W
O
R
KNICCPUDRAM

NICFPGADRAM

NIC CPU DRAM

NIC FPGA DRAM

NIC CPU DRAM

NIC FPGA DRAM

b)

c)

a)

d)

Figure 1. Possible distributed FPGA System Configurations, showing the
bounds of memory addressing. a) Loosely coupled through PCIe. b)
Tightly coupled to the CPU. c) FPGA as an independent network peer.
d) Independent network peers within a global memory space.

hierarchy of the system. In addition it severely limits the
feasibility of data-flow processing among distributed FPGAs
because they depend on the CPUs for communicating.

Modern SoCs such as Xilinx Zynq Ultrascale+, and
Intel Stratix 10, feature tighter integration of FPGAs and
hard-core processors by supporting cache-coherent shared
memory between the CPUs and FPGA, see Fig. 1b. While
this allows for lower latency local transfers, it does nothing
to alleviate the overhead of cumbersome SW network stacks
such as TCP/IP.

The community agrees that the remedy to the issue is
to promote the FPGA resources to the status of a full peer
within the network [6], capable of issuing and receiving its
own reliable transactions. Enabling the FPGA to perform
RDMA operations directly and offloading network stacks
into HW, i.e. TCP offloading, allow the FPGA to become a
peer within the network, fully disaggregated from the CPU,
see Fig. 1c. Such an architecture enables FPGA resources
to be scaled out without increasing the number of CPUs.
However, in this setup the FPGA is unable to exploit a
lower latency, shared memory model with other distributed
memory spaces; a property which is vital for workloads with
irregular memory accesses, and which has been shown in a
recent study to be a limiting factor for many of the identified
workload types to be performed efficiently on FPGAs [7].

Our solution is the first (to our knowledge) to maintain
both tight-coupling with system memory, and fully decou-
pled networking capability. We analyze our lightweight NIC
which leverages a custom network protocol based on a sim-
ple geographic addressing scheme [8]; supporting HW prim-

TABLE 1. AREA UTILIZATION FOR NETWORK INTERFACE.

Xilinx ZCU102 LUTs FFs BRAM DSPs
Available Resources 274,080 548,160 912 2,520
IO/On-Chip network
stack total (See Fig. 2.)

46,915 58,734 126.5 0
(17.1%) (10.7%) (13.9%) (0%)

NIC utilization 22,670 18,986 65.5 0
(8.2%) (3.4%) (7.1%) (0%)

itives for both shared memory and RDMA operations, and
including a custom reliable transport layer. Our system-level
transport layer enables modern, low-diameter topologies to
be built, rather than using simple point-to-point connections
as most of the literature uses (limiting scalability). Our
solution enables the configuration shown in Fig. 1d, where
the FPGA acts as a fully disaggregated peer on the network,
but can also write directly into a shared memory space
between the CPU and other resources (local or remote).
This opens up the possibility for fine grained acceleration
across distributed FPGAs, as well as near-data processing in
the network. Earlier work [9] details a preliminary version
of this NIC; lacking capability for direct communication
between distributed accelerator resources, enabling commu-
nication between CPU and remote resources only.

2. Our Solution

We proceed to detail our solution, including our transport
protocol. First, we show the resource utilization of our
design in Table 1. Note that our NIC burden is not beyond
normal expected bounds [10]. We devised a connectionless
(datagram-based) transport, which maintains a small and,
more importantly, transient amount of information within
the NIC about in-flight transactions to provide reliability,
rather than keeping static connection state information about
each existing src-dest pair.

Our NIC contains two segregated data and control paths;
one for shared memory transactions, and another for RDMA
operations. In this manner the FPGA fabric is capable of
writing shared memory operations directly to the NIC, en-
abling it to submit work directly to remote accelerators. Data
can be written to a remote RAM (on-chip or off-chip) using
the DMA engine, and shared memory operations can be used
to inform the remote accelerator that there is new data to
be worked on. This decision was made because these two
methods have very different requirements and properties:
Shared-memory operations are formed of small messages,
so we decided to store data in the NIC to minimize latency
while still offering end-to-end reliability.
RDMA operations normally consist of much larger data
transfers. This makes storing data in the FPGA prohibitive,
so our NIC keeps data in their original location and tracks
outstanding RDMA operations to retransmit partial transfers
if needed, again, providing end-to-end reliability.

As an example, a user-space application sending a 16B
transfer to the BRAM of a remote FPGA (1-hop distance)
will take 1.1µs using our shared memory engine, but 1.49µs
using our RDMA engine. The benefits of performing smaller
operations using our dedicated shared-memory path are

M_HPC0_FPD

S_HPC0_FPD

4x10G

SFP

RDMA

DATA

REMOTE

SHM

RDMA

DATA

RDMA

WORK

SHM

DATA

DATA FROM

NETWORK,

SHM/RDMA/

WORK

SUBMIT

WORK

PUSH/

PULL

LOCAL

DATA

SHARED

MEMORY

OPS

(LOCAL/

REMOTE)

Figure 2. Full IO and on-chip network stack within FPGA fabric.

clear: reducing the latency by over 25%. These savings
come from the shared-memory path using a transparent write
instruction into remote memory whereas the RDMA engine
requires an extra memory copy.

Fig. 2 shows the full network stack within the FPGA,
which allows the accelerator logic to issue commands to the
NIC in exactly the same way as the CPU. This is enabled
by the use of memory-mapped AXI interfaces through the
whole stack. We effectively translate AXI transactions into
our custom packet format, whilst providing additional infor-
mation so that it can be used effectively over a wider, full-
system scale network; serialized and transmitted over high
speed transceivers. The AXI transactions are then rebuilt
remotely at the receiving NIC. This means that both the
accelerator and CPU can access the network completely
independently from each other, and the standard interfacing
lends itself very well to HLS programming models.

The RDMA engine consists of a Xilinx AXI CDMA,
configured in scatter-gather mode. RDMA commands are
issued as simple AXI writes (shared memory operations)
through the NIC, which passes commands to the CDMA,
while building and maintaining meta-data regarding the
operations in order to implement the reliability mechanism.
The accelerator communicates with the NIC using shared
memory operations. If addressed to the command queues
in the NIC for the local RDMA engine this will issue data
transfers to remote nodes. If addressed to remote nodes the
same mechanism can be used to issue direct read and writes
to remote memory locations. By doing this direct translation
between the wider network protocol and simple memory-
mapped read and write operations, two setup scenarios are
enabled. We enable both a distributed shared-memory type
setup, with FPGA resources tightly coupled to the system
bus of the CPU, affording fine grained parallelism. In ad-
dition, we enable a setup where the FPGA is completely
disaggregated from the CPU resources, allowing for non-
linear scaling between FPGA and CPU resources in a full

system architecture. This decoupled scaling is targeted by
other works [11], [12], [13], and may be very desirable for
systems which use the FPGA as the main compute element,
or in creating more flexible low-diameter topologies to
interconnect acceleration resources.

In order to illustrate the benefits of our approach, Fig. 3
shows the critical path for data and control communications
for a CPU (in F1) to use a local FPGA and then send the data
to be processed at a remote FPGA (in F2). Fig. 3a represents
a traditional TCP stack, which requires multiple extra copies
of the data between buffers and intervention from the CPU,
creating significant additional latency. Fig. 3b shows a SW
implementation of our transport layer. Now, we are able to
submit work directly to the remote accelerator, reducing the
latency induced at F2. However, additional control and off-
chip DRAM access is needed in F1 because the CPU is
needed to coordinate between the two accelerators. Finally,
Fig. 3c shows our HW-offloaded solution. In this instance,
once the accelerator at F1 has completed its work it issues
an RDMA operation directly to the NIC, and then writes
shared memory operations to the F2 accelerator’s work
buffer, informing it that there is new work to be performed.
Once this is completed then the F2 accelerator notifies its
local CPU that the work has been done and it has new data
to process. As is shown, this solution is far more amenable
to data-flow type processing, allowing for simpler pipelining
through the distributed FPGA resources.

While several other solutions [14], [15], [16], allow
for this sort of dataflow processing, they typically only
support point-to-point links between the FPGAs, severely
limiting the topologies which can be created [16], which in
turn severely limits scalability. Combined with our switch
design [8], our solution can exploit modern HPC topologies
such as Jellyfish, Dragonfly and Fat-Trees.

3. Experimental Work

Our experiment is performed on the Xilinx Ultrascale+
ZCU102 development board, with all logic and transceivers
within the FPGA fabric run at 156.25MHz in order to
enable saturation of the 10G SFP links with a 64-bit wide
data-path. Since there is no distributed runtime environment
available for our HW, we are restricted to the use of a
single FPGA for our experiments. In addition this ensures
clock consistency and accurate timing measurements. To
emulate the distributed setup with complete accuracy, the
entire HW acceleration and network stack is implemented
twice within the same FPGA, using a partitioned memory
space to maintain complete independence between the two
portions. Not only are the memory spaces segregated, but
the data path to the memory hierarchy of the CPU is also
completely segregated. Every component of the network
stack and the accelerator block in Fig. 2 is implemented
on the board twice (with the exception of the MAC/PHY),
with the second instantiation interfacing with the hard-core
Processing System via a separate interface port, and the
two subsystems being connected to each other via sepa-
rate TX/RX ports of the transceivers. This eliminates any

CPU

ACC

SRAM

DRAM

NIC

ACC

SRAM CPU

DRAM

CPU

ACC

SRAM

DRAM

NIC

ACC

SRAM CPU

DRAM

CPU

ACC

SRAM

DRAM

NIC

ACC

SRAM CPU

DRAM

1

3

4

2 5

6

7

1
2

3

4
5

1
2

3

4
5

1

2

3

1

3

1
2

Control Data

2

a)

b)

c)

NIC

NIC

NIC

FPGA 1 (F1) FPGA 2 (F2)

Figure 3. Control and data paths for a) SW based TCP, b) custom SW
transport, c) our HW offloaded solution.

contention for resources, and emulates accurately a fully
distributed environment.

In the experiment we recreate the setups described in
Fig. 3b and c. A user-space application takes a system
time-stamp before submitting work to the accelerator at F1,
which performs some work and sends the result forward
to the accelerator at F2. Upon reception F2 performs some
work and then writes the result in its local memory and
notifies the CPU, which will take another system time-stamp
to determine the overall time for the application to run at
the application-level. For simplicity, we keep the data size
constant and use a dummy accelerator block which does
not perform any genuine function, but merely adds a com-
putation latency. Data must be transferred to the accelerator
and worked on in blocks, as would be the case in typical
implementations for HPC operations such as matrix-vector
or matrix-matrix multiplication. We adjust the block granu-
larity for the data, and adjust the computation latency with
relation to the pure communication time for a given solution
(block size and data path). A computation/communication
ratio of zero denotes instantaneous processing time: Data (at
block level granularity) is simply written into the accelerator
block and back out. A communication/computation ratio of
R denotes that the system spends R times as long com-
puting inside the accelerator as the communication path on
moving data and control information around the system. For
instance, with R = 1, each accelerator will spend the same
time computing as the whole system does communicating.

Fig. 4 shows latency, and throughput in terms of purely
remote-memory bound data processing per processing ele-
ment (not to be confused with the communication through-
put over the links or the raw computing throughput in Flops).
We see that latency is improved (up to ≈29% reduction) for
small and medium block sizes, which could have dramatic
effects on tightly-coupled applications with many small
messages, especially if they have irregular access patterns,
such as workloads involving pointer-chasing, with list, tree
or graph traversal for example; workloads which are of
increasing interest within the FPGA community [17].

If we focus on throughput, we see a throughput gain
of 8.6% over the SW transport solution. However, there
appears to be a saturation point towards the upper limit
of the block sizes, suggesting that further increasing the
maximum block size for a single accelerator module will

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

L
a

te
n

c
y
 (

u
s
)

Computation/Commuication Ratio

512B HW
1K HW
2K HW
4K HW
8K HW

16K HW
32K HW

512B SW
1K SW
2K SW
4K SW
8K SW

16K SW
32K SW

 100

 1000

 0 0
.5

 1 1
.5

 2 2
.5

 3 3
.5

 4
T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Computation/Commuication Ratio

512B HW
512B SW

1K HW
1K SW
2K HW
2K SW
4K HW
4K SW

 1000

 0 0
.5

 1 1
.5

 2

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Computation/Commuication Ratio

32K HW
32K SW
16K HW
16K SW
8K HW
8K SW

Figure 4. Latency to perform a single operation (left). Achievable throughput for small block sizes (middle) and larger block sizes (right).

not translate into higher performance. Note however, that
we support multiple accelerator blocks within the same
FPGA to exploit spatial parallelism [16]. We proceed to
estimate the achievable memory-bound Flops of such a
solution, using methods similar to [10], [18]. Let’s assume
a 1KB block size for transfer, feeding an accelerator block
128 double precision floats to perform an 8 × 8 matrix-
matrix multiplication. This gives us 1,024 Flops per block
(512 multiply-adds). According to Vivado HLS tools a
simple matrix-matrix multiply will have a latency of 288
cycles (or ≈0.20 computation/communication ratio in our
experiments above and a throughput of 1.1Gb/s). Thus
we can make approximately 134,277 block transfers per-
second. (1.1×109/8,192 bits per block transfer.) Using this
we see that we can extract approximately 137 MFlops per
IP block (1,024 Flops/block transfer). According to the HLS
synthesis output each block requires 11,722 LUTs, with the
implementation being LUT bound on the ZCU102 device.
Even with the resources used by our network stack, we could
theoretically fit 19 IP blocks on a single FPGA. However, if
we allow for 9 blocks, which are enough to saturate a single
10G link, we could obtain 1.233 GFlops (double precision)
per FPGA (9 Blocks × 137 MFlops). These results are
completely bound by the network, rather than the off-chip
memory bandwidth. Compared with [16] where a theoretical
peak of 8.9 GFlops over 8 FPGAs (1.11 GFlops per FPGA)
was reported, we can claim our communication solution is
more effective, particularly since they are limited to a basic
ring topology, creating a completely non-scalable solution.

4. Conclusions

In this paper we discussed the need for a HW-offloaded,
connectionless transport layer for reconfigurable HPC com-
puting, and present a novel solution to facilitate this. Our
solution performs better in terms of latency (up to 29%
reduction) and throughput (up to 9% increase) over a similar
SW transport, by reducing the complexity of the control and
data path through the network. We show that our results are
competitive with those in the literature regarding theoretical
limits on network-bound compute power. By maintaining the
ability for the FPGA to be used simply within a distributed
shared-memory setup, the reduced latency could have great
impact on parallel applications with irregular parallelism and
access patterns.

References

[1] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in
IEEE/ACM Intl. Symposium on Microarchitecture, IEEE Press, 2016.

[2] S. Kestur et al., “Blas comparison on fpga, cpu and gpu,” in 2010
IEEE CS Annual Symposium on VLSI, pp. 288–293, IEEE, 2010.

[3] E. Nurvitadhi et al., “Can fpgas beat gpus in accelerating next-
generation deep neural networks?,” in ACM/SIGDA Intl. Symposium
on Field-Programmable Gate Arrays, pp. 5–14, ACM, 2017.

[4] E. Nurvitadhi et al., “Accelerating binarized neural networks: Com-
parison of fpga, cpu, gpu, and asic,” in 2016 Intl. Conf. on Field-
Programmable Technology, pp. 77–84, IEEE, 2016.

[5] C. Kachris and D. Soudris, “A survey on reconfigurable accelerators
for cloud computing,” in 2016 26th International conference on field
programmable logic and applications (FPL), pp. 1–10, IEEE, 2016.

[6] K. D. Underwood et al., “From silicon to science: The long road to
production reconfigurable supercomputing,” ACM Trans. on Recon-
figurable Technology and Systems, vol. 2, no. 4, p. 26, 2009.

[7] F. A. Escobar, X. Chang, and C. Valderrama, “Suitability analysis
of fpgas for heterogeneous platforms in hpc,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 2, pp. 600–612, 2015.

[8] C. Concatto et al., “A cam-free exascalable hpc router for low-
energy communications,” in Intl. Conf. on Architecture of Computing
Systems, pp. 99–111, Springer, 2018.

[9] J. Lant et al., “Enabling shared memory communication in networks
of mpsocs,” Concurrency and Computation: Practice and Experience.

[10] J. Williams et al., “Characterization of fixed and reconfigurable multi-
core devices for application acceleration,” ACM Trans. on Reconfig-
urable Technology and Systems, vol. 3, no. 4, p. 19, 2010.

[11] F. Abel et al., “An fpga platform for hyperscalers,” in IEEE High-
Performance Interconnects (HOTI), pp. 29–32, IEEE, 2017.

[12] J. Weerasinghe et al., “Network-attached fpgas for data center appli-
cations,” in 2016 Intl Conference on Field-Programmable Technology
(FPT), pp. 36–43, IEEE, 2016.

[13] K. Katrinis et al., “Rack-scale disaggregated cloud data centers: The
dredbox project vision,” in Conference on Design, Automation & Test
in Europe, pp. 690–695, EDA Consortium, 2016.

[14] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” ACM SIGARCH Computer Architecture News,
vol. 42, no. 3, pp. 13–24, 2014.

[15] R. Baxter et al., “Maxwell-a 64 fpga supercomputer,” in NASA/ESA
Conf. on Adaptive Hardware and Systems, pp. 287–294, IEEE, 2007.

[16] R. S. Correa and J. P. David, “Ultra-low latency communication
channels for fpga-based hpc cluster,” Integration, vol. 63, 2018.

[17] G. Weisz et al., “A study of pointer-chasing performance on shared-
memory processor-fpga systems,” in ACM/SIGDA Intl Symposium on
Field-Programmable Gate Arrays, pp. 264–273, ACM, 2016.

[18] D. Strenski, “Fpga floating point performance–a pencil and paper
evaluation,” HPC Wire, 2007.

