
DSDB: Reproducible Computational Modeling

Jackson Brown, Nicholas Weber
Allen Institute for Cell Science

Abstract—In the following abstract we describe Dataset-
Database (DSDB), an open-source system for handling the prove-
nance, versioning, de-duplication, history, and query of dynamic
databases used at the Allen Institute for Cell Science. We present
our initial design and deployment of DSDB, the results of this
work for computational modeling, and conclude with a discussion
of the future work necessary for provisioning data discovery and
sharing tools that facilitate transparent reproducible research
through provenance aware features.

I. INTRODUCTION

This abstract describes a set of tools designed to meet
the version control, de-duplication, and data packaging needs
of computational modeling researchers at the Allen Institute
for Cell Science. Computational modeling at the Allen Insti-
tute commonly produce multiple and intermediate versions of
datasets, including analysis results, model predictions, training
weights and parameters for neural networks [1]. In many
cases, there is no clearly defined ”final” version of a dataset
which then becomes canonical to ”final” results. As research
is conducted, algorithms are tested, results are generated, and
a network of implicit dependencies is created within a single
database. While dataset context can be provided when using
other versioning systems (e.g. commit messages detailing how
files have changed) these tools are not fully automated, and
other provenance tracking systems do not satisfactorily capture
the environmental dependencies used to change data that are
stored in traditional relational database models [2]. To natively
provide the tooling necessary to encapsulate a modeling en-
vironment, or, at minimum, to rebuild the environment, new
approaches to data provenance are needed.

To address challenges in data storage and provenance at
the Allen Institute for Cell Science, we created a relational
database schema and developed a supporting Python library,
DatasetDatabase (DSDB). DSDB facilitates sharing, dataset
deduplication, and processing of data that integrates with mod-
eling workflows, and, by extension, common computational
modeling workflows. DSDB attempts to solve the impediments
to context tracking inherent in previous versioning systems
(e.g. by enforcing immutable datasets - dataset changes only
occur during the runtime of approved system functions) [3].
This makes it incredibly easy for DSDB to encapsulate an an-
alytic environment, and more importantly, makes it simple for
the user to record and communicate provenance information
in the database itself.

II. USE CASE

The challenges that DSDB solves might best be described
through a user story that is typical of the work conducted by a
computational scientist at the Allen Institute for Cell Science:

A researcher on the modeling team needs to create an
imaging-based machine learning model that takes in images

Table I. EXAMPLE MITOTIC STAGE TRAINING DATASET

CellId Filepath Rev. 1 Rev. 2
1 /projects/... 0 0
2 /projects/... 4 3
3 /projects/... 0 0
4 /projects/... 1 1

Table II. EXAMPLE OF UNSTRUCTURED DATA ERRORS

CellId Filepath Rev. 1 Rev. 2
21 /projects/... 3,4 3
22 /projects/... 0
23 /projects/... five 5

The expected structure of both the “Rev. 1” and “Rev. 2” is to have a single
integer value between zero and seven.

of single cells and outputs a mitotic stage classification for
each cell. Table 1 is an example of such a training dataset.

In this example, each cell has been assigned a unique cell
id and is accompanied by filepath to an image of the cell and
two manually classified mitotic stages provided by scientists
from the assay development team at the institute.

A scientist from the assay development team will typically
store this dataset as a comma-separated-values file, or ‘CSV’.
The delivery of this dataset is done by saving the dataset as
a CSV to a shared network storage drive. The creator(s) of
the dataset will then send a message, by email or messaging
service, to the primary researcher(s) for the project on the
modeling team that includes details regarding the dataset’s
creation and includes the network storage drive filepath to
the dataset. Modeling team members will then make their
own copy of the dataset. The two most common reasons for
duplicating the dataset at this stage are for faster file read
times in comparison to reading the file from the shared network
drive, or to move it to a location in their own project directory
so as to have it referenced locally within the project.

This process creates multiple copies of a dataset that
need to be managed and identified for reproducibility. This
is problematic because a modeling team member will often
identify errors or unstructured portions of the data. The most
common errors for imaging based datasets are invalid filepaths,
or encountering a file that was once present but was later
accidentally moved or deleted by the creator.

A. Unstructured Data

Another common error, which can be classified as an
unstructured data error, is when too many values, too few
values, or varied data formats are provided. An example of
this can be seen in Table 2.

Using Table 2 as an example, the expected structure for
both reviewer’s mitotic stage classifications is a single integer
value between zero and seven; but for cell id 21, reviewer one



has recorded what can be interpreted as a uncertainty regarding
the mitotic stage because they have left two integers separated
by a comma. Separately, for cell id 22, reviewer two has left
their classification for mitotic stage blank. More uncommon,
but still present, is the example of cell id 23, when a completely
different data format was used; in this case, text of the word
‘five’ was used by reviewer one instead of the integer five (5).
When errors in the dataset are discovered, they are reported
back to the team that created the dataset.

B. Additional Data Requests

An additional common hindrance in data exchange is
when a modeling team member needs more data delivered
than was originally requested. In essence this is a schema
change to the dataset (i.e. a research team member would
write that ”we need a column detailing additional features
of the cell in question.”) This exchange process will happen
successive times between team members; a dataset is handed
from the data producer to the modeling team, checked for
errors, inconsistencies, or increased data requirements, and the
modeling team will request resolutions to issues or more data
from the data producer. Problematically, model prototyping
often begins before all final data error resolutions and schema
change requests are made between teams. As a result, multiple
versions of the same dataset may be present in a project and
each version may only be very minimally different from a prior
version. Although each dataset may have distinct versions, the
identification and resolution of these errors becomes difficult
to manage.

C. Tracking Computational Provenance

Lastly, the problem of providing data provenance to the
intermediate datasets that are created during modeling com-
putation. Modeling team members will generally store these
intermediate datasets as additional CSVs in their project di-
rectory. These intermediate datasets are usually given limited
details and metadata regarding the scientist who initiated the
computation and what environment or algorithm was used for
creation. There are other minor changes made continually to
the base dataset, however the previous examples demonstrate a
majority of computational modeling data delivery mechanisms
used throughout the data handoff process.

III. PROOF OF CONCEPT - DATA STORAGE

As described in the user stories above, the research teams
at the Allen Institute for Cell Science require a system that can
work as a shared data storage solution (like that of a system for
version control of databases like OrpheusDB), but with more
flexibility in schema, minimal impact on workflow, and natural
enforcement of dataset context and provenance (like that of
a provenance workflow tool native to Python, like ReciPy).
The simple combination of these two systems is limited in
two ways: first is the rigid dataset schema issue introduced
by OrpheusDB, and the second is how to manage filepaths, or
files, that are commonly referenced within datasets.

OrpheusDB operates by adding a versioning table that
references a foreign key from the data table that is being
versioned, and with this key a user can create a series of ver-
sioned data tables by simply recording a collection of foreign

Table III. IOTA TABLE

IotaId Key Value Created
1 CellId b‘\x80\x0... 2019-01-...
2 Filepath b‘\x80\x0... 2019-01-...
3 Rev. 1 b‘\x80\x0... 2019-01-...
4 Rev. 2 b‘\x80\x0... 2019-01-...
5 CellId b‘\x80\x0... 2019-01-...
6 Filepath b‘\x80\x0... 2019-01-...
7 Rev. 1 b‘\x80\x0... 2019-01-...
8 Rev. 2 b‘\x80\x0... 2019-01-...
... ... ... ...

Example of Iota created from the first two rows of Table 1. Key, is a reference
to the cell’s column name. Value, is the binary dump of the cell value.

keys, or which rows of the data table, as a version of the
linked data table. In this sense, OrpheusDB efficiently handles
granular data level changes (e.g. values in a column that need
to be updated or added). However, OrpheusDB’s solution to
versioning is not suitable for dataset schema changes (i.e.
an entire column needs to be added or removed from the
table (dataset)). To properly handle versioning dataset schema
changes under an OrpheusDB model, you would need to create
a new table every time a dataset schema change occurs.

Dataset schema changes occur frequently on computational
modeling datasets, requiring a different approach to versioning.
DatasetDatabase (DSDB) solves this issue by taking the con-
cepts OrpheusDB has established for granular data versioning
and expanding on them an additional step. Instead of only
recording which rows are contained within each version of a
table, DSDB additionally records which values are contained
within each row. This is known as “Dataset - Group - Iota”
deconstruction.

Figure 1. Dataset - Group - Iota Deconstruction

As seen in Figure 1, Datasets may consist of multiple
Groups, and Groups may consist of multiple Iota. DSDB
accomplishes this by doing an extensive dataset deconstruction
process1. When a user attempts to upload or ingest a dataset
into the DSDB system, the deconstruction process begins by
tearing the dataset into rows (Groups) and further strips rows
(Groups) into single cells (Iota). Iota ingestion occurs first and
Iota are stored discretely. The deconstruction of Table 1 would
result in Table 3.

The next step is to create a unique Group for the ordered
list of Iota that make up the row. This is done by generating a
SHA256 hash value for the ordered list of IotaIds that made up
the row. Completing this operation using Table 1 and 3 would
result in Table 4.

1As a note, this process could have been called the “Dataset - Row - Cell”
deconstruction, however Group and Iota were chosen to reduce terminology
overload, as “cell”, is also a common term in biological research.

orpheus-db.github.io
https://github.com/recipy/recipy


Table IV. GROUP TABLE

GroupId SHA256 Created
1 3dcba0549b496d23714... 2019-01-...
2 3799273ecc32e328403... 2019-01-...
3 5899abb43952eff27ba... 2019-01-...
4 75d34df97c51bcf2471... 2019-01-...

Example of Groups created from deconstructing Table 1. SHA256 is the hash
of the ordered list of Iota ids that make up the Group. Ex: GroupId 1 in this
table corresponds to the SHA256 hash of [1, 2, 3, 4], the Iota ids in Table 3
created from row 1 of Table 1.

It is worth noting that in Table 4 there is no metadata
connecting the created Groups to any specific Dataset - only
a unique ordered list of Iota was registered during ingestion.
Connection information (metadata) is stored in join or junction
tables. Iota and Group tables have a join table that links an
IotaId to a GroupId, and Group and Dataset have a join table
that link a GroupId to a DatasetId. The Iota-Group join table
does not have any extra information other than the foreign
key relation between the two tables, however, the Group -
Dataset join table stores an additional label attribute, which
is most commonly the row index to place the linked group
at in the Pandas dataframe during dataset reconstruction. With
this schema, DSDB is able to minimize redundant data storage;
only unique Iota and Groups may ever exist. Rather, it is the
connections between these pieces that constructs a dataset.

The Dataset table stores metadata about each dataset added
by users of the system. This includes items such as name,
description, created datetime, and most importantly, a SHA256
hash for the dataset. When a user attempts to upload a
dataset to the system, before any database ingestion is run,
the supporting Python library generates a SHA256 hash for
the dataset using a list of transactionally generated Group
ids ordered by their accompanying label (row index). If the
generated hash is found in the Dataset table, DSDB will
rollback the transaction and point the user at the already stored
dataset. This is both a validation and enforcement mechanism
created by the schema of DSDB. By enforcing only unique
Iota, Groups, and Datasets can be entered into the database,
users are quickly made aware when other users have already
uploaded the same dataset.

A. Deduplication & Validation

One of the major goals of DSDB’s schema design was
to minimize redundant data storage. At all levels, data is
attempted to be deduplicated. Only unique Iota can exist in the
Iota table (the unique set of key, and binary value); only unique
Groups can exist in the Group table (the unique SHA256 hash
of the ordered list of Iota ids); only unique Datasets can exist
in the Dataset table (the unique SHA256 of the ordered list of
Group ids).

The Dataset - Group - Iota deconstruction process addi-
tionally allows for the validation of every Iota value before
ingestion. The supporting tooling allows the user to validate
every Iota, both for schema and data validity. Columns (Iota
keys) marked as filepaths can additionally be verified for
existence, and the associated file can be stored using a unique
file storage system. For the Allen Institute, this represents a
centralized file storage server that provides a globally unique
identifier (GUID) as well as an immutable filepath for a copy
of any file entered into the system.

Figure 2. Cross Dataset Iota and Group Deduplication

Unstructured data errors, as in the example of Table 2,
can also be handled during the Iota validation process. If a
user attempts to upload a dataset, and specifies that ‘Rev. 1’
column values should be integers, but the string “3,4”, list [3,
4], or string ‘three’ was retrieved, an error would be raised.
The database schema of DSDB naturally encourages dataset
cleaning and dataset schema enforcement; however, as these
cleaning and validation checks are provided by supporting
tooling - external to DSDB - their use is not required.

B. Retrieval

To retrieve a dataset from the database, the user is pro-
vided a function by the DSDB library that performs all the
table joins, and reforms Iota and Groups back into a Pandas
dataframe, given a dataset id. Because modeling team members
are consistently accessing and uploading data, retrieval times
are an important benchmark for DSDB. To better record and
document how the Allen Institute implementation of DSDB
was scaling, a DSDB report generation tool was created to
provide details about both database size but most important to
users, dataset retrieval times.

Figure 3 shows dataset retrieval times in seconds against
dataset size (row × columns) tested against two machines, a
laptop used as a local machine (CPU MHz: 2500, Physical
Cores: 2, Logical Cores: 4), while the higher end (CPU MHz:
3000, Physical Cores: 16, Logical Cores: 32) is a node on the
institute shared computation cluster. What this figure does not
address is the network speed difference from being on a local
machine to being on the shared cluster. The only time this



Figure 3. Dataset Retrieval Times against Dataset Size

Table V. ESTIMATED DATASET RETRIEVAL TIMES ON ALLEN
INSTITUTE NETWORK

Dataset Size Local (seconds) Cluster (seconds)
10,000 8.74 8.64

100,000 15.80 12.18
1,000,000 93.58 48.03

10,000,000 1592.59 450.53

Estimated retrieval times for local and cluster machines using quadratic fits.
Dataset size is equal to rows × columns.

matters is when transferring the actual data from the database
to the requesting machine. The bulk of the workload cost
of DSDB comes from the reading of Iota values back into
memory and formatting the Iota and Groups back into a Pandas
dataframe. (For specific retrieval time estimates see Table 5.)

A final statistic created by the report generation tool was
that of Iota deduplication, computed by dividing the length
of the Iota table by the sum of all dataset sizes (row ×
column), or, how many Iota exist in the database over how
many could exist without deduplication efforts. The Allen
Institute implementation of DSDB currently reports 49% Iota
deduplication. This is expected as many of the projects and
datasets currently using DSDB are classification model training
datasets, which have similar dataset schemas and a limited
range in data values.

DSDB’s storage solution solves many of the modeling
team’s management and retrieval problems, but DSDB also
provides relevant query and discovery capabilities. Under
DSDB, there is a centralized table of rich metadata about any
unique dataset that has ever been uploaded as well as more
complex, but even more rich, query capabilities available to
users which require more intensive searches. If a researchers
asks, ”Which datasets has this image (filepath) been used in
previously” DSDB can answer this query quickly under the
database schema as a simple operation of querying the Iota
table’s value column with the binary dump of the filepath in
question. In the case where the file in question was sent to
a custom file storage service prior to dataset ingestion, the
original filepath would first need to be looked up from that
service then the standard query could be completed.

Basic text-based dataset discovery is implemented by pro-
viding a query function in the supporting library that uses the
sum of computed term frequency - inverse document frequency
(TF-IDF) scores for the terms used in each dataset description
against a search phrase or term sequence.

A more complex query that a user could complete could

take into account percent mutual information between datasets.
As it is common that users may forget to attach dataset
metadata during upload, a dataset may have limited or no text
based metadata to query against. A naive implementation of
this functionality would involve computing a TF-IDF score
for every dataset, then return the maximum value found from
multiplying the computed TF-IDF score for each dataset by a
percentage shared Iota between every other dataset.

A database schema diagram for DSDB available at Appendix
A.

IV. LIMITATIONS

Although we have demonstrated a number of efficiency
gains in storing, versioning, and documenting data through
DSDB, there are a number of known limitations to the current
release. Storing and versioning large datasets has slowed
retrieval time down significantly. For Allen Institute team
members, slow retrieval is not an issue when running multiple
hour long feature extraction or training applications as there
is no need for a user to view the intermediate datasets as
they are created. However, delayed retrieval will be an issue
when a user simply wants to view a large dataset. As was
demonstrated in Table 5, datasets with less than 1,000,000
cells can be retrieved in less than a minute (48 seconds) on the
shared computation cluster. Scaling the performance of DSDB
with datasets larger than 1,000,000 cells is a future research
challenge to be addressed in version two.

A similar limitation is found when datasets that are stored
in DSDB are not created from the DSDB apply function, but
rather simply uploaded. If a majority of datasets are being up-
loaded rather than created while using the provenance features,
the issue of initial dataset retrieval times is exaggerated as this
is the only functionality many users will interact with; users
are only seeing one set of beneficial features instead of the
entire suite of features available.

V. FUTURE WORK

We have documented the initial motivation for, and design
of DatasetDatabase (DSDB) for handling the provenance,
versioning, de-duplication, history, and query of dynamic
databases in order to enable verifiable and shareable research
results. The main use cases satisfied by DSDB are from
scientists at the Allen Institute for Cell Science - where DSDB
is currently a production system for scientists cleaning and
preparing imaging and cell feature datasets. Of the many
cleaning and validation features in DSDB, dataset uniqueness,
or the ability to determine which datasets have entered the
system previously, has been the most popular for capturing and
communicating provenance across teams. The immutability
constraints that DSDB imposes also allows collaborators on
projects to easily verify which dataset to use for early prototype
work by simply sharing a dataset ID instead of a filepath that
could be easily changed or moved.

Given the limitations of DSDB 1.0 we believe the important
future developments should focus on: 1. Provenance logging
that is similar to ReciPy. The addition of moving generated
files and datasets to a shared stored instead of simply be-
ing referenced in ReciPy logs would increase shared dataset



provenance; or, 2. Move DSDB from a relational database to
a graph database. While there are tradeoffs to this migration,
a number of previous studies show how queries that are table-
join heavy under relational databases become simple under
graph databases [4]. Both options are primarily concerned with
retrieval times, the main difference being: storing files (more
ReciPy oriented), or continuing with the “Dataset - Group -
Iota” deconstruction (moving to a graph database).

VI. ACKNOWLEDGEMENTS

We wish to thank the Allen Institute for Cell Science
founder, Paul G. Allen, for his vision, encouragement, and
support. This work could not have been completed without
the additional support and input from all members of the Allen
Institute for Cell Science modeling team.

APPENDIX



APPENDIX A

Figure 4. Version 1.2 DSDB Database Schema

REFERENCES

[1] D. Yuan, Y. Yang, X. Liu, and J. Chen, “On-demand minimum cost benchmarking for intermediate dataset storage in scientific cloud workflow
systems,” Journal of Parallel and Distributed Computing, vol. 71, no. 2, pp. 316 – 332, 2011, data Intensive Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731510001838

[2] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, “A comparison of a graph database and a relational database: a data provenance
perspective,” in Proceedings of the 48th annual Southeast regional conference. ACM, 2010, p. 42.

[3] M. Imran, H. Hlavacs, I. U. Haq, B. Jan, F. A. Khan, and A. Ahmad, “Provenance based data integrity checking and verification in cloud environments,”
PloS one, vol. 12, no. 5, p. e0177576, 2017.

[4] R. Angles, “A Comparison of Current Graph Database Models,” 04 2012, pp. 171–177.

http://www.sciencedirect.com/science/article/pii/S0743731510001838

	Introduction
	Use Case
	Unstructured Data
	Additional Data Requests
	Tracking Computational Provenance

	Proof of Concept - Data Storage
	Deduplication & Validation
	Retrieval

	Limitations
	Future Work
	Acknowledgements
	Appendix
	References

