Poseidon – Water Quality Classes Tables

Contents

Section 1: Typical Wastewater Quality (Input) That Is Intended for Reuse	1
Section 2: Recommended Water Quality Based on Guidelines	7
Section 3: Water Quality Standards and Typical Wastewater Quality Considered for Vietnam	20
Section 4: Water Quality Standards Considered for Egypt, Morocco and Tunisia	23
Section 5: Typical Wastewater Qualities Considered for Egypt, Morocco and Tunisia	35
References	39

Section 1: Typical Wastewater Quality (Input) That Is Intended for Reuse

The table below indicates a list of typical wastewater qualities for several types of wastewater to be reused. The user can either manually define the quality of the "input flow" or choose from the list below. The value "-1" means no data available, not applicable, or not relevant.

Table 1: Typical Wastewater Quality (Input) That Is Intended for Reuse

Wastewater qualities of potential input	Turb	TSS	BOD	COD	TN	ТР	FC	TC	TDS	Nitra te	тос	Virus	Reference / <i>Comment</i> s
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100 ml	CFU/ 100 ml	mg/L	mg N/L	mg/L	PFU/ 100 ml	

Municipal Wastewater

Wastewater qualities of potential input	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitra te	тос	Virus	Reference / <i>Comment</i> s
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100 ml	CFU/ 100 ml	mg/L	mg N/L	mg/L	PFU/ 100 ml	
Typical untreated domestic wastewater	100	210	190	430	40	7	$10^{4}-$ 10^{5}	$10^{7}-10^{8}$	720	0	140	$10^{1}-$ 10^{4}	(Asano, Burton, & Leverenz, 2007) Typical composition of untreated domestic wastewater. Note: there is no typical wastewater; values should only be used as guide! Data presented are for medium- strengths wastewater based on average flow of 460 L/cap*day and include constituents added by commercial institutional, and industrial sources.
Untreated domestic wastewater (ranges)	-1	120– 400	110– 350	250– 800	20–70	4–12	$10^{3}-$ 10^{7}	10 ⁶	270– 860	0- trace	80–260	-1	(Asano et al., 2007)
Primary effluent	88	131	149	-1	-1	5.1	-1	-1	-1	0.1	72	-1	Constituents remaining after primary treatment. Primary treatment consisted of a rotary drum screen , followed by disk screens
Secondary effluent- water hyacinths	14	9.8	13 (CBOD value)	-1	-1	3.4	-1	-1	-1	1.4	14	-1	(Asano et al., 2007) / Constituents remaining after secondary treatment. Secondary treatment was with water hyacinths
Secondary effluent- CAS	2–15	5–25	5.25	40–80	15–35	4–10	-1	$10^{4}-$ 10^{5}	500– 700	10–30	10-40	$10^{1}-$ 10^{3}	(Asano et al., 2007) / Constituents remaining after secondary treatment. Secondary treatment was conventional activated sludge (CAS).
Secondary effluent- CAS + filtration	0.5–4	2–8	<5–20	30–70	15–35	4–8	-1	10 ³	500– 700	10–30	8–30	$10^{1}-$ 10^{3}	(Asano et al., 2007) / Constituents remaining after secondary treatment.

Wastewater qualities of potential input	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitra te	тос	Virus	Reference / Comments
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100 ml	CFU/ 100 ml	mg/L	mg N/L	mg/L	PFU/ 100 ml	
													Secondary treatment was conventional activated sludge (CAS) with filtration
Secondary effluent- activated sludge + BNR	2-8	5–20	5–15	20-40	3–8	1–2	-1	$10^{4} - 10^{5}$	500– 700	2–8	8–20	$10^{1}-$ 10^{3}	(Asano et al., 2007) / Constituents remaining after secondary treatment. Secondary treatment was activated sludge with biological nutrient removal (BNR) for the removal of nitrogen and phosphorus
Secondary effluent- activated sludge + BNR+ filtration	0.3–2	1-4	1–5	20–30	2–5	2	-1	$10^{4}-$ 10^{5}	500– 700	1–5	1–5	$10^{1}-$ 10^{3}	(Asano et al., 2007) / Constituents remaining after secondary treatment. Secondary treatment was activated sludge with biological nutrient removal (for the removal of nitrogen and phosphorus) and filtration
Secondary effluent- membrane bioreactor	1	2	<1–5	<10–30	<10	<0.3–5	-1	<100	500– 700	10	0.5–5	10^{0} - 10^{3}	(Asano et al., 2007) / Constituents remaining after secondary treatment. Secondary treatment was membrane bioreactor
Secondary effluent- activated sludge + MF + RO	0.01-1	1	1	2–10	1	0.5	-1	0	5–40	1	0.1–1	0	(Asano et al., 2007) / Constituents remaining after secondary treatment. Secondary treatment was activated sludge with microfiltration (MF) and reverse osmosis (RO).
Tertiary effluent	0.5	1.3	4.3 (CBOD value)	-1	-1	0.1	-1	-1	-1	1.7	7.1	-1	(Asano et al., 2007) / Constituents remaining after tertiary treatment. Tertiary treatment consisted of lime precipitation and depth filtration

Wastewater qualities of potential input	Turb	TSS	BOD	COD	TN	ТР	FC	TC	TDS	Nitra te	тос	Virus	Reference / <i>Comment</i> s
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100 ml	CFU/ 100 ml	mg/L	mg N/L	mg/L	PFU/ 100 ml	
AWT effluent	0.27	-1	-1	-1	-1	0.1	-1	-1	-1	0.7	0.6	-1	(Asano et al., 2007) / Constituents remaining after advanced wastewater treatment (AWT).
Industrial Wastewate	r												
Textile industry:													
Textile Industry-India	-1	-1	713 (500– 1,010)	2125 (1,600 - 3,200)	-1	-1	-1	-1	5,738 (4,040 - 7,500)	354 (120– 627)	-1	-1	(Hussain, Hussain, & Arif, 2004) Average Values and (ranges) from six Indian textile industries
Textile Industry- Nigeria	-1	400 (49– 1,200)	332 (163– 645)	1,891 (1,067 	-1	-1	-1	-1	1,181 (250– 2,200)	4.4 (Not detecta ble – 7.97)	-1	-1	(Yusuff & Sonibare, 2004) / Averag Values and (ranges) from five Nigerian textile mills
Dairy industry:			1	I	1	1			1	•	•		
Dairy- Industry India	15–30	250– 600	350– 600	1,500– 3,000	-1	-1	-1	-1	800– 1,200	-1	-1	-1	(Sarkar, Chakrabarti, Vijaykumar, & Kale, 2006) / Characteristics of raw dairy wastewater of A.P. Diary in Hyderabad, India
Dairy Industry- Cheese	-1	500– 2,500 (Value for SS)	588– 5,000	1,000– 7,500	830 (Value for TKN)	280	-1	-1	-1	-1	-1	-1	(Demirel, Yenigun, & Onay, 2017) / Ranges or mean values reported from cheese industry examples

Wastewater qualities of potential input	Turb	TSS	BOD	COD	TN	ТР	FC	TC	TDS	Nitra te	тос	Virus	Reference / <i>Comment</i> s
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100 ml	CFU/ 100 ml	mg/L	mg N/L	mg/L	PFU/ 100 ml	
Dairy Industry- Cheese whey	-1	1,780 (Value for SS)	-1	61,000/ 68,814	980/ 1,462 (Value for TKN)	510/ 379	-1	-1	-1	-1	-1	-1	(Demirel et al., 2017) / Ranges or mear values reported from 2 cheese whey industry examples
Dairy Industry- Mixed processing	-1	340– 1,730/ 12,500 (Value for SS)	-1	1,150– 9,200/ 63,100	14–272 (Value for TKN)	8–68	-1	-1	-1	-1	-1	-1	(Demirel et al., 2017) / Ranges or mean values reported from 2 mixed dairy industry examples
Pulp and Paper indust	ry:												
Paper mill	-1	800 (Value for SS)	1,600	5,020	11	0.6	-1	-1	-1	-1	-1	-1	(Pokhrel & Viraraghavan, 2017) / Typical characteristics of wastewater at paper mill
Brewery industry													
Brewery (Beer) Typical ranges	-1	200– 1,000	1,200– 3,600	2,000– 6,000	25-80	10–50	-1	-1	-1	-1	-1	-1	(Oreopoulou et al., 2007)
Winery Production: 3000 m ³ /year	-1	1,060	8,100	14,150	48.2	5.5	-1	-1	-1	-1	-1	-1	(Oreopoulou et al., 2007) / Example of one wine producing industry

Wastewater qualities of potential input	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitra te	тос	Virus	Reference / Comments
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100 ml	CFU/ 100 ml	mg/L	mg N/L	mg/L	PFU/ 100 ml	
Winery Production: 6000 m ³ /year	-1	1,960– 5,800	5,540– 11,340	9,240– 17,900		16–68	-1	-1	-1	-1	-1	-1	(Oreopoulou et al., 2007) / Example of one wine producing industry

Notes: "Turb" stands for "Turbidity", "TSS" stands for "Total suspended solids", "BOD" stands for "Biological oxygen demand", "COD" stands for "Chemical oxygen demand", "TN" stands for "Total nitrogen", "TP" stands for "Total phosphorous", "FC" stands for "Fecal coliform", "TC" stands for "Total coliform", "TDS" stands for "Total dissolved solids", "TOC" stands for "Total organic carbon".

Section 2: Recommended Water Quality Based on Guidelines

The table below compiles water quality standards for different end-uses based on different international guidelines. The value "-1" signifies no limit specified or no data available.

Table 2: Recommended Water Quality Based on Guidelines

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L		CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	

United States Environmental Protection Agency (US EPA) guidelines, 2012

Many US states have rules, regulations or guidelines for a wide range of reclaimed water end uses and prescribe different requirements for different reuses. Minimum suggested regulatory guidelines are presented as follows. Guidelines refer to the use of treated municipal wastewater (reclaimed water).

<u>Remarks:</u> Recommended coliform limits are median values determined from the bacteriological results of the last 7 days for which analyses have been completed. The number of FC organisms should not exceed 800 CFU/100 ml in any sample.

EPA: Urban Reuse- <i>unrestricted</i> Table 4.4, p.4–9	2	-1	10	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	<u>Definition</u> : Use of reclaimed water in non- potable applications in municipal settings where public access is not restricted. <u>Treatment:</u> Secondary, filtration, disinfection
EPA: Urban Reuse- <i>restricted</i> Table 4.4, p.4–9	-1	30	30	-1	-1	-1	200	-1	-1	-1	-1	-1	-1	<u>Definition:</u> Use of reclaimed water in non- potable applications in municipal settings where public access is restricted by physical/institutional barriers <u>Treatment:</u> Secondary, disinfection
EPA: Agricultural Reuse- <i>Food Crops</i> Table 4.4, p.4–9	2	-1	10	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	<u>Definition:</u> Use of reclaimed water for surface or spray irrigation of food crops eaten raw <u>Treatment:</u> Secondary, filtration, disinfection

Additional standards included for all reuse categories: pH: 6.0–9.0; Minimum CL₂ residual: 1 mg/L

	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/1 00 ml	CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
EPA: Agricultural Reuse- Processed food crops and Non-food crops Table 4.4, p.4–9	-1	30	30	-1	-1	-1	200	-1	-1	-1	-1	-1	-1	<u>Definition:</u> Use of reclaimed water for surface or spray irrigation of food crops processed prior to consumption and non-food crops like fodder, fiber etc. <u>Treatment:</u> Secondary, disinfection
EPA: Impoundments- <i>unrestricted</i> Table 4.4, p.4–10	2	-1	10	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	<u>Definition:</u> Use of reclaimed water in an impoundment in which no limitations are imposed on body contact <u>Treatment:</u> Secondary, filtration, disinfection
EPA: Impoundments- <i>restricted</i> Table 4.4, p.4–10	-1	30	30	-1	-1	-1	200	-1	-1	-1	-1	-1	-1	<u>Definition:</u> Use of reclaimed water in an impoundment where bod-contact is restricted <u>Treatment:</u> Secondary, disinfection
EPA: Environmental Reuse Table 4.4, p.4–10	-1	30	30	-1	-1	-1	200	-1	-1	-1	-1	-1	-1	<u>Definition:</u> Use of reclaimed water to create wetlands, enhance natural wetlands or sustain stream flows <u>Treatment:</u> Variable, secondary, and disinfection
EPA: Industrial Reuse- Once-through cooling	-1	30	30	-1	-1	-1	200	-1	-1	-1	-1	-1	-1	Treatment: Secondary
EPA: Industrial Reuse- <i>Recirculating Cooling</i> <i>Towers</i> Table 4.4, p.4_+10	-1	30	30	-1	-1	-1	200	-1	-1	-1	-1	-1	-1	<u>Treatment:</u> Secondary, disinfection
EPA: Groundwater Recharge- Indirect potable reuse	2	-1	-1	-1	-1	-1	0	-1	-1	-1	2	-1	-1	<u>Definition:</u> Groundwater recharge by spreading into potable aquifers or by injection into potable aquifers and augmentation of surface water supply reservoirs

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L		CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
Table 4.4, p.4–11														<u>Treatment:</u> Secondary, filtration, disinfection, advanced wastewater treatment or soil aquifer treatment

Texas water reuse standards (Example indicated in US EPA guidelines, 2012)

<u>Remarks:</u> Recommended coliform limits are 30 days geometric mean values. The maximum of FC organisms in any samples is indicated in brackets.

Texas EPA: Urban Reuse- unrestricted Table 4.7, p.4–26	3	-1	5	-1	-1	-1	20 (75)	-1	-1	-1	-1	-1	-1	Add. Parameter: Enterococci: 4 CFU/100 mL (max. 9 CFU/100 mL)
Texas EPA: Urban Reuse- <i>restricted</i> Table 4.8, p.4–27	-1	-1	20	-1	-1	-1	200 (800)	-1	-1	-1	-1	-1	-1	BOD: 20 mg/L without pond; 30 mg/L with pond Add. Parameter: Enterococci: 35 CFU/100 mL (max. 89 CFU/100 mL)
Texas EPA: Agricultural Reuse- <i>Food Crops</i> Table 4.9, p.4–28	3	-1	5	-1	-1	-1	20 (75)	-1	-1	-1	-1	-1	-1	Add. Parameter: Enterococci: 4 CFU/100 mL (max. 9 CFU/100 mL)
Texas EPA: Agricultural Reuse-Processed food crops and Non-food crops Table 4.10, p.4–29	-1	-1	20	-1	-1	-1	200 (800)	-1	-1	-1	-1	-1	-1	BOD: 20 mg/L without pond; 30 mg/L with pond Add. Parameter: Enterococci: 35 CFU/100 mL (max. 89 CFU/100 mL)
Texas EPA: Impoundments- <i>unrestricted</i> Table 4.11, p.4–30	3	-1	5	-1	-1	-1	20 (75)	-1	-1	-1	-1	-1	-1	Add. Parameter: Enterococci: 4 CFU/100 ml (max. 9 CFU/100 mL)
Texas EPA: Impoundments- <i>restricted</i>	-1	-1	20	-1	-1	-1	200 (800)	-1	-1	-1	-1	-1	-1	BOD: 20 mg/L without pond; 30 mg/L with pond

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/1 00 ml	CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
Table 4.12, p.4–31														Add. Parameter: Enterococci: 35 CFU/100 mL (max. 89 CFU/100 mL)
Texas EPA: Environmental Reuse Table 4.13, p.4–32	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Not regulated
Texas EPA: Industrial Reuse- <i>Recirculating</i> <i>Cooling Towers</i> Table 4.14, p.4–33	-1	-1	20	-1	-1	-1	200 (800)	-1	-1	-1	-1	-1	-1	BOD: 20 mg/L without pond; 30 mg/L with pond Add. Parameter: Enterococci: 35 CFU/100 mL (max. 89 CFU/100 mL)
Texas EPA: Groundwater Recharge- <i>Indirect potable reuse</i> Table 4.16, p.4–35	3	-1	5	-1	-1	-1	20 (75)	-1	-1	-1	-1	-1	-1	Add. Parameter: Enterococci: 4 CFU/100 mL (max. 9 CFU/100 mL)

California water reuse standards (Example indicated in US EPA guidelines, 2012)

<u>Remarks:</u> Recommended coliform limits are median values determined from the bacteriological results of the last 7 days for which analyses have been completed. (Otherwise indicated in brackets.

California EPA: Urban Reuse- <i>unrestricted</i> Table 4.7, p.4–26	2	-1	-1	-1	-1	-1	-1	2.2	-1	-1	-1	-1	-1	For media filters: 2 NTU (avg.)/10 NTU (max.) For membrane filters: 0.2 NTU (avg.)/0.5 NTU (max.) TC: 240/100 ml (max.)
California EPA: Urban Reuse- <i>restricted</i> Table 4.784, p.4–27	-1	-1	-1	-1	-1	-1	-1	23	-1	-1	-1	-1	-1	TC: 240/100 ml (max.)

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/1 00 ml	CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
California EPA: Agricultural Reuse- <i>Food</i> <i>Crops</i> Table 4.9, p.4–28	2	-1	-1	-1	-1	-1	-1	2.2	-1	-1	-1	-1	-1	For media filters: 2 NTU (avg.)/10 NTU (max.) For membrane filters: 0.2 NTU (avg.)/0.5 NTU (max.) TC: 240/100 ml (max.)
California EPA: Agricultural Reuse- Processed food crops and Non-food crops Table 4.10, p.4–29	-1	-1	-1	-1	10	-1	-1	-1	-1	-1	-1	-1	-1	TC is not specified in the Californian standards.
California EPA: Impoundments- <i>unrestricted</i> Table 4.11, p.4–30	2	-1	-1	-1	-1	-1	-1	2.2	-1	-1	-1	-1	-1	For media filters: 2 NTU (avg.)/10 NTU (max.) For membrane filters: 0.2 NTU (avg.)/ 0.5 NTU (max.) TC: 240/100 ml (max.) Supplemental pathogen monitoring
California EPA: Impoundments- <i>restricted</i> Table 4.12, p.4–31	-1	-1	-1	-1	-1	-1	-1	2.2	-1	-1	-1	-1	-1	TC: 23/100 ml (not more than one sample exceeds this value in 30d)
California EPA: Environmental Reuse Table 4.13, p.4–32	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Not regulated
California EPA: Industrial Reuse- <i>Once-through</i> <i>cooling</i> Table 4.14, p.4–33	2	-1	-1	-1	-1	-1	-1	2.2	-1	-1	-1	-1	-1	For media filters: 2 NTU (avg.)/10 NTU (max.) For membrane filters: 0.2 NTU (avg.)/0.5 NTU (max.) TC: 240/100 ml (max.)

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/1 00 ml	CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
California EPA: Groundwater Recharge- <i>Indirect potable reuse</i> Table 4.16, p.4–35	2	-1	-1	-1	10 avg. of 4 consec. samples		-1	2.2	-1	-1	0.5	-1	-1	For media filters: 2 NTU (avg.)/10 NTU (max.) For membrane filters: 0.2 NTU (avg.)/0.5 NTU (max.) TC: 240/100 ml (max.) Pathogen monitoring is not required but virus removal rates are prescribed by treatment requirements

World Health Organization (WHO) guidelines, 2006; Vol. 2-4

The WHO guidelines for the *safe use of wastewater, excreta and greywater* (presented in 4 volumes) are designed to protect the health of farmers (and their families), local communities and product consumers. Overly strict standards may not be suitable in developing countries. The guidelines propose maximum limits or maximum ranges for E.coli and helminths in wastewater and greywater for different reuse purposes that have been set to meet health based targets (i.e. not to exceed 10^{-6} DALY per person per year).

<u>Remarks:</u> Recommended standard for E.coli per 100 ml are arithmetic means and are indicated under the FC parameter in the table below. E.coli is approximately equivalent to 90% of the FCs.

WHO: Use of wastewater in agriculture- <i>unrestricted</i> Vol.2, Chapter 4.2, p.63– 67	-1	-1	-1	-1	-1	-1	$10^{3}-10^{4}$	-1	-1	-1	-1	-1	1	Definition: Irrigation with wastewater of all agricultural crops Standards for E.coli in CFU/100 mL: Root crops:10 ³ ; Leaf crops: 10 ⁴ ; Drip irrigation, high growing crops: 10 ⁵
WHO: Use of wastewater in agriculture- <i>restricted-</i> <i>highly mechanized</i> <i>irrigation</i> Vol.2, Chapter 4.2, p.67– 69	-1	-1	-1	-1	-1	-1	105	-1	-1	-1	-1	-1	1	<u>Definition:</u> Irrigation with wastewater of all agricultural crops except crops eaten unprocessed/raw (like lettuce). <u>Standards for E.coli in CFU/100 mL:</u> Labor-intensive irrigation: 10 ⁴ ; High mechanized agriculture: 10 ⁵ ; Drip irrigation, high growing crops: 10 ⁵

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/1 00 ml	CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
WHO: Use of wastewater in agriculture- <i>restricted-</i> <i>labor intensive irrigation</i> Vol.2, Chapter 4.2, p.67– 69	-1	-1	-1	-1	-1	-1	$10^{3}-10^{4}$	-1	-1	-1	-1	-1	1	<u>Definition</u> : Irrigation of all agricultural crops except crops eaten unprocessed/raw (like lettuce). <u>Standards for E.coli in CFU/100 mL</u> : Labor-intensive irrigation: 10 ⁴ ; High mechanized agriculture: 10 ⁵
WHO: Use of wastewater in aquaculture Vol.3, Table 4.1, p.41	-1	-1	-1	-1	-1	-1	$10^{4}-10^{5}$	-1	-1	-1	-1	-1	1	Standards for E.coli in CFU/100 mL: Consumers: 10 ⁵ ;Workers: 10 ⁴ No trematode eggs detectable
WHO: Use of grey water in agriculture- <i>unrestricted</i> Vol.4. Table 4.2, p.63	-1	-1	-1	-1	-1	-1	$10^{3}-10^{4}$	-1	-1	-1	-1	-1	1	<u>Definition</u> : Irrigation with grey water of all agricultural crops <u>Standards for E.coli in CFU/100 mL</u> : High growing crops or Drip irrigation: 10 ⁴
WHO: Use of grey water in agriculture- <i>restricted</i> Vol.4. Table 4.2, p.63	-1	-1	-1	-1	-1	-1	105	-1	-1	-1	-1	-1	1	<u>Definition:</u> Irrigation with grey water of all agricultural crops except crops eaten unprocessed/raw (like lettuce).

Standards for Water Reuse in Eastern Mediterranean Region (EMR), based on WHO guidelines 1989

Reference: A compendium of standards for wastewater reuse in the Eastern Mediterranean Region, 2006

The compendium provides an overview of the quality standards for the reuse of treated wastewater in countries of the Eastern Mediterranean Region. The WHO in collaboration with the Arab Fund for Economic and Social Development (AFESD) recommended guidelines for wastewater (Category A-C) and greywater (Category A-C) reuse for the Eastern Mediterranean Region in 2003. In addition, Jordanian Standards for wastewater reuse are listed below (JS:893/2002).

Wastewater: Category A Unrestricted irrigation	-1	-1	-1	-1	-1	-1	10 ³	-1	-1	-1	-1	-1	0	<u>Definition</u> : Irrigation with wastewater of vegetable and salad crops eaten uncooked, sport fields, public parks
--	----	----	----	----	----	----	-----------------	----	----	----	----	----	---	--

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/1 00 ml	CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
														Irrigation technique: any <u>Exposed group</u> : Workers, consumers, public
Wastewater: Category B Restricted irrigation							10 ³ /							<u>Definition</u> : Irrigation with wastewater of cereal crops, industrial crops, fodder crops, pasture and trees
	-1	-1	-1	-1	-1	-1	10 ⁵	-1	-1	-1	-1	-1	0	<u>Irrigation technique</u> : spray or sprinkler (10 ⁵ E.coli CFU/mL); Flood or furrow (10 ³ E.coli CFU/mL)
														Exposed group: Workers, nearby communities
Wastewater: Category C														<u>Definition</u> : Localized irrigation with wastewater of crops in category B if exposure of workers and the public does not occur.
	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Irrigation technique: Trickle, drip or bubbler
														<u>Exposed group</u> : None No water quality measures have to be met
Greywater: Category A	-1	140	240	-1	-1	-1	10 ³	-1	-1	-1	-1	-1	-1	<u>Definition</u> : Irrigation with greywater of ornamental fruit trees and fodder crops
Greywater: Category B	-1	20	20	-1	-1	-1	200	-1	-1	-1	-1	-1	-1	<u>Definition</u> : Irrigation with greywater of vegetables likely to be eaten uncooked.
Greywater: Category C	-1	10	10	-1	-1	-1	10	-1	-1	-1	-1	-1	-1	<u>Definition</u> : Greywater used for toilet flushing
JS:893/2002- Discharge to streams	-1	60	60	150	70	-1	10 ³	-1	1,500	45	-1	-1	1	<u>Definition</u> : Discharge of wastewater to streams, wadis and water storage area
														E.coli counts (FC) are given in MPN/100 mL

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/1 00 ml	CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
JS:893/2002- Groundwater recharge	2	50	15	50	45	-1	2.2	-1	1,500	30	-1	-1	1	<u>Definition</u> : Wastewater used for groundwater recharge E.coli counts (FC) are given in MPN/100 mL
JS:893/2002- Agricultural irrigation <i>Group A</i>	10	50	30	100	45	-1	100	-1	-1	30	-1	-1	1	<u>Definition</u> : Irrigation with wastewater for cooked vegetables, parking areas, playgrounds and side of roads inside cities E.coli counts (FC) are given in MPN/100 mL
JS:893/2002- Agricultural irrigation <i>Group B</i>	-1	150	200	500	70	-1	10 ³	-1	-1	45	-1	-1	1	<u>Definition</u> : Irrigation with wastewater for plenteous trees and green areas, side of roads outside cities E.coli counts (FC) are given in MPN/100 mL
JS:893/2002- Agricultural irrigation <i>Group C</i>	-1	150	300	500	70	-1	-1	-1	-1	45	-1	-1	1	<u>Definition</u> : Irrigation with wastewater for field crops, industrial crops and forestry

Water quality criteria AQUAREC project, 2006

Seven quality categories (I to VII) for different types of reuses (4 categories) are proposed and microbial and chemical limits for each category are compiled

Microbial parameters include: Total bacteria, <u>fecal coliforms</u>, *Clostridium perfringens*, *Legionella*, *Enterococci*, *Salmonella*, <u>Enteroviruses</u>, *Coliphages*, *Cryptosporidium* and *Giardia*, <u>Nematode eggs</u>, *T. Saginata*, *T.solium*

<u>Fecal coliform</u>	<u>is counts for microb</u>	ial categories in CFU/	<u>100 mL:</u>			
I: absent	II: <20–<1,000	III: absent-<1,000	IV: absent-10,000	V: absent-<10,000	VI: <200–<10,000	VII: absent-10,000
<u>Nematode egg</u>	counts for microbid	al categories in eggs/L:	<u>.</u>			
I: <1–10	II: <1	III: <1	IV: <1	V: <1	VI: <1	VII: <1

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/1 00 ml	CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
Enterovirus counts for mic	robial ca	tegories	in pfu/L:		•						•			
I: absent–10 II: absent–1	0 II	I: <1_<1	00	IV: r	not define	ed	V: not d	efined	V	/I: <100		V	II: <1–0.0	4
AQUAREC: Private, urban irrigation														<u>Specific final uses</u> (according to microbial categories):
Category 1														I: Residential uses
									1,650-					II: Bathing water
	-1	10	10–20	100	-1	2–5	abs1 0,000	-1	2,400 (3,000	-1	100	abs <100	<1-10	<i>III: Urban uses (irrigation of landscape areas, street cleaning, fire-fighting) and unrestricted irrigation</i>
									microS/ cm)					IV: Irrigation of industrial crops and animal fodder, restricted irrigation
														V: Irrigation of forested areas and restricted access areas
														Additional Total Kjeldahl N: 15–20 mg/L
AQUAREC: Environmental and aquaculture									1,650-					<u>Specific final uses</u> (according to microbial categories): IV: Impoundments, water bodies and streams for recreational use with access (except bathing)
Category 2	-1	10	10–20	70– 100	-1	0.2	abs1 0,000	-1	2,400 (3,000 microS/	-1	70– 100	<100	<1	V: Impoundments, water bodies and streams for recreational use with access (except bathing)
									cm)					VI: Surface water quality, water bodies and streams for recreational use with restricted access
														Total Kjeldahl N: 10–20 mg/L
AQUAREC: Indirect aquifer recharge	-1	-1	-1	70-	-1	-1	abs <10,00	-1	385– 560	25	70-	-1	<1	<u>Specific final uses</u> (according to microbial categories):
Category 3				100			0		560 (700		100			V: Aquifer recharge by localized percolation through the soil

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/1 00 ml	CFU/1 00 ml	mg/L	mg N/L	mg/L	PFU/1 00 ml	eggs/L	
									microS/ cm)0					
AQUAREC: Industrial cooling <i>Category 4</i>	-1	10	-1	70	-1	0.2	abs1 0,000	-1	-1	-1	70	<1 – 0.04	<1	<u>Specific final uses</u> (according to microbial categories): VII: Industrial cooling except for the food industry Total Kjeldahl N: 10 mg/L

Notes: "Turb" stands for "Turbidity", "TSS" stands for "Total suspended solids", "BOD" stands for "Biological oxygen demand", "COD" stands for "Chemical oxygen demand", "TN" stands for "Total nitrogen", "TP" stands for "Total phosphorous", "FC" stands for "Fecal coliform", "TC" stands for "Total coliform", "TDS" stands for "Total dissolved solids", "TOC" stands for "Total organic carbon".

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L		mg/L	100ml	eggs/L	

BS ISO 16075-2:2015

Guidelines for treated wastewater use for irrigation projects (ISO 16075-2, 2015)

Cat. A: Urban and agri- cultural irrigation of food crops consumed raw	5	10	10	-1	-1	-1	-1	100	-1	-1	-1	-1	-1	Very high quality treated wastewater: Unre- stricted urban irrigation and agricultural irriga- tion of food crops consumed raw
Cat. B: Urban and agricul- tural irrigation of pro- cessed food crops	-1	25	20	-1	-1	-1	-1	1'000	-1	-1	-1	-1	-1	High quality treated wastewater: Restricted ur- ban irrigation and agricultural irrigation of pro- cessed food crops
Cat. C: Agricultural irriga- tion of non-food crops	-1	50	35	-1	-1	-1	-1	10'000	-1	-1	-1	-1	-1	Good quality treated wastewater: Agricultural irrigation of non-food crops
Cat. D: Irrigation of in- dustrial and seeded crops	-1	140	100	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Medium quality treated wastewater: Restricted irrigation of industrial and seeded crops
Cat. E: Irrigation of in- dustrial and seeded crops	-1	-1	35	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Extensively quality treated wastewater: Re- stricted irrigation of industrial and seeded crops

Proposal for a regulation on minimum requirements for water reuse

The European Commission proposed on May 2018 new rules to stimulate and facilitate water reuse in the EU for agricultural irrigation. (Alcalde-Sanz & Gawilk, 2017)

Class A: All food crops	5	10	10	-1	-1	-1	10	-1	-1	-1	-1	-1	-1	All food crops, including root crops consumed raw and food crops where the edible portion is in direct contact with reclaimed water
Class B: Food crops that is not in direct contact with reclaimed water, pro- cessed food crops, non- food crops	-1	25	20	-1	-1	-1	100	-1	-1	-1	-1	-1	-1	Food crops consumed raw where the edible portion is produced above ground and is not in direct contact with reclaimed water / Processed food crops / Non-food crops including crops to feed milk- or meat-producing animals
Class C: Food crops that is not in direct contact	-1	35	25	-1	-1	-1	1'000	-1	-1	-1	-1	-1	-1	Food crops consumed raw where the edible portion is produced above ground and is not in direct contact with reclaimed water / Processed food crops / Non-food crops including crops to feed milk- or meat-producing animals

	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L		mg/L	100ml	eggs/L	
with reclaimed water, pro- cessed food crops, non- food crops														
Class D: Industrial, en- ergy, and seeded crops	-1	35	25	-1	-1	-1	10'000	-1	-1	-1	-1	-1	-1	Industrial, energy, and seeded crops

"Total nitrogen", organic carbon".

Section 3: Water Quality Standards and Typical Wastewater Quality Considered for Vietnam

Table 3: Poseidon – Wastewater Quality Parameters for Vietnam

Parameters	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Ni- trate	TOC	Note / Reference
Units	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100 ml	CFU/ 100 ml	mg/L	mg N/L	mg/L	
Vietnam Water Quality Standards												
Class A - discharge with drinking water function	-	100	50	150	40	6	-	-	-	10	5,000	Discharge to water bodies with a function of drinking water supply (Class A) .QCVN 40:2011
Class B - discharge without drinking water function	-	100	50	150	40	6	-	-	-	10	5,000	Discharge to water bodies without function of drinking water supply (Class B) QCVN 40:2011
Irrigation	-	-	-	-	-	-	200	-	2,000	-	-	QCVN 39: 2011/BTNMT
International Organization for Standardiz	ation (IS	O) – BS	ISO 160	75-2:201	5							Guidelines for treated wastewater use for irri- gation projects (ISO 16075-2 2015)
Cat A Unrestricted urban irrigation and ag- ricultural irrigation of food crops consumed raw	5	10	10	-	-	-	-	100	-	-	-	Cat. A: Very high quality treated wastewater
Cat. B: Restricted urban irrigation and agri- cultural irrigation of processed food crops	-	25	20	-	-	-	-	1,000	-	-	-	Cat. B: High quality treated wastewater
Cat. C: Agricultural irrigation of non-food crops	-	50	35	-	-	-	-	10,00 0	-	-	-	Cat. C: Good quality treated wastewater
Cat. D: Restricted irrigation of industrial and seeded crops	-	140	100	-	-	-	-	-	-	-	-	Cat. D: Medium quality treated wastewater
Cat. E: Restricted irrigation of industrial and seeded crops	-	-	35	-	-	-	-	-	-	-	-	Cat. E: Extensively quality treated wastewater
Texas water reuse standards												(Example indicated in US EPA guidelines, 2012)
Texas EPA: Industrial Reuse- Recirculating Cooling Towers	-	-	20.00	-	-	-	200.0 0	-	-	-	-	BOD: 20 mg/L without pond; 30 mg/L with pond Add. Parameter: Enterococci: 35 CFU/100 mL (max. 89 CFU/100 mL)
Typical Municipal Wastewater Vietnam												
Typical untreated MWW Vietnam	100	86	94	189	44	-	10,00 0	1E+0 7	720	18	140	Estimated, based on (World Bank 2013) and own estimations.
Typical treated wastewater Vietnam	2	6	11	22	16	-	-	10,00 0	500	3	10	Estimated, based on (World Bank 2013) and own estimations.
Typical Industrial Park Wastewater Vietn	am											

Parameters	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Ni- trate	тос	Note / Reference
Units	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100 ml	CFU/ 100 ml	mg/L	mg N/L	mg/L	
Typical IP Effluent – before treatment Typical IP Effluent – after treatment	-	200 49.5	200 29.7	400 49.5	60 14.85	8 3.96	-	3,000	-	-	-	Thuan Dao Industrial Zone, The People's Co mittee of Long An Province. 2011. The Prepa tory Survey on Utility Management of Enviro ment-Friendly Industrial Parks in Vietnam. Thuan Dao Industrial Zone, The People's Co mittee of Long An Province. 2011. The Prepa tory Survey on Utility Management of Enviro ment-Friendly Industrial Parks in Vietnam.
Hanoi Municipal Wastewater						-						
Hanoi, Influent (Best quality)	-	51	45	115	34	-	-	-	-	18	-	(World Bank 2013)
Hanoi, Influent (Worst quality)	-	91	94	189	44	-	-	-	-	28	-	(World Bank 2013)
Hanoi, Effluent (Best quality)	-	5	9	17	8	-	-	-	-	0.5	-	(World Bank 2013)
Hanoi, Effluent (Worst quality)	-	10	12	24	16	-	-	-	-	0.5	-	(World Bank 2013)
Ho Chi Minh City Municipal Wastewater												
Ho Chi Minh City, Influent (Best quality)	-	49	42	135	11	-	-	-	-	18	-	(World Bank 2013)
Ho Chi Minh City, Influent (Worst quality)	-	103	78	203	11	-	-	-	-	18	-	(World Bank 2013)
Ho Chi Minh City, Effluent(Best quality)	-	7	3	30	7	-	-	-	-	3.3	-	(World Bank 2013)
Ho Chi Minh City, Effluent(Worst quality)	-	18	10	50	7	-	-	-	-	3.3	-	(World Bank 2013)
Da Nang Municipal Wastewater												
Da Nang, Influent (Best quality)	-	28	34	64	16	-	-	-	-	-	-	(World Bank 2013)
Da Nang, Influent (Worst quality)	-	73	101	178	28	-	-	-	-	-	-	(World Bank 2013)
Da Nang, Effluent (Best quality)	-	16	26	47	13	-	-	-	-	-	-	(World Bank 2013)
Da Nang, Effluent (Worst quality)	-	23	38	76	21	-	-	-	-	-	-	(World Bank 2013)
Quang Ninh Municipal Wastewater												
Quang Ninh, Influent (Best quality)	-	41	36	68	0.1	-	-	-	-	1.1	-	(World Bank 2013)
Quang Ninh, Influent (Worst quality)	-	195	45	80	0.1	-	-	-	-	1.3	-	(World Bank 2013)
Quang Ninh, Effluent (Best quality)	-	11	20	32	0.2	-	-	-	-	1	-	(World Bank 2013)
Quang Ninh, Effluent (Worst quality)	-	35	23	68	0.2	-	-	-	-	1	-	(World Bank 2013)

Parameters	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Ni- trate	тос	Note / Reference
Units	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100 ml	CFU/ 100 ml	mg/L	mg N/L	mg/L	
Notes: "Turb" stands for "Turbidity", "TSS												ands for "Chemical oxygen demand", "TN"

stands for "Total nitrogen", "TP" stands for "Total phosphorous", "FC" stands for "Fecal coliform", "TC" stands for "Total coliform", "TDS" stands for "Total dissolved solids", "TOC" stands for "Total organic carbon".

Section 4: Water Quality Standards Considered for Egypt, Morocco and Tunisia

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100ml	CFU/ 100ml	mg/L	mg N/L	mg/L	PFU/ 100ml	eggs/L	
Moroccan water irrig	ation r				0				0					
Cat A: irrigation of crops to be eaten raw	-1	100- 200	-1	-1	-1	-1	1'000	-1	-1	30	-1	-1	0	(S.E.E.E., 2007) Quality standards of water for irrigation, crops to be eaten raw (category A)
Cat B & C: irrigation of other crops	-1	100- 200	-1	-1	-1	-1	-1	-1	-1	30	-1	-1	0	(S.E.E.E., 2007) Quality standards of water for irrigation, other crops (categories B&C)
Moroccan water qual	ity grid	l for su	rface w	ater										
Excellent	-1	-1	3	30	-1	0.1	20	-1	-1	-1	-1	-1	-1	National reports of the MED POL programme: 2005, 2010 and 2012., (European Environment Agency, 2014)
Good	-1	-1	3–5	30-35	-1	0.1-0.3	20- 2'000	-1	-1	-1	-1	-1	-1	National reports of the MED POL programme: 2005, 2010 and 2012., (European Environment Agency, 2014)
Average	-1	-1	5 - 10	35-40	-1	0.3-0.5	2'000- 20'000	-1	-1	-1	-1	-1	-1	National reports of the MED POL programme: 2005, 2010 and 2012., (European Environment Agency, 2014)
Poor	-1	-1	10 – 25	40-80	-1	0.5-3	20'000	-1	-1	-1	-1	-1	-1	National reports of the MED POL programme: 2005, 2010 and 2012., (European Environment Agency, 2014)

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		Comments
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L	N/L	mg/L	100ml	eggs/L	
Very poor	-1	-1	25	80	-1	3	-1	-1	-1	-1	-1	-1	-1	National reports of the MED POL programme: 2005, 2010 and 2012., (European Environment Agency, 2014)
Moroccan Water qua	lity gri	d for g	round v	water										
Excellent	-1	-1	-1	-1	-1	-1	20	-1	-1	5	-1	-1	-1	National reports of the MED POL programme: 2005, 2010 and 2012., (European Environment Agency, 2014)
Good	-1	-1	-1	-1	-1	-1	20- 2'000	-1	-1	5-25	-1	-1	-1	National reports of the MED POL programme: 2005, 2010 and 2012., (European Environment Agency, 2014)
Average	-1	-1	-1	-1	-1	-1	2'000- 20'000	-1	-1	25-50	-1	-1	-1	National reports of the MED POL programme: 2005, 2010 and 2012., (European Environment Agency, 2014)
Poor	-1	-1	-1	-1	-1	-1	20'000	-1	-1	50	-1	-1	-1	National reports of the MED POL programme: 2005, 2010 and 2012., (European Environment Agency, 2014)

Tunisia

Very poor

Tunisian guidelines for wastewater reuse

-1

-1

-1

-1

-1

-1

NT 106.03 standard: irrigation	-1	30	30	90	-1	-1	-1	-1	-1	1	-1	-1	1	(WHO, 2006) Tunisian Standard of wastewater reuse for irrigation (1989), NT 106–03 standard. There are many other measurements that are not included in this table
-----------------------------------	----	----	----	----	----	----	----	----	----	---	----	----	---	---

-1 -1 -1

-1

-1

-1

-1 *National reports of the MED POL programme:* 2005, 2010 and 2012., (European Environment Agency, 2014)

	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		Comments
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L	N/L	mg/L	100ml	eggs/L	
Norm 106.03 revised, Cat I: Agriculture use	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	(Food and Agricultural Organisation of the United Nations, 2013) Use of treated wastewater for agricultural purposes.
Norm 106.03 revised, Cat II: Golf places, urban parcs, green zones	-1	-1	-1	-1	-1	-1	1000	-1	-1	-1	-1	-1	0.1	(Food and Agricultural Organisation of the United Nations, 2013) <i>Irrigation of golf courses, urban parks and green spaces in urban areas.</i>
Norm 106.03 revised, Cat III: infiltration of groundwater for agricultural use	5	-1	20	125	15	-1	1000	-1	-1	-1	-1	-1	1	(Food and Agricultural Organisation of the United Nations, 2013) <i>Recharge by infiltration of groundwater intended solely for agricultural use</i>

Tunisian Guidelines for wastewater discharge

Discharge into the Maritime Public Domain (DPM)	-1	-1	30-50	125- 160	-1	2 (total phospho r)	2'000	-1	-1	90	-1	-1	1 (Œufs de Némato des intestina ux)	Affaires Locales et de l'environment, 2018) The listed values are a selection of all measurements available Reiet dans le Domaine mublic
Discharge into the Public Domain of Hydraulics (DPH)	-1	-1	30-50	125- 160	-1	2 (total phospho r)	2'000	-1	-1	50	-1	-1	1 (Œufs de Némato des intestina ux)	Affaires Locales et de l'environment 2018) The
Discharge into the Public Sewerage System Domain (RPA)	-1	-1	400	1'000	-1	10 (total phospho r)	-1	-1	-1	90	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) The listed values are a selection of all measurements available. Rejet dans le Domaine réseau public d'assainissement (RPA)

Tunisian Guidelines for wastewater discharge divided by type of activity

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100ml	CFU/ 100ml	mg/L	mg N/L	mg/L	PFU/ 100ml	eggs/L	
Fruit and vegetable industry (DPM)	-1	-1	50	125	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The</i> <i>listed values are a selection of all measurements</i> <i>available.</i>
Fruit and vegetable industry (DPH)	-1	-1	50	125	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Fruit and vegetable industry (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Milk and milk products industry (DPM)	-1	-1	50	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Milk and milk products industry (DPH)	-1	-1	50	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Milk and milk products industry (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Meat and slaughterhouse industry (DPM)	-1	-1	50	200	-1	2	-1	-1	-1	90	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The</i> <i>listed values are a selection of all measurements</i> <i>available.</i>
Meat and slaughterhouse industry (DPH)	-1	-1	50	200	-1	2	-1	-1	-1	50	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>

End-use:	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:	NTU	m a/I	CFU/ 100ml	CFU/ 100ml	m a/I	mg N/L		PFU/	agga/I					
	NIU	mg/L	mg/L	mg/L	mg/L	mg/L	TUUMI	TUUMI	mg/L	IN/L	mg/L	100ml	eggs/L	
Meat and slaughterhouse industry (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	90	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Oil and fat industry (DPM)	-1	-1	50	125	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Oil and fat industry (DPH)	-1	-1	50	125	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Oil and fat industry (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Fish and seafood industry (DPM)	-1	-1	50	125	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Fish and seafood industry (DPH)	-1	-1	50	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Fish and seafood industry (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The</i> <i>listed values are a selection of all measurements</i> <i>available.</i>
Beverage industry (DPM)	-1	-1	30	125	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L	N/L	mg/L	100ml	eggs/L	
Beverage industry (DPH)	-1	-1	30	125	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) The listed values are a selection of all measurements available.
Beverage industry (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Yeast industry (DPM)	-1	-1	50	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Yeast industry (DPH)	-1	-1	50	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Yeast industry (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Sugar industry (DPM)	-1	-1	50	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Sugar industry (DPH)	-1	-1	50	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Sugar industry (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L	N/L	mg/L	100ml	eggs/L	
Mechanical and metallurgical industries (steel, foundry, non- ferrous metals) (DPM)	-1	-1	-1	150	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The</i> <i>listed values are a selection of all measurements</i> <i>available.</i>
Mechanical and metallurgical industries (steel, foundry, non- ferrous metals) (DPH)	-1	-1	-1	150	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The</i> <i>listed values are a selection of all measurements</i> <i>available.</i>
Mechanical and metallurgical industries (steel, foundry, non- ferrous metals) (RPA)	-1	-1	-1	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The</i> <i>listed values are a selection of all measurements</i> <i>available.</i>
Electrical, Electronics and household appliance industries (DPM)	-1	-1	50	200	-1	-1	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Electrical, Electronics and household appliance industries (DPH)	-1	-1	50	200	-1	-1	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Electrical, Electronics and household appliance industries (RPA)	-1	-1	400	1'000	-1	-1	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Battery industry (DPM)	-1	-1	-1	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Battery industry (DPH)	-1	-1	-1	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The</i>

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L	N/L	mg/L	100ml	eggs/L	
														listed values are a selection of all measurements available.
Battery industry (RPA)	-1	-1	-1	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Chemical and pharmaceutical industries (DPM)	-1	-1	30	150	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Chemical and pharmaceutical industries (DPH)	-1	-1	50	200	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Chemical and pharmaceutical industries (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Textile and clothing industries (DPM)	-1	-1	30	160	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Textile and clothing industries (DPH)	-1	-1	30	160	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Textile and clothing industries (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The</i> <i>listed values are a selection of all measurements</i> <i>available.</i>

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L	N/L	mg/L	100ml	eggs/L	
Leather and footwear industries (tanneries and shantytowns) (DPM)	-1	-1	-1	-1	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) The listed values are a selection of all measurements available.
Leather and footwear industries (tanneries and shantytowns) (DPH)	-1	-1	-1	-1	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Leather and footwear industries (tanneries and shantytowns) (RPA)	-1	-1	-1	-1	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Pulp, paper and cardboard industries (DPM)	-1	-1	40-80	125- 700	-1	-1	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Pulp, paper and cardboard industries (DPH)	-1	-1	40-80	125- 700	-1	-1	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Pulp, paper and cardboard industries (RPA)	-1	-1	400	1'000	-1	-1	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Building materials, ceramics and glass industries (DPM)	-1	-1	50	125	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>
Building materials, ceramics and glass industries (DPH)	-1	-1	50	125	-1	2	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The listed values are a selection of all measurements available.</i>

End-use:	Turb NTU	TSS mg/L	BOD mg/L	COD mg/L	TN mg/L	TP mg/L	FC CFU/ 100ml	TC CFU/ 100ml	TDS mg/L	Nitrate mg N/L	TOC mg/L	Virus PFU/ 100ml	Helminths eggs/L	Comments
Building materials, ceramics and glass industries (RPA)	-1	-1	400	1'000	-1	10	-1	-1	-1	-1	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) The listed values are a selection of all measurements available.
Seawater and brackish water desalination units (DPM)	-1	-1	-1	-1	-1	2	-1	-1	-1	90	-1	-1	-1	(Ministere du Commerce et Ministere des Affaires Locales et de l'environment, 2018) <i>The</i> <i>listed values are a selection of all measurements</i> <i>available.</i>

Egypt

Egyptian Guidelines for wastewater reuse

Level A: landscape irrigation in urban areas	-1	20	20	-1	-1	-1	-1	1'000	-1	-1	-1	-1	-1	(Elbana, Bakr, Karajeh, El, & El, 2014) Criteria of treated wastewater for agricultural use / Treatment Level A (landscape irrigation in urban areas)
Level B: agriculture purposes in desert areas	-1	50	60	-1	-1	-1	-1	5'000	-1	-1	-1	-1	-1	(Elbana et al., 2014) Criteria of treated wastewater for agricultural use / Treatment Level B (agriculture purposes in desert areas)
Level C: agriculture purposes in desert areas	-1	250	400	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	(Elbana et al., 2014) Criteria of treated wastewater for agricultural use / Treatment Level C (agriculture purposes in desert areas)
Egyptian drinking water quality standards (EWQS)	-1	-1	-1	-1	-1	-1	-1	-1	-1	10'000	-1	-1	-1	(Abdel-Satar, Ali, & Goher, 2017)
Law 48/1982: Protection of the River Nile and water ways	-1	-1	6-10	10-15	-1	-1	-1	-1	500	-1	-1	-1	-1	(El Bouraie, Motawea, Mohamed, & Yehia, 2011) Egyptian Law for protection of the River Nile and water ways from pollution

BS ISO 16075-2:2015

	Turb	TSS	BOD	COD	TN	ТР	FC	тс	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L	N/L	mg/L	100ml	eggs/L	

Guidelines for treated wastewater use for irrigation projects (ISO 16075-2, 2015)

Cat. A: Urban and agri- cultural irrigation of food crops consumed raw	5	10	10	-1	-1	-1	-1	100	-1	-1	-1	-1	-1	Very high quality treated wastewater: Unre- stricted urban irrigation and agricultural irriga- tion of food crops consumed raw
Cat. B: Urban and agricul- tural irrigation of pro- cessed food crops	-1	25	20	-1	-1	-1	-1	1'000	-1	-1	-1	-1	-1	High quality treated wastewater: Restricted ur- ban irrigation and agricultural irrigation of pro- cessed food crops
Cat. C: Agricultural irriga- tion of non-food crops	-1	50	35	-1	-1	-1	-1	10'000	-1	-1	-1	-1	-1	Good quality treated wastewater: Agricultural irrigation of non-food crops
Cat. D: Irrigation of in- dustrial and seeded crops	-1	140	100	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Medium quality treated wastewater: Restricted irrigation of industrial and seeded crops
Cat. E: Irrigation of in- dustrial and seeded crops	-1	-1	35	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Extensively quality treated wastewater: Re- stricted irrigation of industrial and seeded crops

Proposal for a regulation on minimum requirements for water reuse

The European Commission proposed on May 2018 new rules to stimulate and facilitate water reuse in the EU for agricultural irrigation. (Alcalde-Sanz & Gawilk, 2017)

Class A: All food crops	5	10	10	-1	-1	-1	10	-1	-1	-1	-1	-1	-1	All food crops, including root crops consumed raw and food crops where the edible portion is in direct contact with reclaimed water
Class B: Food crops that is not in direct contact with reclaimed water, pro- cessed food crops, non- food crops	-1	25	20	-1	-1	-1	100	-1	-1	-1	-1	-1	-1	Food crops consumed raw where the edible portion is produced above ground and is not in direct contact with reclaimed water / Processed food crops / Non-food crops including crops to feed milk- or meat-producing animals
Class C: Food crops that is not in direct contact with reclaimed water, pro- cessed food crops, non- food crops	-1	35	25	-1	-1	-1	1'000	-1	-1	-1	-1	-1	-1	Food crops consumed raw where the edible portion is produced above ground and is not in direct contact with reclaimed water / Processed food crops / Non-food crops including crops to feed milk- or meat-producing animals

	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitrate	тос	Virus	Helminths	Comments
End-use:							CFU/	CFU/		mg		PFU/		
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	100ml	100ml	mg/L	N/L	mg/L	100ml	eggs/L	
Class D: Industrial, en- ergy, and seeded crops	-1	35	25	-1	-1	-1	10'000	-1	-1	-1	-1	-1	-1	Industrial, energy, and seeded crops
														nical oxygen demand", "TN" stands for olved solids", "TOC" stands for "Total

Wastewater qualities of potential input	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitrate	TOC	Virus	Reference/
	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100ml	CFU/ 100ml	mg/L	mg N/L	mg/L	PFU/ 100ml	Comments
Morocco						•	•	•	•				
Small centres (< 20'000 inhabitants)	-1	500	400	1'000	-1	-1	-1	-1	-1	-1	-1	-1	(Salama et al., 2014)
Average centres (20'000-100'000 inhabitants)	-1	400	350	950	-1	-1	-1	-1	-1	-1	-1	-1	(Salama et al., 2014)
Large cities (>100'000 inhabitants)	-1	300	300	850	-1	-1	-1	-1	-1	-1	-1	-1	(Salama et al., 2014)
National Average	-1	400	350	800	-1	-1	-1	-1	-1	-1	-1	-1	(Salama et al., 2014)
Small community raw ww	-1	328	-1	746	115	-1	-1	5,600,0 00 (E. coli)	-1	-1	-1	-1	(Bouchaib, Hamouri, Kinsle & Crolla, 2012) Average values
Small community secondary hf wetland ww	-1	25	-1	56	40	-1	-1	210,000 (E. coli)		-1	-1	-1	(Bouchaib et al., 2012) Average values

Section 5: Typical Wastewater Qualities Considered for Egypt, Morocco and Tunisia

Egypt

$\mathbf{x} \mathbf{x} \mathbf{x}$	(HafenCity Universität Hamburg, 2016)
------------------------------------	--

Wastewater	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitrate	TOC	Virus	Reference/
qualities of potential input	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100ml	CFU/ 100ml	mg/L	mg N/L	mg/L	PFU/ 100ml	Comments
Kafr el Sheikh, Egypt - Inlet													
Community-managed Wastewater Treatment System, Kafr el Sheikh, Egypt - Outlet	-1	21	28	40	-1	-1	-1	260	-1	-1	-1	-1	(HafenCity Universität Hamburg, 2016)
Tunisia													
Gabès City WWTP, Effluent (2004)	-1	-1	2.5-5.9	17.1- 44.9	-1	-1	2.00E2- 6.50E2	-1	-1	4.1-37	-1	-1	(Dare et al., 2017)
Gabès City WWTP, Effluent (2013)	-1	-1	31.0- 60.0	46.5- 139.4	-1	-1	-1	4250- 4420 (EC)	-1	0-14.6	-1	-1	(Dare et al., 2017)
El Hamma WWTP, Effluent	-1	-1	20.0- 20.8	223.9	-1	-1	1.19E6 2.10E6	5120- 5140 (EC)	-1	23.5- 39.0	-1	-1	(Dare et al., 2017)
Urban Waste Water	40- 494	21- 1700	90-480	215- 1134	-1	-1	340'000 - 1'100'0 00	1'000'0 00- 5'300'0 00	-1	0.4-2.2	80.4- 428.6	-1	(Jraou, Feki, Arnot, Skouter & Sayadi, 2013)

Industrial Wastewater

Textile industry:

Wastewater	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitrate	TOC	Virus	Reference/
qualities of potential input	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100ml	CFU/ 100ml	mg/L	mg N/L	mg/L	PFU/ 100ml	Comments
Textile Industry- Tunisia, Nabeul (average composition)	334	104- 357	69-125	356- 692	-1	-1	-1	-1	-1	-1	-1	-1	(Frascari, 2019b) Specific contaminates such as dyes an bleaches are not considered.
Wastewater discharged from five factories (mixed sample), Egypt	-1	79.8	229	507	-1	-1	-1	-1	-1	0.46	-1	-1	(El-Gohary, Ibrahim, Nasr, Abo-Shosha, & Ali, 2013) The listed values are a selection of all measurements available. Due to the limitation of possible inputs in Triton.
Olive mill		1	1	I	1		I	L		I		L	
Wastewater quality values	-1	12'000	40'000	60'000	80	300	Low	Low	-1	-1	-1	-1	(Oertlé & Gauer, 2018) Specific contaminates such as polyphenols are not considered. (Average 3000 mg/l polyphenols)
Fruit and Vegetab	le pack	age	1	1	1		1	L	1	1		I	
Wastewater Quality Values, MAC	-1	250	350	700	30	15	8,000,0 00	30'000' 000	-1	-1	-1	-1	(Oertlé & Gauer, 2018) / Spe- cific contaminates such as fun gicides, pesticides or waxes are not considered.
Irrigation							I	I	I	I		I	
Drainage Canal W	Vater												
Bahr El Baqar drain, Tunesia	-1	95-110	62-74	120- 165	-1	3-4.5	178'000 	410'000 480'000	-1	-1	-1	-1	(Frascari, 2019a)

Wastewater	Turb	TSS	BOD	COD	TN	ТР	FC	ТС	TDS	Nitrate	тос	Virus	Reference/
qualities of potential input	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/ 100ml	CFU/ 100ml	mg/L	mg N/L	mg/L	PFU/ 100ml	Comments
Average DCW composition	-1	80-160	40-84	72-120	12-30	3-5	178'000 	-1	-1	-1	-1	-1	(Frascari, 2019a)
Drain, Khour Sail Aswan, Egypt	-1	184	204	375	-1	2.3	35'000	65'000	995	220.0	-1	-1	(Brown, Gohary, Tawfic, Imam, & Abdel-Gawad, 2003

Notes: "Turb" stands for "Turbidity", "TSS" stands for "Total suspended solids", "BOD" stands for "Biological oxygen demand", "COD" stands for "Chemical oxygen demand", "TN" stands for "Total nitrogen", "TP" stands for "Total phosphorous", "FC" stands for "Fecal coliform", "TC" stands for "Total coliform", "TDS" stands for "Total dissolved solids", "TOC" stands for "Total organic carbon".

References

- Abdel-Satar, A. M., Ali, M. H., & Goher, M. E. (2017). Indices of water quality and metal pollution of Nile River, Egypt. *Egyptian Journal of Aquatic Research*, 43(1), 21–29. https://doi.org/10.1016/j.ejar.2016.12.006
- Alcalde-Sanz, L., & Gawilk, B. M. (2017). *Minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge Towards a water reuse regulatory instrument at EU level* (EUR 28962). Luxembourg: Publications Office of the European Union. https://doi.org/10.2760/887727

Asano, T., Burton, F., & Leverenz, H. (2007). Water reuse: issues, technologies, and applications. (Metcalf & Eddy, Ed.). McGraw-Hill.

- Bouchaib, A., Hamouri, E., Kinsley, C., & Crolla, A. (2012). A Hybrid Wetland for Small Community Wastewater Treatment in Morocco. *Sustainable Sanitation Practice*, (12), 22–26.
- Brown, P., Gohary, F. El, Tawfic, M. A., Imam, E. H., & Abdel-Gawad, S. (2003). Nile River Water Quality Management Study. *Egypt Water Policy Reform*, (67), 1–98. Retrieved from www.progreendiploma.com/wp.../Nile-RIver-Water-Quality-Management-Study-1.pd..
- Dare, A. E., Mohtar, R. H., Jafvert, C. T., Shomar, B., Engel, B., Boukchina, R., & Rabi, A. (2017). Opportunities and Challenges for Treated Wastewater Reuse in the West Bank, Tunisia, and Qatar. *Transactions of the ASABE*, *60*(5), 1563–1574. https://doi.org/10.13031/trans.12109

Demirel, B., Yenigun, O., & Onay, T. T. (2017). Anaerobic treatment of dairy wastewaters: a review. https://doi.org/10.1016/j.procbio.2004.12.015

El-Gohary, Ibrahim, Nasr, Abo-Shosha, & Ali. (2013). A new approach to accomplish wastewater regulation in textile sector: an Egyptian case study. *Cellulose Chemistry and Technology*, 47(3–4), 309–315.

El Bouraie, M. M., Motawea, E. A., Mohamed, G. G., & Yehia, M. M. (2011). Water quality of Rosetta branch in Nile delta, Egypt. Suo, 62(1), 31-

Elbana, T. A., Bakr, N., Karajeh, F., El, D., & El, D. (2014). Treated Wastewater Utilization for Agricultural Irrigation in Egypt, (December 2015).

European Environment Agency. (2014). Horizon 2020 Mediterranean report. Annex 4: Morocco, (6). Retrieved from www.eea.europa.eu/...mediterranean.../annex-3-isra...

Food and Agricultural Organisation of the United Nations. (2013). Etude stratégique des formes de réutilisation des eaux usées en Tunisie.

Frascari, D. (2019a). Design, construction and start-up of the field pilots: Drainage Canal Water.

Frascari, D. (2019b). Design, construction and start-up of the field pilots: TWW.

HafenCity Universität Hamburg. (2016). Waste Water Treatment in Cairo, Egypt.

Hussain, J., Hussain, I., & Arif, M. (2004). Characterization of textile wastewater. *Journal of Industrial Pollution Control*. Retrieved from http://re.indiaenvironmentportal.org.in/files/textile wastewater.pdf

ISO 16075-2. (2015). Guidelines for treated wastewater use for irrigation projects — Part 2: Development of the project, 24.

- Jraou, M., Feki, F., Arnot, T., Skouteris, G., & Sayadi, S. (2013). Application of Membrane Bioreactor technology for urban wastewater treatment in Tunisia : Focus on treated water quality. *Sustainable Sanitation Practice*, *14*(14), 49–54.
- Ministere du Commerce et Ministere des Affaires Locales et de l'environment. (2018). Ministère du commerce Tunisien, décret gouvernemental n° 2018-315. *Journal Officiel de La République Tunisienne*.

Oertlé, E., & Gauer, M. (2018). LCA and CBA of the lab-scale WW treatment technologies.

- Oreopoulou, V., Russ, W., Brito, A. G., Peixoto, J., Oliveira, J. M., Oliveira, J. A., ... Rodrigues, A. C. (2007). *Utilization of by-products and treatment of waste in the food industry*. Springer. Retrieved from https://repositorium.sdum.uminho.pt/handle/1822/6012?locale=en
- Pokhrel, D., & Viraraghavan, T. (2017). Treatment of pulp and paper mill wastewater-a review. https://doi.org/10.1016/j.scitotenv.2004.05.017

S.E.E.E. Normes de Qualité (2007).

- Salama, Y., Chennauoui, M., Sylla, A., Mountadar, M., Rihani, M., & Assobhei, O. (2014). Review of Wastewater Treatment and Reuse in Morocco: Aspects and Perspectives. *International Journal of Environment and Pollution Research*, 2(1), 9–25.
- Sarkar, B., Chakrabarti, P. P., Vijaykumar, A., & Kale, V. (2006). Wastewater treatment in dairy industries possibility of reuse. *Desalination*, *195*, 141–152. https://doi.org/10.1016/j.desal.2005.11.015
- WHO. (2006). A compendium of standards for wastewater reuse in the eastern Mediterranean region. Geneva: WHO.
- Yusuff, R. O., & Sonibare, J. A. (2004). Characterization of textile industries' effluents in Kaduna, Nigeria and pollution implications. *Global Nest: The Int. J.*, 212–221.