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Abstract

In this paper, Mindlin’s second strain gradient theory is formulated and pre-

sented in an arbitrary orthogonal curvilinear coordinate system. Equilibrium

equations, generalized stress-strain constitutive relations, components of the

strain tensor and their first and second gradients, and the expressions for three

different types of traction boundary conditions are derived in any orthogonal

curvilinear coordinate system. Subsequently, for demonstration, Mindlin’s sec-

ond strain gradient theory is represented in the spherical coordinate system as

a highly-practical coordinate system in nanomechanics. Second strain gradi-

ent elasticity have been developed mainly for its ability to capture the surface

effects in the presence of micro-/nano- structures. As a numeric illustration

of the theory, the surface relaxation of spherical domains in Mindlin’s second

strain gradient theory is considered and compared with that in the framework

of Gurtin-Murdoch surface elasticity. It is observed that Mindlin’s second strain
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gradient theory predicts much larger value for the radial displacement just near

the surface in comparison to Gurtin-Murdoch surface elasticity.

Keywords: second strain gradient theory, orthogonal curvilinear coordinates,

surface effect, nanosphere, nanocavity, relaxation

1. Introduction

Recently, there has been a flurry of interest in such unusual forms as nanowires,

nanotubes, and nano-particles of commonplace materials like metals, semicon-

ductors, insulators, and organic compounds. In view of their vast possible appli-

cations in electronics, energy conversion, optics, chemical sensing, cancer ther-

apy, and drug delivery, among other fields, consideration of the mechanics and

physics of these forms of nano-structures is inevitable. The most important key

features in these structures are their nanometer scale in two/three dimensions

as well as their special symmetrical shapes.

It is well-known that traditional continuum theories are inadequate in treat-

ing mechanical aspects of nano-scale structures and resorting to augmented con-

tinuum theories seems to be remedial. For example, Lazar [1] deals with strain

gradient elasticity of defects to give a non-singular dislocation continuum theory.

Lazar and Agiasofitu [2] provide fundamental quantities in generalized elasticity

and dislocation theory of crystals. The development of higher order continuum

theories such as strain gradient elasticity has been brought into focus, mainly

in the period of about 1960-1975. In first strain gradient theory, Toupin [3]

assumed that the potential energy density function of the material depends on

both the second order strain tensor and its first gradient. The correspondence

2

Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates: 
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling, 

Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.



between first strain gradient theory and the atomic structure of the material is

exhibited by Toupin and Gazis [4] through consideration of the nearest and next

nearest interatomic interactions; they realized that the drawing in or pushing

out the surface layer happens only in non-centrosymmetric materials. Later,

Toupin, in a private communication with Mindlin [5], suggested that one can

remove this restriction with the inclusion of the components of the second gradi-

ent of the strain tensor in the potential energy density function. Subsequently,

Mindlin [5] proposed second strain gradient theory in which the strain energy

density function depends on, not only the strain field and its first derivative, but

also the second derivative of the strain field. Formulation within Mindlin’s sec-

ond strain gradient theory gives rise to two surface parameters, namely, surface

characteristic length and modulus of cohesion, enabling this theory to capture

the surface effect of nano-structures on their mechanical properties [6, 7, 8].

Factually, consideration of the surface effect in nano-scale structures has been

one of the most important stimuli in the development of higher order continuum

theories. Recently, Shodja et al. [8] have proposed an atomistic model for the

calculation of the additional constants for fcc materials in second strain gradi-

ent elasticity. Subsequently, they studied the surface effects on the behavior of

nano-size Bernoulli-Euler beams. Moreover, Ojaghnezhad and Shodja [6] em-

ployed a combined first principles and analytical approach for determination of

the modulus of cohesion, surface energy, and the additional constants in sec-

ond strain gradient elasticity. Later, Ojaghnezhad and Shodja [7] reformulated

Gurtin and Murdoch [9] surface elasticity theory in the context of second strain
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gradient theory. In surface elasticity theory which has been formulated to cap-

ture the surface effects, the bulk material and surface layer are treated as two

separate entities. Formulation in this framework entails the introduction of the

notion of two surface parameters as surface residual stresses and surface elastic

moduli tensor. The work of Ojaghnezhad and Shodja [7] lead to a linkage be-

tween the surface elastic parameters such as surface stress and surface elastic

constants of surface elasticity theory and the elastic parameters stemming from

second strain gradient elasticity.

However, utilization of Mindlin’s second strain gradient theory to treat a vast

variety of nano-scale problems involving various geometries in a mathematically

rigorous manner requires the employment of suitable coordinate systems. Erin-

gen [10] provides a simple but effective mathematical tool to transform any

formulation written in the Cartesian coordinates to any curvilinear coordinate

system. As an effort, Ji et al. [11] derived the general formulations of the simpli-

fied first strain gradient theory proposed by Zhou et al. [12] in the framework of

orthogonal curvilinear coordinates. However, to date, in spite of the vast appli-

cation of Mindlin’s second strain gradient theory in prediction of the mechanical

behavior of nano-structures, its general formulation in orthogonal curvilinear co-

ordinates is absent in the literature. In this paper, the methodology proposed

by Eringen [10] is utilized to provide the formulation of Mindlin’s second strain

gradient theory in any arbitrary orthogonal curvilinear coordinates. As it was

alluded to, such formulation would be of great value for the treatment of nano-

structures of various shapes where the surface effect is important. In continue,
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in order to illustrate the usefulness of the presented formulation in applications,

relaxation of a spherical domain and a spherical cavity is examined based on

Mindlin’s second strain gradient theory. Recently, solid and hollow nanospheres

made of dielectric and precious metals such as gold and silver have absorbed

great attention of the researchers due to their effective application in nanotech-

nology. Dielectric nanospheres are promising structures for light trapping in

plannar thin-film solar cells [13]. Moreover, metal nanospheres due to their

optical properties, have various technological applications such as surface plas-

mon resonance detection and imaging, surface-enhanced Raman scattering, and

biomedical imaging and therapy. In the case of hollow gold nanospheres, the

unique combination of small size, spherical shape, and strong tunable surface

plasmon resonance is ideal for biomedical applications [14]. Hollow Pd spheres

have been fabricated for usage as heterogeneous catalyst for suzuki coupling

reactions [15]. Tunability of surface plasmon resonance by interior cavity size

in Au hollow nanospheres has been examined by Liang et al. [16]. Au hol-

low nanosphere has also been used for drug delivery [17]. Metal nanoshell has

found application in tumor therapy [18]. The present work focuses on the phe-

nomenon of relaxation as an application of the current theoretical developments.

In particular, we examine the relaxation of spherical domain as well as spher-

ical cavity made of Ag, Au, and Pt based on Mindlin’s second strain gradient

theory. The results are compared with the corresponding ones obtained from

Gurtin-Murdoch surface elasticity as well as molecular dynamics simulation.
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2. Second strain gradient theory in Cartesian coordinates

Based on strain gradient theory formulated by Mindlin [5], strain energy

density of a homogeneous and centrosymmetric material depends not only on

the traditional infinitesimal strain, ϵij , but also on its first and second spatial

gradients, ϵijk and ϵijkl, respectively, as below

W = 1
2

Cijklϵijϵkl + Fijklmnϵijϵklmn + 1
2

Gijklmnϵijkϵlmn

+ 1
2

Iijklmnpqϵijklϵmnpq + B◦
ijklϵijkl. (2.1)

where the summation convention for repeated indices is employed and

ϵij = 1
2

(ui,j + uj,i), (2.2a)

ϵijk = uk,ij , (2.2b)

ϵijkl = ul,ijk. (2.2c)

In the above relations ui is the displacement component and “,” in subscript

denotes the usual partial differentiation with respect to the Cartesian coordi-

nates xi, i = 1, 2, 3. Based on the considered strain energy density, second-,

third-, and forth-order stress tensors of any hyperelastic material are defined as

τij = ∂W

∂ϵij
, τijk = ∂W

∂ϵijk
, and τijkl = ∂W

∂ϵijkl
. Thus,

τij = Cijklϵkl + Fijklmnϵklmn, (2.3a)

τijk = Gijklmnϵlmn, (2.3b)

τijkl = Fpqijklϵpq + Iijklmntuϵmntu + B◦
ijkl. (2.3c)

In the last relation, B◦
ijkl = b0

3
δijkl, where b0 is Mindlin’s modulus of cohesion

and δijkl = δijδkl + δikδjl + δjkδil in which δij is the Kronecker delta. Utilizing

6

Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates: 
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling, 

Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.



the above relations together with the symmetry considerations of the strain and

stress tensors, it is inferred that the fourth, sixth, and eighth order tensors,

respectively, Cijkl, Fijklmn, Gijklmn, and Iijklmntu have the following symmetry

properties

Cijkl = Cklij = Cjikl = Cijlk, (2.4a)

Fijklmn = Fjiklmn = Fijlkmn = Fijmlkn = Fijkmln, (2.4b)

Gijklmn = Glmnijk = Gjiklmn = Gijkmln, (2.4c)

Iijklmnrs = Imnrsijkl = Ijiklmnrs = Ikjilmnrs = Iijlkmnrs

= Iijklrnms = Iijklnmrs = Iijklmrns. (2.4d)

Based on the above-mentioned symmetries and Eqs. (2.2), the strain energy

density function can be represented in the following form

W = 1
2

Cijklui,juk,l + Fijklmnui,jun,klm + 1
2

Gijklmnuk,ijun,lm

+ 1
2

Iijklmnpqul,ijkuq,mnp + B◦
ijklul,ijk. (2.5)

For isotropic materials, the components of the fourth order tensor, Cijkl

are written in terms of the usual Lamé constants λ and µ as C1111 = λ + 2µ,

C1122 = λ, and C1212 = µ. The not-mentioned nonzero components are obtained

via cyclic permutation of indices. The nonzero components of the higher order

elastic tensors, Fijklmn, Gijklmn, and Iijklmnpq for isotropic materials are related

to Mindlin’s additional constants ai’s, i = 1, . . . , 5, bi’s, i = 1, . . . , 7, and ci’s,

i = 1, 2, 3 as displayed in Tables 1 and 2. The other nonzero components which

are not displayed in the table can be obtained through the cyclic permutation

of indices of the presented components.
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Table 1: The relations between the higher order tensors, Fijklmn and Gijklmn and Mindlin’s

additional constants, ai’s and ci’s.

F111122 = F111133 = c1 + c2

3 F111221 = F111331 = c1 + c3

3

F112222 = F113333 = c1 F112233 = F113322 = c1

3

F121112 = F131113 = c3

2 F121332 = F122331 = c3

6

F121121 = F131131 = c2

3 + c3

6 F111111 = c1 + c2 + c3

F121233 = c2

6

G112233 = G113322 = a2

2 G111122 = G111133 = 2a1 + a2

2

G221111 = G331111 = a2 + 2a3 G112112 = G113113 = 2(a3 + a4)

G112211 = G113311 = a2 + 2a5

2 G122122 = G133133 = a1 + 2a4 + a5

2

G112332 = 2a3 G123123 = a4

G111111 = ā G122133 = a1

2

G123132 = a5

2

A material is referred to as “grade N” if the order of the highest position

gradient in its energy density function expression is equal to N . Mindlin [5]

showed that for a grade 3 material of volume V with boundary S, the stress-

equation of motion in rectangular coordinate system has the following form

τip,i − τijp,ij + τijkp,ijk + fp = ρüp, (2.6)

in which fp is the body force per unit volume and ρ is the mass density of the

material. By substituting from Eqs. (2.3) and (2.2) into the stress-equation of

8
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Table 2: The relations between the higher order tensor, Iijklmnpq and Mindlin’s additional

constants, bi’s.

I11111111 = b̄ I11111122 = I11111133 =
2b1 + 2b2 + b3

3

I11112222 = 2b1 I11111221 = I11111331 =
2b1 + b3 + 2b4 + 2b5

3

I11122221 = 2b4 I11112233 = I11113322 =
2b1

3

I11121112 = I11131113 = 2(b5 + b6) I11121121 = I11131131 =
b3 + 2b4 + 2b7

3

I11121222 = I11131333 =
b3 + 2b5

3
I11212331 = I11232333 =

b3 + 2b5

9

I11121233 = I11131232 =
b3

6
I11121332 = I11131223 =

2b5

3

I11122331 = I11133221 =
2b4

3
I11211121 = I11311131 =

2(2b2 + b3 + b5 + 3b6 + 2b7)
9

I11211222 =
2(2b2 + b3 + b4)

9
I11211233 = I11311322 =

4b2 + b3

18

I11211332 = I11311223 =
b3 + 2b4

9
I11221122 = I11331133 =

2(b1 + b2 + b4 + b5 + 3b6 + b7)
9

I11221133 =
2(b1 + b2)

9
I11221221 =

2(b1 + b3 + 2b7)
9

I11221331 = I11331221 =
2b1 + b3

9
I11222332 =

2(b1 + b4 + b5)
9

I11231123 = I11321132 =
2(b5 + 3b6)

9
I11231132 =

2(b4 + b7)
9

I11231231 = I11321231 =
b3 + 4b7

18
I12311231 =

b2 + 3b6 + b7

9

motion, the displacement-equation of motion is derived as below

ρüi = Cjikluk,lj + (Fpqjkli + Fliqjkp − Gklijqp) up,qjkl

+ Ijklimnrsus,mnrjkl + fi. (2.7)

For isotropic materials, the equation of motion is written in terms of Lamé

9
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constants and Mindlin’s additional parameters as below

(λ + 2µ)
(
1 − ℓ2

11∇2) (1 − ℓ2
12∇2)uj,ji

− µ
(
1 − ℓ2

21∇2) (1 − ℓ2
22∇2) eijkekmlul,mj + fi = ρüi, (2.8)

where eijk is the permutation tensor and

2(λ + 2µ) ℓ2
1p = ā − 2c̄ ± [(ā − 2c̄)2 − 4b̄(λ + 2µ)] 1

2 , (2.9a)

2µ ℓ2
2p = ā′ − c3 ± [(ā′ − c3)2 − 4b̄′µ] 1

2 , (2.9b)

for p = 1 and 2 pertinent to the positive and negative signs, respectively, and

ā = 2(a1 + a2 + a3 + a4 + a5), (2.10a)

b̄ = 2(b1 + b2 + b3 + b4 + b5 + b6 + b7), (2.10b)

c̄ = c1 + c2 + c3, (2.10c)

ā′ = 2(a3 + a4), (2.10d)

b̄′ = 2(b5 + b6). (2.10e)

ℓ11, ℓ12, ℓ21, and ℓ22 are the so-called “bulk characteristic lengths” which are

related to Lamé constants and the additional parameters as given by Eqs. (2.9).

Moreover, Mindlin’s second strain gradient theory gives rise to another physi-

cally important length scale defined as

ℓ2
10 = c̄

λ + 2µ
. (2.11)

This length scale appears in the surface energy [5, 7] and surface residual stress

formula and thus, it is referred to as surface characteristic length [7].
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Suppose that the outward unit normal at any point along S is defined by

n(x). Then the generalized surface tractions,
1
t,

2
t, and

3
t on S are derived as

1
ti = nj(τji − τkji,k + τklji,kl) + Lk(njτjki − njτmjki,m) + Lk(Lj(nmτmjki))

− Lt(ntnknmnjnp,pτmjki − Lt(nk)nmnjτmjki), (2.12a)

2
ti = njnk(τjki − τljki,l) + nlLk(njτjkli) + Ll(nknjτjkli), (2.12b)

3
ti = njnknlτjkli, (2.12c)

in which Li = ninp,p − ∇i + ninj∇j and ∇i = ∂/∂xi.

3. Second strain gradient theory in orthogonal curvilinear coordi-

nates

In this section, the stress-equation of equilibrium as well as the boundary

conditions of second strain gradient theory described in the previous section is

derived in the framework of orthogonal curvilinear coordinates. To this end,

consider a set of orthogonal curvilinear coordinates xi, i = 1, 2, 3 with base

vectors gi and metric tensor gij = gi.gj [10]. The base vectors of the curvi-

linear coordinate system are obtained via gi = ∂r/∂xi where r = xkik is the

position vector in Cartesian coordinate system; ik, k = 1, 2, 3 are the Cartesian

coordinate base vectors. So the square of the element of the arc length ds in

terms of the curvilinear coordinates is written as below

ds2 = dr.dr = gkmdxkdxm. (3.1)

In formulations within curvilinear coordinates, Einstein summation convention

is applied for repeated indices on diagonal positions. Representation of the
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position vector r = xkik in the above discussion is based on this convention.

The unit base vectors of the curvilinear coordinates are obtained as

ei = gi

|gi|
(no sum). (3.2)

Now, consider the displacement vector u and express it via the curvilinear co-

ordinates as

u = uigi = u(i)ei, (3.3)

where the physical components of u denoted by u(k) is obtained as

u(i) = |gi|ui, (no sum). (3.4)

According to Eringen [10], the passage from rectangular coordinates to curvi-

linear coordinates is made by replacing the usual partial differentiation by the

covariant partial derivative which is indicated by the symbol “;”. Hence, the

stress-equation of equilibrium in the curvilinear coordinates is displayed as fol-

lows

σi
p;i + fp = 0, (3.5)

in which

σi
p = τ i

p − τ ij
p;j + τ ijk

p;jk. (3.6)

In the above relation, τ i
p, τ ij

p, and τ ijk
p are the mixed components of the

stress tensors of second-, third-, and fourth-order, respectively. According to

Eringen [10], Ai...j
k...l is called a mixed tensor if it changes under coordinate
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transformation through the following rule

A′i...j
k...l(x′) = Am...n

p...q(x) ∂x′i

∂xm
...

∂x′j

∂xn

∂xp

∂x′k
...

∂xq

∂x′l
, (3.7)

where x′i denotes the component of the new coordinate system. Moreover,

covariant partial differentiation of the second-, third-, and fourth-order mixed

tensors is defined as below

σi
p;j = σi

p,j + σt
p

{
i

jt

}
− σi

t

{
t

jp

}
, (3.8a)

σij
p;k = σij

p,k + σtj
p

{
i

kt

}
+ σit

p

{
j

kt

}
− σij

t

{
t

kp

}
, (3.8b)

σijk
p;m = σijk

p,m + σtjk
p

{
i

km

}
+ σitk

p

{
j

mt

}
+ σijt

p

{
k

mt

}
− σijk

t

{
t

mp

}
, (3.8c)

where
{

i
jk

}
is the Christoffel symbol of the second kind defined as follows{

i

jk

}
= ∂2xn

∂xj∂xk

∂xi

∂xn
. (3.9)

It can easily be shown that the physical components of the second-, third-, and

fourth-order tensors are obtained as follows

τ (i)
(j) = |gi|

|gj |
τ i

j , (no sum) (3.10a)

τ (i)(j)
(k) =

|gi||gj |
|gk|

τ ij
k, (no sum) (3.10b)

τ (i)(j)(k)
(l) =

|gi||gj ||gk|
|gl|

τ ijk
l. (no sum) (3.10c)

According to the definition of covariant partial derivative (3.8), the stress

equation of equilibrium (3.5) becomes

σi
p,i + σt

p

{
i

ti

}
− σi

t

{
t

ip

}
+ fp = 0, (3.11)
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where

σi
p = τ i

p − τ ij
p,j − τ tj

p

{
i

tj

}
− τ it

p

{
j

tj

}
+ τ ij

t

{
t

pj

}
+
(

τ ijk
p,k + τ tjk

p

{
i

kt

}
+ τ itk

p

{
j

kt

}
+ τ ijt

p

{
k

tk

}
− τ ijk

t

{
t

kp

})
,j

+
{

i

tj

}(
τ tjk

p,k + τnjk
p

{
t

kn

}
+ τ tnk

p

{
j

nk

}
+ τ tjn

p

{
k

nk

}
− τ tjk

n

{
n

kp

})
+
{

j

tj

}(
τ itk

p,k + τntk
p

{
i

kn

}
+ τ ink

p

{
t

nk

}
+ τ itn

p

{
k

nk

}
− τ itk

n

{
n

kp

})
−
{

t

jp

}(
τ ijk

t,k + τnjk
t

{
i

kn

}
+ τ ink

t

{
j

nk

}
+ τ ijn

t

{
k

nk

}
− τ ijk

n

{
n

kt

})
.

(3.12)

Subsequently, the equilibrium equation can be rewritten in terms of the physical

components as below

( |gp|
|gi|

σ(i)
(p)

)
,i

+ σ(t)
(p)

|gp|
|gt|

{
i

ti

}
− σ(i)

(t)
|gt|
|gi|

{
t

ip

}
+ f(p)|gp| = 0, (3.13)

where

σi
p =

|gp|
|gi|

σ(i)
(p) =

|gp|
|gi|

τ (i)
(p) −

∑
j

(
|gp|

|gi||gj |τ
(i)(j)

(p)

)
,j

−
∑
j,t

(
|gp|

|gt||gj |τ
(t)(j)

(p)

{
i

tj

}
+

|gp|
|gi||gt|

τ (i)(t)
(p)

{
j

tj

}
− |gt|

|gi||gj |τ
(i)(j)

(t)

{
t

pj

}

−
(

|gp|
|gi||gj ||gt|

τ (i)(j)(t)
(p)

)
,jt

)

+
∑
j,t,k

((
|gp|

|gt||gj ||gk|τ
(t)(j)(k)

(p)

{
i

kt

})
,j

+
(

|gp|
|gi||gt||gk|τ

(i)(t)(k)
(p)

{
j

kt

})
,j

+
(

|gp|
|gi||gj ||gt|

τ (i)(j)(t)
(p)

{
k

tk

})
,j

−
(

|gt|
|gi||gj ||gk|τ

(i)(j)(k)
(t)

{
t

kp

})
,j

+
(

|gp|
|gt||gj ||gk|τ

(t)(j)(k)
(p)

)
,k

{
i

tj

}
+
(

|gp|
|gi||gt||gk|τ

(i)(t)(k)
(p)

)
,k

{
j

tj

}
−
(

|gt|
|gi||gj ||gk|τ

(i)(j)(k)
(t)

)
,k

{
t

jp

})
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+
∑

n,j,k,t

(
|gp|

|gn||gj ||gk|τ
(n)(j)(k)

(p)

{
t

kn

}{
i

tj

}

+
|gp|

|gt||gn||gk|τ
(t)(n)(k)

(p)

{
j

nk

}{
i

tj

}
+

|gp|
|gt||gj ||gn|τ

(t)(j)(n)
(p)

{
k

nk

}{
i

tj

}
− |gn|

|gt||gj ||gk|τ
(t)(j)(k)

(n)

{
n

kp

}{
i

tj

}
+

|gp|
|gn||gt||gk|τ

(n)(t)(k)
(p)

{
i

kn

}{
j

tj

}
+

|gp|
|gi||gn||gk|τ

(i)(n)(k)
(p)

{
t

nk

}{
j

tj

}
+

|gp|
|gi||gt||gn|τ

(i)(t)(n)
(p)

{
k

nk

}{
j

tj

}
− |gn|

|gi||gt||gk|τ
(i)(t)(k)

(n)

{
n

kp

}{
j

tj

}
− |gt|

|gn||gj ||gk|τ
(n)(j)(k)

(t)

{
i

kn

}{
t

jp

}
− |gt|

|gi||gn||gk|τ
(i)(n)(k)

(t)

{
j

nk

}{
t

jp

}
− |gt|

|gi||gj ||gn|τ
(i)(j)(n)

(t)

{
k

nk

}{
t

jp

}
+ |gn|

|gi||gj ||gk|τ
(i)(j)(k)

(n)

{
n

kt

}{
t

jp

})
. (3.14)

Moreover, the components of the second-, third-, and fourth-order strain

tensors in curvilinear coordinates are written as

ϵi
j = 1

2
(
ui

;j + gjmginum
;n
)

= 1
2

(
ui

,j + ut

{
i

tj

}
+ gjmgin

(
um

,n + ut

{
m

nt

}))
,

(3.15a)

ϵk
ij = uk

;ij =
(

uk
,i + ut

{
k

it

})
;j

=
(

uk
,i + ut

{
k

it

})
,j

+
(

ut
,i + ur

{
t

ir

}){
k

tj

}
−
(

uk
,t + ur

{
k

tr

}){
t

ij

}
(3.15b)

ϵl
ijk = ul

;ijk

=

((
ul

,i + ut

{
l

it

})
,j

+
(

ut
,i + ur

{
t

ir

}){
l

tj

}
−
(

ul
,t + ur

{
l

tr

}){
t

ij

})
;k

=

((
ul

,i + ut

{
l

it

})
,j

+
(

ut
,i + ur

{
t

ir

}){
l

tj

}
−
(

ul
,t + ur

{
l

tr

}){
t

ij

})
,k

+

((
ut

,i + ur

{
t

ir

})
,j

+
(

ur
,i + us

{
r

is

}){
t

rj

}
−
(

ut
,r + us

{
t

rs

}){
r

ij

}){
l

tk

}
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−
((

ul
,t + ur

{
l

tr

})
,j

+
(

ur
,t + us

{
r

ts

}){
l

rj

}
−
(

ul
,r + us

{
l

rs

}){
r

tj

}){
t

ik

}

−
((

ul
,i + ur

{
l

ir

})
,t

+
(

ur
,i + us

{
r

is

}){
l

rt

}
−
(

ul
,r + us

{
l

rs

}){
r

it

}){
t

kj

}
.

(3.15c)

Using Eqs. (3.4) and (3.10), the physical components of the second-, third-, and

fourth-order strain tensors are derived.

ϵ(i)
(j) = 1

2

(
|gi|
|gj |

(
u(i)

|gi|

)
,j

+
|gj |
|gi|

(
u(j)

|gj |

)
,i

+
∑

t

u(t)

|gt|

(
|gi|
|gj |

{
i

tj

}
+

|gj |
|gi|

{
j

it

}))
,

(3.16a)

ϵ(k)
(i)(j) = |gk|

|gi||gj |

((
u(k)

|gk|

)
,ij

+
∑

t

((
u(t)

|gt|

{
k

it

})
,j

+
(

u(t)

|gt|

)
,i

{
k

tj

}

−
(

u(k)

|gk|

)
,t

{
t

ij

})
+
∑
t, r

(
u(r)

|gr|

{
t

ir

}{
k

tj

}
− u(r)

|gr|

{
k

tr

}{
t

ij

}))
(3.16b)

ϵ(l)
(i)(j)(k) = |gl|

|gi||gj ||gk|

((
u(l)

|gl|

)
,ijk

+
∑

t

((
u(t)

|gt|

{
l

it

})
,jk

+

((
u(t)

|gt|

)
,i

{
l

tj

})
,k

−
((

u(l)

|gl|

)
,t

{
t

ij

})
,k

+
(

u(t)

|gt|

)
,ij

{
l

tk

}
−
(

u(l)

|gl|

)
,tj

{
t

ik

}
−
(

u(l)

|gl|

)
,it

{
t

kj

})

+
∑
r, t

((
u(r)

|gr|

{
t

ir

}{
l

tj

})
,k

−
(

u(r)

|gr|

{
l

tr

}{
t

ij

})
,k

+
(

u(r)

|gr|

{
t

ir

})
,j

{
l

tk

}

+
(

u(r)

|gr|

)
,i

{
t

rj

}{
l

tk

}
−
(

u(t)

|gt|

)
,r

{
r

ij

}{
l

tk

}
−
(

u(r)

|gr|

{
l

tr

})
,j

{
t

ik

}
−
(

u(r)

|gr|

)
,t

{
l

rj

}{
t

ik

}
+
(

u(l)

|gl|

)
,r

{
r

tj

}{
t

ik

}
−
(

u(r)

|gr|

{
l

ir

})
,t

{
t

kj

}

−
(

u(r)

|gr|

)
,i

{
l

rt

}{
t

kj

}
+
(

u(l)

|gl|

)
,r

{
r

it

}{
t

kj

})
+
∑
r, s, t

(
u(s)

|gs|

{
r

is

}{
t

rj

}{
l

tk

}

− u(s)

|gs|

{
t

rs

}{
r

ij

}{
l

tk

}
− u(s)

|gs|

{
r

ts

}{
l

rj

}{
t

ik

}
+ u(s)

|gs|

{
l

rs

}{
r

tj

}{
t

ik

}
− u(s)

|gs|

{
r

is

}{
l

rt

}{
t

kj

}
+ u(s)

|gs|

{
l

rs

}{
r

it

}{
t

kj

}))
. (3.16c)
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Next, the traction boundary conditions in curvilinear coordinates are de-

rived as below. To this end, define the reciprocal base vectors gk such that

gk.gl = δk
l where δk

l is the Kronecker delta. Moreover, gkm = gk.gm. Among

the tractions,
3
t has the simplest representations, and so we come up with its

curvilinear representation first.

3
t

i

= gisgjpgkqglrnpnqnrτ jkl
s, (3.17)

and in terms of the physical components

3
t

(i)

|gi|
=
∑
j,k,l

p,q,r,s

gisgjpgkqglr
n(p)

|gp|
n(q)

|gq|
n(r)

|gr|
τ (j)(k)(l)

(s)
|gs|

|gj ||gk||gl|
. (3.18)

If orthogonal curvilinear coordinates are used, then it simplifies to

3
t

(i)
= n(j)n(k)n(l)τ (j)(k)(l)

(i). (3.19)

The second traction boundary condition is similarly written as follows

2
t

m

gmi = npnqgpjgqk(τkj
i − τ ljk

i;l) + nsnrnxgslgrkgxjnp
;pτ jkl

i − nsgsl(nrgrjτ jkl
i);k

+ nqnsnpglqgsk(nxgxjτ jkl
i);p + np

;pnqnrnsgqlgrkgsjτ jkl
i − (nrnsgrkgjsτ jkl

i);l

+ npntgpl(nrnsgrkgsjτ jkl
i);t, (3.20)

and in terms of the physical components we have

∑
m

2
t

(m)

|gm|
gmi =

∑
p, q

j, k, l

n(p)

|gp|
n(q)

|gq|
gpjgqk(τ (k)(j)

(i) − τ (l)(j)(k)
(i);(l))

|gi|
|gk||gj |

+
∑

r, s, x
j, k, l, p

n(s)

|gs|
n(r)

|gr|
n(x)

|gx|
gslgrkgxjn(p)

;(p)τ
(j)(k)(l)

(i)
|gi|

|gj ||gk||gl|

−
∑
r, s

j, k, l

n(s)

|gs|
gsl(n(r)grjτ (j)(k)(l)

(i));(k)
|gi|

|gj ||gl||gr|
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+
∑

q, r, s, x
j, k, l, p

n(s)

|gs|
n(p)

|gp|
n(q)

|gq|
gskgql(n(x)gxjτ (j)(k)(l)

(i));(p)
|gi||gp|

|gx||gj ||gk||gl|

+
∑

q, r, s
j, k, l, p

n(p)
;(p)

n(s)

|gs|
n(r)

|gr|
n(q)

|gq|
gsjgrkgqlτ

(j)(k)(l)
(i)

|gi|
|gj ||gk||gl|

−
∑
r, s

j, k, l

(n(s)

|gs|
n(r)

|gr|
gsjgrkτ (j)(k)(l)

(i));(l)
|gi|

|gj ||gk|

+
∑

p, q, r, s
j, k, l, t

n(p)

|gp|
n(t)

|gt|
gpl(

n(r)

|gr|
n(s)

|gs|
grkgsjτ (j)(k)(l)

(i));(t)
|gi||gt|

|gj ||gk||gl|
.

(3.21)

In orthogonal curvilinear coordinates, it can further be simplified to

2
t

(i)
= n(j)n(k)(τ (k)(j)

(i) − τ (l)(j)(k)
(i);(l)) + n(l)n(k)n(j)n(p)

;(p)τ
(j)(k)(l)

(i)

− n(l)(n(j)τ (j)(k)(l)
(i));(k) + n(k)n(p)n(l)(n(j)τ (j)(k)(l)

(i));(p)

+ n(p)
;(p)n

(j)n(k)n(l)τ (j)(k)(l)
(i) − (n(j)n(k)τ (j)(k)(l)

(i));(l)

+ n(l)n(t)(n(k)n(j)τ (j)(k)(l)
(i));(t), (3.22)

where for an arbitrary tensor of any order

A(i)···(j)
(k);(m) =

|gi| · · · |gj |
|gk||gm|

Ai···j
k;m =

|gi| · · · |gj |
|gk||gm|

(
Ai···j

k,m + At···j
k

{
i

tm

}
+ · · · + Ai···t

k

{
j

tm

}
− Ai···j

t

{
t

km

})
=

|gi| · · · |gj |
|gk||gm|

((
|gk|

|gi| · · · |gj |
A(i)···(j)

(k)

)
,m

+ |gk|
|gt| · · · |gj |

A(t)···(j)
(k)

{
i

tm

}
+ · · · + |gk|

|gi| · · · |gt|
A(i)···(t)

(k)

{
j

tm

}
− |gt|

|gi| · · · |gj |
A(i)···(j)

(t)

{
t

km

})
. (3.23)

Likewise, it can be shown that the first traction boundary condition in curvilin-

ear coordinates which is more involved than the second and third traction types
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has the following representation

gmi

1
t

m

= ntgtj(τ j
i − τkj

i;k + τklj
i;kl) + np

;pntgtk(nsgsjτ jk
i − nsgsjτmjk

i;m)

+ nqgqknp(ntgtjτ jk
i − nsgsjτmjk

i;m);p − gmjnm
;k(τ jk

i − τpjk
i;p)

− gtjnt(τ jk
i;k − τmjp

i;mp) + ntgtkns
;snlgljnp

;pnngnmτmjk
i

− npgpkns
;s(nngnmτmjk

i);j + nrgrkns
;snlgljnp(ntgtmτmjk

i);p

− (ntgtjnp
;pnsgsmτmjk

i);k + (ntgtmτmjk
i);jk − (ntgtjnp(nrgrmτmjk

i);p);k

+ nrgrkns(nlgljnp
;pnxgxmτmjk

i);s − npgpkns(nqgqmτmjk
i);js

+ nqgqkns(ntgtjnp(nrgrmτmjk
i);p);s − ntns

;snp
;tgpknqgqmnrgrjτmjk

i

+ (np
;hgpkghtnqnrgqmgrjτmjk

i);t − ntnr(np
;tgpknqnxgqmgxjτmjk

i);r

+ ns
;snpnxgxmntgtjnq

;pgqkτmjk
i − (ntnpnqgqmnxgxjns

;pgskτmjk
i);t

+ nxgtxns(ntnpnqgmqnrgrjnz
;pgzkτmjk

i);s, (3.24)

which in terms of the physical components within the orthogonal curvilinear

coordinate system has the following form

1
t

(i)
= n(j)(τ (j)

(i) − τ (k)(j)
(i);(k) + τ (k)(l)(j)

(i);(k)(l)) + n(p)
;(p)n

(k)n(j)(τ (j)(k)
(i)

− τ (m)(j)(k)
(i);(m)) + n(k)n(p)(n(j)τ (j)(k)

(i) − n(j)τ (m)(j)(k)
(i);(m));(p)

− n(j)
;(k)(τ (j)(k)

(i) − τ (p)(j)(k)
(i);(p)) − n(j)(τ (j)(k)

(i);(k) − τ (m)(j)(p)
(i);(m)(p))

+ n(k)n(s)
;(s)n

(j)n(p)
;(p)n

(m)τ (m)(j)(k)
(i) − n(k)n(s)

;(s)(n(m)τ (m)(j)(k)
(i));(j)

+ n(k)n(s)
;(s)n

(j)n(p)(n(m)τ (m)(j)(k)
(i));(p) − (n(j)n(p)

;(p)n
(m)τ (m)(j)(k)

(i));(k)

+ (n(m)τ (m)(j)(k)
(i));(j)(k) − (n(j)n(p)(n(m)τ (m)(j)(k)

(i));(p));(k)

+ n(k)n(s)(n(j)n(p)
;(p)n

(m)τ (m)(j)(k)
(i));(s) − n(k)n(s)(n(m)τ (m)(j)(k)

(i));(j)(s)
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+ n(k)n(s)(n(j)n(p)(n(m)τ (m)(j)(k)
(i));(p));(s) − n(t)n(s)

;(s)n
(k)

;(t)n
(m)n(j)τ (m)(j)(k)

(i)

+ (n(k)
;(t)n

(m)n(j)τ (m)(j)(k)
(i));(t) − n(t)n(r)(n(k)

;(t)n
(m)n(j)τ (m)(j)(k)

(i));(r)

+ n(s)
;(s)n

(p)n(m)n(j)n(k)
;(p)τ

(m)(j)(k)
(i) − (n(t)n(p)n(m)n(j)n(k)

;(p)τ
(m)(j)(k)

(i));(t)

+ n(t)n(s)(n(t)n(p)n(m)n(j)n(k)
;(p)τ

(m)(j)(k)
(i));(s). (3.25)

Finally, by substituting the components of the elastic tensors in Eqs. (2.3) in

terms of Lamé constants and Mindlin’s additional parameters, the constitutive

relations for isotropic materials in the curvilinear coordinates are obtained as

follows

τ (p)
(q) = λϵ(i)

(i)δ
(p)

(q) + 2µϵ(p)
(q) + c1ϵ(j)

(i)(i)(j)δ
(p)

(q) + c2ϵ(i)
(p)(q)(i)

+ c3

2
(ϵ(q)

(i)(i)(p) + ϵ(p)
(i)(i)(q)), (3.26a)

τ (p)(q)
(r) = a1(ϵ(i)

(p)(i)δ
(q)

(r) + ϵ(i)
(q)(i)δ

(p)
(r)) + a2

2
(ϵ(p)

(i)(i)δ
(q)

(r)

+ 2ϵ(i)
(r)(i)δ

(q)
(p) + ϵ(q)

(i)(i)δ
(p)

(r)) + 2a3ϵ(r)
(i)(i)δ

(p)
(q)

+ 2a4ϵ(r)
(q)(p) + a5(ϵ(p)

(r)(q) + ϵ(q)
(r)(p)), (3.26b)

τ (p)(q)(r)
(s) = 2

3
b1ϵ(j)

(i)(i)(j)(δ(p)
(q)δ

(r)
(s) + δ(p)

(r)δ
(q)

(s) + δ(q)
(r)δ

(p)
(s))

+ 2
3

b2ϵ(i)
(j)(k)(i)(δ(j)

(p)δ
(k)

(q)δ
(r)

(s) + δ(j)
(p)δ

(k)
(r)δ

(q)
(s)

+ δ(j)
(q)δ

(k)
(r)δ

(p)
(s)) + 1

6
b3(ϵ(k)

(i)(i)(j)(δ(j)
(p)δ

(k)
(q)δ

(r)
(s)

+ δ(j)
(p)δ

(k)
(r)δ

(q)
(s) + δ(j)

(q)δ
(k)

(r)δ
(p)

(s)) + ϵ(j)
(i)(i)(k)(δ(j)

(p)δ
(k)

(q)δ
(r)

(s)

+ δ(j)
(p)δ

(k)
(r)δ

(q)
(s) + δ(j)

(q)δ
(k)

(r)δ
(p)

(s)) + 2ϵ(i)
(j)(s)(i)(δ(j)

(p)δ
(q)

(r)

+ δ(j)
(q)δ

(p)
(r) + δ(j)

(r)δ
(p)

(q))) + 2
3

b4ϵ(j)
(i)(i)(s)(δ(j)

(p)δ
(q)

(r)

+ δ(j)
(q)δ

(p)
(r) + δ(j)

(r)δ
(p)

(q)) + 2
3

b5ϵ(s)
(i)(i)(j)(δ(j)

(p)δ
(q)

(r) + δ(j)
(q)δ

(p)
(r)
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+ δ(j)
(r)δ

(p)
(q)) + 2b6ϵ(s)

(p)(q)(r) + 2
3

b7(ϵ(p)
(q)(r)(s) + ϵ(q)

(r)(s)(p)

+ ϵ(r)
(s)(p)(q)) + 1

3
c1ϵ(i)

(i)(δ(p)
(q)δ

(r)
(s) + δ(p)

(r)δ
(q)

(s) + δ(p)
(s)δ

(q)
(r))

+ 1
3

c2ϵ(i)
(j)(δ(i)

(p)δ
(j)

(q)δ
(r)

(s) + δ(i)
(p)δ

(j)
(r)δ

(q)
(s) + δ(i)

(q)δ
(j)

(r)δ
(p)

(s))

+ 1
3

c3ϵ(i)
(s)(δ(i)

(p)δ
(q)

(r) + δ(i)
(q)δ

(p)
(r) + δ(i)

(r)δ
(p)

(q))

+ 1
3

b0(δ(p)
(q)δ

(r)
(s) + δ(p)

(r)δ
(q)

(s) + δ(p)
(s)δ

(q)
(r)). (3.26c)

4. Second strain gradient theory in spherical coordinates

In the spherical coordinate system shown in Fig. 1, the independent curvilin-

ear variables x1 = r, x2 = θ, and x3 = ϕ are related to the Cartesian coordinates

as

x1 = r sin ϕ cos θ,

x2 = r sin ϕ sin θ,

x3 = r cos ϕ.

The corresponding base vectors are obtained via gi = ∂r/∂xi, i = 1, 2, 3.

Thus, letting gr ≡ g1, gθ ≡ g2, and gϕ ≡ g3 we obtain

gr = sin ϕ cos θi1 + sin ϕ sin θi2 + cos ϕi3,

gθ = −r sin ϕ sin θi1 + r sin ϕ cos θi2,

gϕ = r cos ϕ cos θi1 + r cos ϕ sin θi2 − r sin ϕi3. (4.1)

The unit base vectors are obtained by the normalization of the above base

vectors as

er = sin ϕ cos θi1 + sin ϕ sin θi2 + cos ϕi3,
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x3

x1

x2

P (r, θ, ϕ)

θ

ϕ

r

i1 i2i3

er

eϕ

eθ

Figure 1: Geometrical representation of the Cartesian and spherical coordinate systems and

the pertinent unit base vectors

eθ = − sin θi1 + cos θi2,

eϕ = cos ϕ cos θi1 + cos ϕ sin θi2 − sin ϕi3. (4.2)

Since the base vectors given in Eqs. (4.1) are orthogonal, then the nonzero

diagonal components of the pertinent metric tensor and their corresponding

reciprocal components are as below

grr = 1, gθθ = r2 sin2 ϕ, gϕϕ = r2, (4.3a)

grr = 1, gθθ = 1
r2 sin2 ϕ

, gϕϕ = 1
r2 . (4.3b)

Moreover, the nonzero components of the Christoffel symbol of the second kind

in spherical coordinates are as below{
r

θθ

}
= −r sin2 ϕ,

{
ϕ

θθ

}
= − sin ϕ cos ϕ,

{
r

ϕϕ

}
= −r,{

θ

rθ

}
=
{

θ

θr

}
=
{

ϕ

rϕ

}
=
{

ϕ

ϕr

}
= 1

r
,

{
θ

θϕ

}
=
{

θ

ϕθ

}
= cot ϕ. (4.4)

Remark 1. In section 2, the physical components of a quantity within a curvi-

linear coordinate system were indicated by embracing the pertinent superscripts

22

Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates: 
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling, 

Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.



and subscripts by parentheses. In what follows, for convenience we drop out

the parentheses and, subsequently, move the superscript to the subscript. For

example, the physical strain component ϵ(i)
(j) with respect to the spherical

coordinates will be presented as ϵrr, ϵrθ, ϵrϕ, ϵθθ, ϵϕϕ, and ϵϕθ.

Using Eqs. (3.16), the strain field and its first and second gradients in the

spherical coordinates, after some manipulations, are derived in terms of the

components of the displacement field (ur, uθ, uϕ) as below

ϵrr = ur,r, ϵrθ = 1
2r

(ruθ,r + ur,θ csc ϕ − uθ) , ϵrϕ = 1
2r

(ur,ϕ + ruϕ,r − uϕ) ,

ϵθθ = 1
r

(ur + uθ,θ csc ϕ + uϕ cot ϕ) , ϵθϕ = 1
2r

(uθ,ϕ + uϕ,θ csc ϕ − uθ cot ϕ) ,

ϵϕϕ = 1
r

(ur + uϕ,ϕ) , (4.5a)

ϵrrr = ur,rr, ϵrrθ = uθ,rr, ϵrrϕ = uϕ,rr,

ϵrθr = 1
r2 (uθ − ur,θ csc ϕ) + 1

r
(ur,rθ csc ϕ − uθ,r) ,

ϵrθθ = 1
r

(ur,r + uθ,rθ csc ϕ + uϕ,r cot ϕ) − 1
r2 (ur + uθ,θ csc ϕ + uϕ cot ϕ) ,

ϵrθϕ = 1
r

(uϕ,rθ csc ϕ − uθ,r cot ϕ) + 1
r2 (uθ cot ϕ − uϕ,θ csc ϕ) ,

ϵrϕr = 1
r

(ur,rϕ − uϕ,r) + 1
r2 (uϕ − ur,ϕ) , ϵrϕθ = 1

r
uθ,rϕ − 1

r2 uθ,ϕ,

ϵrϕϕ = 1
r

(uϕ,rϕ + ur,r) − 1
r2 (ur + uϕ,ϕ) ,

ϵθθr = 1
r2

(
ur,θθ csc2 ϕ − 2uθ,θ csc ϕ + ur,ϕ cot ϕ − 2uϕ cot ϕ − ur

)
+ 1

r
ur,r,

ϵθθθ = 1
r2

(
uθ,θθ csc2 ϕ + 2uϕ,θ cot ϕ csc ϕ + 2ur,θ csc ϕ + uθ,ϕ cot ϕ − uθ csc2 ϕ

)
+ 1

r
uθ,r,

ϵθθϕ = 1
r2

(
uϕ,θθ csc2 ϕ − 2uθ,θ cot csc ϕ + uϕ,ϕ cot ϕ − uϕ cot2 ϕ

)
+ 1

r
uϕ,r,

ϵθϕr = 1
r2 (ur,θϕ csc ϕ − uϕ,θ csc ϕ − ur,θ csc ϕ cot ϕ − uθ,ϕ + uθ cot ϕ) ,

ϵθϕθ = 1
r2

(
ur,ϕ + uθ,θϕ csc ϕ − uθ,θ cot ϕ csc ϕ + uϕ,ϕ cot ϕ − uϕ csc2 ϕ

)
,
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ϵθϕϕ = 1
r2

(
uϕ,θϕ csc ϕ − uϕ,θ csc ϕ cot ϕ + ur,θ csc ϕ − uθ,ϕ cot ϕ + uθ cot2 ϕ

)
,

ϵϕϕr = 1
r

ur,r + 1
r2 (ur,ϕϕ − 2uϕ,ϕ − ur) , ϵϕϕθ = 1

r
uθ,r + 1

r2 uθ,ϕϕ,

ϵϕϕϕ = 1
r

uϕ,r + 1
r2 (uϕ,ϕϕ + 2ur,ϕ − uϕ) , (4.5b)

ϵrrrr = ur,rrr, ϵrrrθ = uθ,rrr, ϵrrrϕ = uϕ,rrr,

ϵrrθr = 2
r3 (ur,θ csc ϕ − uθ) + 2

r2 (uθ,r − ur,rθ csc ϕ) + 1
r

(ur,rrθ csc ϕ − uθ,rr) ,

ϵrrθθ = 2
r3 (ur + uθ,θ csc ϕ + uϕ cot ϕ) − 2

r2 (ur,r + uθ,rθ csc ϕ + uϕ,r cot ϕ)

+ 1
r

(ur,rrθ + uθ,rrθ csc ϕ + uϕ,rr cot ϕ)

ϵrrθϕ = 2
r3 (uϕ,θ csc ϕ − uθ cot ϕ) − 2

r2 (uϕ,rθ csc ϕ − uθ,r cot ϕ) − 1
r

(
uθ,rr cot ϕ

− uϕ,rrθ csc ϕ
)

,

ϵrrϕr = 2
r3 (ur,ϕ − uϕ) + 2

r2 (uϕ,r − ur,rϕ) + 1
r

(ur,rrϕ − uϕ,rr) ,

ϵrrϕθ = 2
r3 uθ,ϕ − 2

r2 uθ,rϕ + 1
r

uθ,rrϕ,

ϵrrϕϕ = 2
r3 (ur + uϕ,ϕ) − 2

r2 (ur,r + uϕ,rϕ) + 1
r

(ur,rr + uϕ,rrϕ) ,

ϵrθθr = 2
r3

(
ur + 2uϕ cot ϕ − ur,ϕ cot ϕ + 2uθ,θ csc ϕ − ur,θθ csc2 ϕ

)
+ 1

r2

(
ur,rθθ csc2 ϕ − 2ur,r − 2uθ,rθ csc ϕ − 2uϕ,r cot ϕ + ur,rϕ cot ϕ

)
+ 1

r
ur,rr,

ϵrθθθ = 2
r3

(
uθ csc2 ϕ − uθ,ϕ cot ϕ − 2ur,θ csc ϕ − 2uϕ,θ csc ϕ cot ϕ − uθ,θθ csc2 ϕ

)
+ 1

r2

(
uθ,rθθ csc2 ϕ − 2uθ,r + 2ur,rθ csc ϕ + 2uϕ,rθ cot ϕ csc ϕ + uθ,rϕ cot ϕ − uθ,r cot2 ϕ

)
+ 1

r
uθ,rr,

ϵrθθϕ = 2
r3

(
uϕ cot2 ϕ − uϕ,ϕ cot ϕ + 2uθ,θ cot ϕ csc ϕ − uϕ,θθ csc2 ϕ

)
+ 1

r2

(
uϕ,rθθ csc2 ϕ − 2uθ,rθ cot ϕ csc ϕ + uϕ,rϕ cot ϕ − uϕ,r cot2 ϕ − uϕ,r

)
+ 1

r
uϕ,rr,

ϵrθϕr = 2
r3 (−ur,θϕ csc ϕ + uϕ,θ csc ϕ + ur,θ cot ϕ csc ϕ + uθ,ϕ − uθ cot ϕ)
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+ 1
r2 (uθ,r cot ϕ − uθ,rϕ − ur,rθ cot ϕ csc ϕ − uϕ,rθ csc ϕ + ur,rθϕ csc ϕ) ,

ϵrθϕθ = 2
r3

(
uϕ csc2 ϕ − ur,ϕ − uϕ,ϕ cot ϕ + uθ,θ cot ϕ csc ϕ − uθ,θϕ csc ϕ

)
+ 1

r2

(
−uϕ,r csc2 ϕ + ur,rϕ + uϕ,rϕ cot ϕ − uθ,rθ cot ϕ csc ϕ + uθ,rθϕ csc ϕ

)
,

ϵrθϕϕ = 2
r3

(
−uθ cot2 ϕ + uθ,ϕ cot ϕ − ur,θ csc ϕ + uϕ,θ cot ϕ csc ϕ − uϕ,θϕ csc ϕ

)
+ 1

r2

(
uθ,r cot2 ϕ − uθ,rϕ cot ϕ + ur,rθ csc ϕ − uϕ,rθ cot ϕ csc ϕ + uϕ,rθϕ csc ϕ

)
,

ϵrϕϕr = 2
r3 (ur + 2uϕ,ϕ − ur,ϕϕ) − 1

r2 (2ur,r + 2uϕ,rϕ − ur,rϕϕ) + 1
r

ur,rr,

ϵrϕϕθ = − 2
r3 uθ,ϕϕ + 1

r2 (uθ,rϕϕ − uθ,r) + 1
r

uθ,rr,

ϵrϕϕϕ = 2
r3 (uϕ − 2ur,ϕ − uϕ,ϕϕ) − 2

r2 (2uϕ,r − 2ur,rϕ − uϕ,rϕϕ) + 1
r

uϕ,rr,

ϵθθθr = 1
r3

(
3uθ csc2 ϕ − 3uθ,ϕ cot ϕ − 5ur,θ csc ϕ − 2ur,θ cot2 ϕ csc ϕ − 6uϕ,θ cot ϕ csc ϕ

+ 3ur,θϕ cot ϕ csc ϕ − 3uθ,θθ csc2 ϕ + ur,θθθ csc3 ϕ
)

+ 3
r2 (ur,rθ csc ϕ − uθ,r) ,

ϵθθθθ = 1
r3

(
− 3ur + 3

4
(−5 cos ϕ + cos 3ϕ) csc3 ϕuϕ + 3ur,ϕ cot ϕ + 3uϕ,ϕ cot2 ϕ

− 5uθ,θ csc3 ϕ + 3uθ,θϕ cot ϕ csc ϕ + 3ur,θθ csc2 ϕ + 3uϕ,θθ cot ϕ csc2 ϕ + uθ,θθθ csc3 ϕ
)

+ 3
r2 (ur,r + uϕ,r cot ϕ + uθ,rθ csc ϕ) ,

ϵθθθϕ = 1
r3

(
3uθ cot ϕ csc2 ϕ − 3uθ,ϕ cot2 ϕ − 2uϕ,θ csc ϕ − 5uϕ,θ cot2 ϕ csc ϕ

+ 3uϕ,θϕ cot ϕ csc ϕ − 3uθ,θθ cot ϕ csc2 ϕ + uϕ,θθθ csc3 ϕ
)

+ 3
r2 (uϕ,rθ csc ϕ − uθ,r cot ϕ) ,

ϵθθϕr = 1
r3

( (
2 + 3 cot2 ϕ

)
uϕ −

(
2 + cot2 ϕ

)
ur,ϕ − 3uϕ,ϕ cot ϕ + ur,ϕϕ cot ϕ

+ 4uθ,θ cot ϕ csc ϕ − 2uθ,θϕ csc ϕ − 2ur,θθ cot ϕ csc2 ϕ − uϕ,θθ csc2 ϕ + ur,θθϕ csc2 ϕ
)

+ 1
r2 (ur,rϕ − uϕ,r) ,

ϵθθϕθ = 1
r3

(
2 cot ϕ csc2 ϕuθ − 2uθ,ϕ csc2 ϕ + uθ,ϕϕ cot ϕ − 2ur,θ cot ϕ csc ϕ

− 2uϕ,θ csc ϕ cot2 ϕ − 2uϕ,θ csc3 ϕ + 2 csc ϕur,θϕ + 2 cot ϕ csc ϕuϕ,θϕ
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− 2 cot ϕ csc2 ϕuθ,θθ + csc2 ϕuθ,θθϕ

)
+ 1

r2 uθ,rϕ,

ϵθθϕϕ = 1
r3

(
− ur + 2uϕ cot3 ϕ + ur,ϕ cot ϕ − uϕ,ϕ − 2uϕ,ϕ cot2 ϕ + uϕ,ϕϕ cot ϕ

+ 4uθ,θ cot2 ϕ csc ϕ − 2uθ,θϕ cot ϕ csc ϕ + ur,θθ csc2 ϕ

− 2uϕ,θθ cot ϕ csc2 ϕ + uϕ,θθϕ csc2 ϕ
)

+ 1
r2 (ur,r + uϕ,rϕ) ,

ϵθϕϕr = 1
r3

(
− 2 cot2 ϕuθ + 2uθ,ϕ cot ϕ − uθ,ϕϕ − 2ur,θ csc ϕ + ur,θ csc ϕ cot2 ϕ

+ ur,θ csc3 ϕ + 2uϕ,θ cot ϕ csc ϕ − 2ur,θϕ cot ϕ csc ϕ − 2uϕ,θϕ csc ϕ

+ ur,θϕϕ csc ϕ + 1
r2 (ur,rθ csc ϕ − uθ,r) ,

ϵθϕϕθ = 1
r3

(
− ur + cot ϕ(2 csc2 ϕ − 1)uϕ − 2uϕ,ϕ csc2 ϕ + ur,ϕϕ + uϕ,ϕϕ cot ϕ

+ 2uθ,θ cot2 ϕ csc ϕ − 2 cot ϕ csc ϕuθ,θϕ + uθ,θϕϕ csc ϕ
)

+ 1
r2

(
ur,r + uϕ,r cot ϕ

+ uθ,rθ csc ϕ
)
,

ϵθϕϕϕ = 1
r3

(
− 2 cot3 ϕuθ + 2uθ,ϕ cot2 ϕ − uθ,ϕϕ cot ϕ − 2ur,θ cot ϕ csc ϕ − 2uϕ,θ csc ϕ

+ uϕ,θ csc ϕ cot2 ϕ + uϕ,θ csc3 ϕ + 2ur,θϕ csc ϕ − 2uϕ,θϕ cot ϕ csc ϕ

+ uϕ,θϕϕ csc ϕ
)

+ 1
r2 (uϕ,rθ csc ϕ − uθ,r cot ϕ) ,

ϵϕϕϕr = 1
r3 (3uϕ − 5ur,ϕ − 3uϕ,ϕϕ + ur,ϕϕϕ) + 3

r2 (ur,rϕ − uϕ,r) ,

ϵϕϕϕθ = 1
r3 (uθ,ϕϕϕ − 2uθ,ϕ) + 3

r2 uθ,rϕ,

ϵϕϕϕϕ = 1
r3 (−3ur − 5uϕ,ϕ + 3ur,ϕϕ + uϕ,ϕϕϕ) + 3

r2 (ur,r + uϕ,rϕ) . (4.5c)

Finally, the set of equilibrium equations in spherical coordinate system is derived

as follows

τ̄rr,r + 1
r sin ϕ

τ̄θr,θ + 1
r

τ̄ϕr,ϕ + 1
r

(2τ̄rr + τ̄ϕr cot ϕ − τ̄θθ − τ̄ϕϕ) + fr = 0, (4.6a)
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τ̄rθ,r + 1
r sin ϕ

τ̄θθ,θ + 1
r

τ̄ϕθ,ϕ + 1
r

(2τ̄rθ + τ̄θr + (τ̄θϕ + τ̄ϕθ) cot ϕ) + fθ = 0,

(4.6b)

τ̄rϕ,r + 1
r sin ϕ

τ̄θϕ,θ + 1
r

τ̄ϕϕ,ϕ + 1
r

(2τ̄rϕ + τ̄ϕr + (τ̄ϕϕ − τ̄θθ) cot ϕ) + fϕ = 0,

(4.6c)

where the expressions for τ̄ij , i, j = r, θ, ϕ are given in Appendix A.

5. Application to problems involving Spherical symmetry

As a three-dimensional useful application, consider a spherical surface of

radius a bounding an isotropic body. In the absence of any type of external

loading and under the assumption of central symmetry, it is expected that due

to the effect of surface, the components of the displacement field along θ and ϕ

be zero, uθ = uϕ = 0 and hence

u = (ur(r), 0, 0). (5.1)

Based on the formulations given in Section 4 and using the relations (4.6), the

only nontrivial equilibrium equation governing the body has the following form

r2ℓ2
11ℓ2

12u′′′′′′
r + 6rℓ2

11ℓ2
12u′′′′′

r − (r2(ℓ2
11 + ℓ2

12) + 6ℓ2
11ℓ2

12)u′′′′
r − 4r(ℓ2

11 + ℓ2
12)u′′′

r

+ (4(ℓ2
11 + ℓ2

12) + r2)u′′
r + 2ru′

r − 2ur = 0. (5.2)

By defining the new parameters p1 and p2 as

p1 = ℓ2
11 + ℓ2

12
ℓ2

11ℓ2
12

, p2 = 1
ℓ2

11ℓ2
12

, (5.3)

the equilibrium equation may be rewritten as

r6u′′′′′′
r + 6r5u′′′′′

r − (6r4 + p1r6)u′′′′
r − 4r5p1u′′′

r + (4p1r4 + p2r6)u′′
r + 2p2r5u′

r
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− 2p2r4ur = 0. (5.4)

In the above equation, r = 0 is a regular singular point. Its solution may be

obtained by employing the Frobenius series

ur =
∞∑

n=0
anrn+s. (5.5)

Its substitution into Eq. (5.4) yields

∞∑
n=0

(n + s)(n + s − 1)(n + s − 2)(n + s − 3)(n + s − 5)(n + s + 2)anrn+s

− p1

∞∑
n=2

(n + s − 2)(n + s − 3)(n + s − 5)(n + s)an−2rn+s

+ p2

∞∑
n=4

(n + s − 5)(n + s − 2)an−4rn+s = 0. (5.6)

The indicial polynomial, P (s) corresponding to n = 0 becomes

P (s) = s(s − 1)(s − 2)(s − 3)(s − 5)(s + 2). (5.7)

By the assumption a0 ̸= 0, s is required to be a root of the indicial polynomial.

It is observed that P (s) has six integer roots as s = −2, 0, 1, 2, 3, and 5. In

Eq. (5.6), by equating the coefficients of rn+s for n ≥ 1, the following relations

are resulted

n = 1 : a1(s + 1)s(s − 1)(s − 2)(s − 4)(s + 3) = 0, (5.8a)

n = 2 : s(s − 1)(s − 3)(s + 2) [(s + 1)(s + 4)a2 − p1a0] = 0, (5.8b)

n = 3 : s(s + 1)(s − 2)(s + 3) [(s + 2)(s + 5)a3 − p1a1] = 0, (5.8c)

n ≥ 4 : anP (n + s) − p1an−2(n + s − 2)(n + s − 3)(n + s − 5)(n + s)

+ p2an−4(n + s − 5)(n + s − 2) = 0. (5.8d)
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A close scrutiny of the above relations reveals that by considering the roots, s =

2, −2, 0 the complete list of the independent solutions will be obtained. First

of all by considering s = 2 relations (5.8a)-(5.8d) result in a1 ̸= 0, a2 = p1a0

3 ∗ 6
,

a3 ̸= 0, and

a2n = −2a0

p2(n + 1)(n + 2)(2n + 1)!

n + 2
2∑

k=1

(−1)kpn+2−2k
1 pk

2

(
n + 1 − k

k − 1

)
, n ≥ 2

(5.9a)

a2n+1 = −1680a3

p2

n + 2
(2n + 5)!

n + 1
2∑

k=1

(−1)kpn+1−2k
1 pk

2

(
n − k

k − 1

)

+ 60a1(n + 2)
(2n + 5)!

n/2∑
k=1

(−1)kpn−2k
1 pk

2

(
n − 1 − k

k − 1

)
, n ≥ 2. (5.9b)

Subsequently, employing the relation (5.5), the corresponding solution reduces

to

ur = −30(ℓ2
11 + ℓ2

12)a1

(
ur1

3
− ℓ6

11
ℓ4

11 − ℓ4
12

ur2 + ℓ6
12

ℓ4
11 − ℓ4

12
ur3

)
+ 840a3

p2

(
ur1

3
− ℓ4

11
ℓ2

11 − ℓ2
12

ur2 + ℓ4
12

ℓ2
11 − ℓ2

12
ur3

)
− 2a0

p2

(
4ur4 + 4ℓ11

ℓ2
11 − ℓ2

12
ur5 − 4ℓ11

ℓ2
11 − ℓ2

12
ur2 − 4ℓ12

ℓ2
11 − ℓ2

12
ur6 + 4ℓ12

ℓ2
11 − ℓ2

12
ur3

)
,

(5.10)

where a0, a1, and a3 are arbitrary and

ur1 = r, (5.11a)

ur2 =
cosh r

ℓ11
r

−
ℓ11 sinh r

ℓ11
r2 , (5.11b)

ur3 =
cosh r

ℓ12
r

−
ℓ12 sinh r

ℓ12
r2 , (5.11c)
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ur4 = 1
r2 , (5.11d)

ur5 = (ℓ11 + r)e
−

r

ℓ11

r2 , (5.11e)

ur6 = (ℓ12 + r)e
−

r

ℓ12

r2 . (5.11f)

Likewise, for s = −2 it can be shown that

ur = a0

(
−3ur4 + 4ℓ11

ℓ2
11 − ℓ2

12
ur5 − 4ℓ11

ℓ2
11 − ℓ2

12
ur2 − 4ℓ12

ℓ2
11 − ℓ2

12
ur6 + 4ℓ12

ℓ2
11 − ℓ2

12
ur3

)
+ 2a2ℓ11ℓ12

ℓ2
11 − ℓ2

12
(ℓ12ur5 − ℓ12ur2 − ℓ11ur6 + ℓ11ur3) − 6a3

2p2(ℓ2
11 − ℓ2

12)
(ur2 − ur3) ,

(5.12)

for arbitrary a0, a2, and a3. Finally, if one assumes s = 0, the series solution

will collapse to the following form

ur = a0

(
2(ℓ2

11 + ℓ2
12)ur4 − 2

ℓ2
11 − ℓ2

12

(
ℓ3

11ur5 − ℓ3
11ur2 − ℓ3

12ur6 + ℓ3
12ur3

))
+ a2

(
4ur4 + 4ℓ11

ℓ2
11 − ℓ2

12
ur5 − 4ℓ11

ℓ2
11 − ℓ2

12
ur2 − 4ℓ12

ℓ2
11 − ℓ2

12
ur6 + 4ℓ12

ℓ2
11 − ℓ2

12
ur3

)
+ 3a1

ℓ2
11 − ℓ2

12

(
ℓ4

11ur2 − ℓ4
12ur3

)
+ 60a3

2p2(ℓ2
11 − ℓ2

12)
(
ℓ2

11ur2 − ℓ2
12ur3

)
, (5.13)

with arbitrary a0, a1, a2 and a3. In view of Eqs. (5.10), (5.12), and (5.13) it

is concluded that the solution to Eq. (5.4) associated with spherical geometry

problem having central symmetry can be represented as

ur = L{ur1 , ur2 , ur3 , ur4 , ur5 , ur6}. (5.14)

Next, the traction boundary conditions associated with the proposed spheri-

cal problem are extracted from the general treatment given in the earlier sections

in curvilinear coordinates. Recall that the spherical body is traction free and

30

Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates: 
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling, 

Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.



deforms just under the surface effect. The nontrivial components of the trac-

tions in second strain gradient theory for this special problem which are derived

using the relations (4.5), (3.26), (3.25), (3.22), and (3.19) must be equalized to

zero on the spherical free surface (r = a) as below

1
tr = −2b0

r2 +
(

2λ

r
− 4(a4 + a5 + ā − 2c2 − 2c3)

r3 − 8(b̄ − 2b1 + 4b6 + 4b7)
r5

)
ur

+
(

λ + 2µ + 4(a4 + a5 + ā + c1) − 10c̄

r2 + 8(b̄ − 2b1 + 4b6 + 4b7)
r4

)
ur,r

+
(

4c̄ − 2ā + 2c1

r
+ 8(b2 + b3 + b4 + b5)

r3

)
ur,rr +

(
2c̄ − ā − 10b̄

r2

)
ur,rrr

+ 4b̄ur,rrrr

r
+ b̄ur,rrrrr = 0, on r = a, (5.15a)

2
tr = 2b0

r
+
(

4(a1 + a2 + a3) + 4c1 + 2c̄

r2 + 8(b̄ − 2b1 + 4b6 + 4b7)
r4

)
ur

+
(

4(a1 + a2 + a3)
r

− 8(b̄ − 2b1 + 4b6 + 4b7)
r3

)
ur,r

+
(

ā − c̄ + 12b̄ − 8(b2 + b3 + b4 + b5)
r2

)
ur,rr

− 2b̄

r
ur,rrr − b̄ur,rrrr = 0, on r = a, (5.15b)

3
tr = b0 +

(
2c1

r
+ 8(b2 + b3 + b4 + b5)

r3

)
ur +

(
c̄ − 8(b2 + b3 + b4 + b5)

r2

)
ur,r

+
(

2b̄ + 4b1 − 4b6 − 4b7

r

)
ur,rr + b̄ur,rrr = 0 on r = a. (5.15c)

For illustration, the formulations for spherical geometries are specialized to an

isotropic solid nanosphere in Section 5.1 and isotropic infinite body with spher-

ical nanocavity in Section 5.2. The corresponding numerical examples will be

given in Section 7.

31

Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates: 
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling, 

Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.



5.1. Isotropic solid nanosphere

For an elastic isotropic spherical solid considered under the surface effect,

the solution must be bounded at its center, Thus, from the solutions presented

by Eqs. (5.11), the solution of the problem od interest may be written as

ur = A1ur1 + A2ur2 + A3ur3

= A1r + A2

cosh r

ℓ11
r

−
ℓ11 sinh r

ℓ11
r2

+ A3

cosh r

ℓ12
r

−
ℓ12 sinh r

ℓ12
r2

 ,

(5.16)

The unknown coefficients A1 through A3 are determined using the boundary

conditions given by Eqs. (5.15).

5.2. Infinite isotropic domain with spherical nanocavity

For an infinite isotropic domain containing a spherical void under the surface

effect, ur1 , ur2 , and ur3 given in Eqs. (5.11) are not suitable since they do not

diminish as r → ∞, and thus the displacement field has the following form

ur = A1ur4 + A2ur5 + A3ur6

= A1

r2 + A2
(ℓ11 + r) e

−
r

ℓ11

r2 + A3
(ℓ12 + r) e

−
r

ℓ12

r2 . (5.17)

Again, in a similar manner to the previous case, the unknown coefficients A1

through A3 are determined using the boundary conditions given by Eqs. (5.15).

6. Comparison to Gurtin-Murdoch surface elasticity solution

One can obtain nontrivial solutions for two problems of isotropic spherical

solid and infinite isotropic domain containing a spherical void under the surface
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effect in the framework of Gurtin-Murdoch surface elasticity [9], as well.

According to Gurtin and Murdoch [9], in the absence of body forces, the

system of governing equilibrium equations in the bulk volume V of the solid can

be simplified as below 
τpq,p = 0,

τpq = λϵiiδpq + 2µϵpq,

(6.1)

where ϵij follows definition given by Eq. (2.2a). In Gurtin-Murdoch theory,

these equations are coupled with the following governing equilibrium equations

on the surface of the volume, ∂V

IjM SiM,j = npτpi,

EMN = 1
2

(PMi ui,j IjN + PMj ui,j IiN ) ,

SiM = σ0IiM + λ0ENN IiM + 2µ0IiN ENM + σ0ui,j IjM .

(6.2)

In the above equations, upper-case indices belong to the two-dimensional sub-

space of the three-dimensional Euclidean space. Consider a three-dimensional

vector space V and its two-dimensional subspace Tx through which the struc-

ture of a surface s at each x ∈ s is defined. According to the definition given

by Gurtin and Murdoch [9], IiM is an inclusion map that linearly transforms

any vector in the two-dimensional subspace (Tx) to its corresponding vector

in the three-dimensional space (V), while PMi is the perpendicular projection

from V onto Tx. In the above relations, EMN is the tangential surface strain

tensor, SiM is the first Piola-Kirchhoff surface stress tensor, ni is the outward

unit normal vector of the surface s, and σ0, λ0, and µ0 are, respectively, residual
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surface tension and surface Lamé moduli for the isotropic surface s. It may be

noteworthy to mention that IjM SiM,j in the first of Eqs. (6.2) represents the

surface divergence of the surface stress tensor SiM as defined by Gurtin and

Murdoch [9, 19].

For the problems involving spherical symmetry, as discussed in Section 5, the

displacement field has the form (5.1). The displacement form of the governing

equilibrium equation for the bulk is derived using Eq. (6.1)

r2ur,rr + 2rur,r − 2ur = 0, (6.3)

with the general solution

ur = A r + B

r2 . (6.4)

The unknown constants A and B will be obtained using the surface boundary

conditions given by Eqs. (6.2).

6.1. Isotropic solid nanosphere

In this case, since r = 0 is a field point it requires that B = 0, and the

unknown A is determined via the first relation of Eqs. (6.2) on r = a. Thus,

the displacement field will take the following form

ur = −2σ0 r

2(2λ0 + 2µ0 + σ0) + (3λ + 2µ)a
. (6.5)

It is interesting to note that comparison of the above solution with that of

Mindlin’s second strain gradient theory given by (5.16) reveals that the two

solutions share the linear term, but Mindlin’s theory gives rise to two additional
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terms. The effect of these additional terms will be numerically demonstrated in

Section 7.

6.2. Infinite isotropic domain with spherical nanocavity

Since the displacement field induced by the surface due to the spherical

nanocavity should diminish at infinity, then A = 0. By employing the rela-

tions (6.2) on r = a, the displacement field will have the following form

ur = −σ0 a3

(2µa + 2λ0 + 2µ0 + σ0) r2 . (6.6)

As it is seen, in this case surface elasticity theory recovers only the first term

of the solution obtained via Mindlin’s second strain gradient theory. In fact,

the Mindlin’s solution (5.17) contains two additional terms which are absent

in (6.6).

7. Numerical results

For the illustration of the current theoretical developments, surface relax-

ation of spherical domains are considered. More specifically, the displacement

field of a nano-spherical medium as well as the displacement field within an

infinite domain containing a spherical nanocavity is examined. To the end of

comparison, the numerical results are given in the framework of both Mindlin’s

second strain gradient elasticity and Gurtin-Murdoch surface elasticity. The re-

sults are presented for some face-centered cubic crystals (fcc) as Ag, Au, and Pt.

First, a brief explanation for the determination of the numerical values of the
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material parameters in second strain gradient elasticity and Gurtin-Murdoch

surface elasticity is given in Section 7.1.

7.1. Evaluation of Mindlin’s material parameters via lattice dynamics and ab-

initio calculations

In order to present the numeric solution of problems involving spherical

symmetry through second strain gradient elasticity, one should first determine

the pertinent numerical values of the components of the fourth, sixth, and eighth

order elastic moduli tensors of the crystals of interest. To this end, a short

introduction to the atomistic description of materials via lattice dynamics is

given here.

Consider the bulk of a centrosymmetric crystal with perfect lattice of infinite

extension in space and denote the position of an arbitrary primitive unit cell of

volume v within by the vector x. Suppose that the distance between the αth

primitive unit cell from the reference unit cell at x is indicated as Rα. Moreover,

let Kα
ij present the atomic force constant between the unit cells with location

vectors x and x + Rα.

For any perturbation of the atomistic configuration from the equilibrium,

the potential energy density function pertinent to the one-atom unit cell at x

to within a harmonic approximation may be expressed as

W = − 1
4v

∑
α

Kα
ij (ui(x + Rα) − ui(x)) (uj(x + Rα) − uj(x)) . (7.1)

By writing Taylor’s expansion of u(x+Rα) about x and based on the fact that

for centrosymmetric crystals the odd-ranked elastic moduli tensors are equal to
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zero, the potential energy density function may be written as

W = 1
2

C̃ijmnui,muj,n + C̃ijmnpqui,muj,npq + 1
2

˜̃Cijmnpqui,mnuj,pq

+ 1
2

C̃ijmntpqrui,mntuj,pqr. (7.2)

The coefficients C̃ appearing in the above relation depend on the atomic force

constants and the equilibrium positions of the atoms as follows

C̃ijmn = − 1
2v

∑
α

Kα
ijRαm

Rαn
, (7.3a)

C̃ijmnpq = − 1
12v

∑
α

Kα
ijRαmRαnRαpRαq , (7.3b)

C̃ijmnpqrs = − 1
72v

∑
α

Kα
ijRαm

Rαn
Rαp

Rαq
Rαr

Rαs
, (7.3c)

and ˜̃Cijmnpq = 3
2

C̃ijmnpq. Employing the Hamilton’s principle as described by

Ojaghnezhad and Shodja [7] and Shodja et al. [20], the equations of motion for

centrosymmetric crystals are obtained as

ρüi = C̃ijmnuj,mn + C̃ijmnpquj,mnpq + C̃ijmnpqrsuj,mnpqrs, (7.4)

in which ρ is the ratio of the mass of the atom in one primitive unit cell to its

volume, and “,” in the subscript denotes differentiation with respect to x.

The atomic force constants, Kα
ij are equivalent to the components of the

Hessian matrix which are in turn equal to the value of the second derivative of

the total potential energy with respect to the corresponding atomic positions at

the equilibrium. The Hessian matrix is obtained from the first principles density

functional theory (DFT) and, subsequently, the fourth, sixth, and eighth order

constants given by relations (7.3) are evaluated. From comparison of Eqs. (2.7)
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and (7.4) in the absence of body forces fi the following relations are obtained

Cimjn = C̃ijmn + C̃mjin − C̃mijn, (7.5a)

C̃ijklmn = 1
4
(
Fjkmnli + Fjlmnki + Fjmknli + Fjnmkli + Flikmnj + Fkilmnj + Fmiklnj

+ Fnikmlj

)
− 1

6
(
Gnlimkj + Gnkimlj + Gklimnj + Gnmilkj + Gmlinkj

+ Gmkinlj

)
, (7.5b)

C̃ijklmnpq = 1
20
(
Iqklimnpj + Iqmliknpj + Iqnlimkpj + Iqplimnkj + Iqkmilnpj + Iqknimlpj

+ Iqkpimnlj + Imkliqnpj + Inklimqpj + Ipklimnqj + Iqmniklpj + Iqmpiklnj

+ Iqnpimklj + Imkniqlpj + Imkpiqnlj + Inkpimqlj + Imnliqkpj + Impliqnkj

+ Inplimqkj + Imnpiqklj

)
. (7.5c)

Using the above relations, a set of equations for ā − 2c̄, ā′ − c3, b̄, b̄′, λ, and µ,

pertinent to isotropic materials, in terms of the components of the tensors C̃ is

obtained. Subsequently, the bulk characteristic lengths are readily available via

Eqs. (2.9).

To obtain the other additional parameters of Mindlin’s theory, one may

equalize the higher order terms of the strain energy density functions perti-

nent to the continuum model (2.5) and the pertinent lattice dynamics formula-

tion (7.2) as below

˜̃Cknijlmuk,ijun,lm = Gijklmnuk,ijun,lm, (7.6a)

C̃injklmui,jun,klm = Fijklmnui,jun,klm, (7.6b)

C̃lqijkmnpul,ijkuq,mnp = Iijklmnpqul,ijkuq,mnp. (7.6c)

Using the above equalities, one may obtain the following relations between the
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additional parameters

a1 = a2 = a5, 2a3 = a4, (7.7a)

2c1 = c2 = c3, (7.7b)

4b1 = 2b2 = b3 = 4b4 = 2b7, b5 = 3
2

b6. (7.7c)

Based on the numerical values of Lamé constants, bulk and surface character-

istic lengths and modulus of cohesion for Ag, Au, and Pt given by Ojaghnezhad

and Shodja [7] and summarized in Table 3, one may determine all the material

parameters in Mindlin’s second strain gradient theory. Moreover, Ojaghnezhad

and Shodja [7] have also provided the surface residual stress and surface elastic

constants for Ag, Au, and Pt within Gurtin-Murdoch surface elasticity. For

convenience, the numerical values of these are displayed in Table 4.

Table 3: Lamé constants in units of eV/Å3, bulk and surface characteristic lengths in units of

Å, and modulus of cohesion in units of eV/Å for Ag, Au, and Pt.

element λ (eV/Å3) µ (eV/Å3) ℓ11, ℓ12 (Å) ℓ21, ℓ22 (Å) ℓ10 (Å) b0 (eV/Å)

Ag 0.56 0.24 0.91 ± 1.03i 1.37 ± 1, 66i 2.16i -1.87

Au 1.08 0.26 0.56 ± 0.63i 0.69 ± 0.69i 0.259+0.420i -0.157+0.314i

Pt 1.55 0.60 0.81 ± 0.91i 1.44 ± 1.45i 0.271+0.936i -0.984+0.622i

7.2. Descriptive examples

Based on the numerical values of the material parameters and characteristic

lengths as determined in the previous section, one may evaluate the displacement

and stress field through the domains of the spherical symmetry in the framework
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Table 4: Surface residual stress and surface elastic constants in units of eV/Å2 for Ag, Au,

and Pt.

element σ0 λ0 µ0

Ag 0.088 -0.047 -0.044

Au 0.073 -0.028 -0.036

Pt 0.160 -0.083 -0.081

of Mindlin’s second strain gradient theory. Let a0 denote the lattice constant

for the element under consideration, then the normalized parameter, α = a

a0

provides a sense on the size of the spherical domain as compared to the lattice

constant of the element. Exploiting the given numerical data for the material

constants, the variation of the displacement field ur in units of Å versus the

normalized variable r/a for nanosphere and spherical nanocavity of radius a

pertinent to various values of α = a

a0
is plotted in Figs. 2 and 3, respectively.

These plots are given for fcc metals of (a) Ag, (b) Au, and (c) Pt according to

(1) Mindlin’s second strain gradient elasticity and (2) Gurtin-Murdoch surface

elasticity. Since Mindlin’s bulk characteristic lengths are complex numbers,

the displacement fields pertinent to Mindlin’s second strain gradient theory

represent oscillatory behavior with increasing r

a
(Figs. 2 and 3). Moreover, it

is observed that the Gurtin-Murdoch solutions for nanosphere and spherical

nanocavity are less sensitive to the sphere radius in comparison to Mindlin’s

solutions. Additionally, Mindlin’s second strain gradient theory provides values
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of ur on the boundary of the nanosphere much larger than Gurtin-Murdoch

surface elasticity.

The normalized change of the radius
(

∆a

a0

)
versus the normalized radius

of the sphere
(

a

a0

)
is also plotted for the fcc crystals of (a) Ag, (b) Au, and

(c) Pt in Figs. 4(a)-(c) according to both Mindlin’s second strain gradient elas-

ticity (MSGE) and Gurtin-Murdoch surface elasticity (GMSE). For the sake of

comparison, the relaxation of the nanosphere is also calculated by simulating

the spherical domain via the molecular dynamics package LAMMPS at abso-

lute temperature using Embedded-Atom-Method (EAM) functions reported by

Foiles et al. [21]. It is observed that the result obtained from Gurtin-Murdoch

surface elasticity is approximately size independent while the results of Mindlin’s

strain gradient theory and LAMMPS are size-dependent. Likewise, the normal-

ized change of the radius
(

∆a

a0

)
of an embedded nano-sized spherical cavity

is plotted versus the normalized cavity radius
(

a

a0

)
for Ag, Au, and Pt in

Figs. 5(a)-(c), respectively, using Mindlin’s strain gradient theory and Gurtin-

Murdoch surface elasticity. As it is observed the phenomenon of relaxation

captured within MSGT is remarkably affected by the size of the spherical cav-

ity, whereas GMSE remains nearly size independent.
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Figure 2: Variation of the displacement field ur in Å versus r/a in the (a) Ag, (b) Au, and

(c) Pt nanospheres of radius a according to (1) Mindlin’s second strain gradient theory and

(2) Gurtin-Murdoch surface elasticity for different ratios of α =
a

a0
.
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Figure 3: Variation of the displacement field ur in Å versus r/a in the (a) Ag, (b) Au, and (c)

Pt infinite domain with spherical cavity of radius a according to (1) Mindlin’s second strain

gradient theory and (2) Gurtin-Murdoch surface elasticity for different ratios of α =
a

a0
.
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Figure 4: Variation of the normalized change in the sphere radius (
∆a

a0
) with the normalized

radius of the sphere (
a

a0
) obtained via Mindlin’s second strain gradient theory (MSGT),

Gurtin-Murdoch surface elasticity (GMSE), and LAMMPS simulation for (a) Ag, (b) Au, and

(c) Pt.

In order to compare the results on relaxation of a spherical solid predicted

by the current continuum theories (MSGT and GMSE) with those of atomistic

simulations, the atomic displacements calculated for Ag spherical domains via

LAMMPS using different EAMs [21, 22, 23, 24] as well as the corresponding

results of the thories of interest are inserted in a common picture, Fig. 6. In

Figs. 6(a)-(c), three different sizes of solid nanospheres with ratios α = 0.71, 1,

and 2 are considered, respectively. In Figs. 6(a)-(b), it was feasible to indicate

the atoms in a common radial distance from the center atom by letters. The
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Figure 5: Variation of the normalized change in the embedded spherical void radius (
∆a

a0
)

with the normalized radius of the sphere (
a

a0
) obtained via Mindlin’s second strain gradient

theory (MSGT) and Gurtin-Murdoch surface elasticity (GMSE) for (a) Ag, (b) Au, and (c)

Pt.
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computed radial displacement for each atom is also given in Å in this figure.

Under the surface effect in the above-discussed problems involving spherical

symmetry, the non-trivial displacement field induces non-trivial stress field with

non-zero components τrr(r) and τθθ(r) = τϕϕ(r). Figs. 7(a)-(c) represent the

variation of τrr and τθθ = τϕϕ in eV/Å3 versus r

a
for some different values

of α, respectively, within nano-spherical domains of Ag, Au, and Pt based on

Mindlin’s second strain gradient theory. It is observed that the phenomenon of

relaxation for larger spheres (α larger) has little or no effect on the stress field

distribution as the center of the sphere is approached, whereas steep variations

in the stresses near its surface occur and attain notable values just beneath

the surface. Through Gurtin-Murdoch surface elasticity, however, all the non-

zero components of the induced stress field in nanosphere are constant and

τrr = τθθ = τϕϕ. The variation of these stress components in eV/Å3 versus

normalized sphere radius
(

a

a0

)
are plotted in Figs. 8(a)-(c) for Ag, Au, and

Pt, respectively. As it is seen, the surface effect is more pronounced for smaller

spheres; in all the considered cases the variation of stresses becomes sharper

as a/a0 → 0. Likewise, in the case of an embedded spherical nanocavity, the

variation of τrr and τθθ = τϕϕ in eV/Å3 versus r

a
for different values of cavity

size are displayed in Figs. 9 and 10 for Ag, Au, and Pt based on Mindlin’s second

strain gradient theory and Gurtin-Murdoch surface elasticity, respectively. In

Mindlin’s solution, generally, the variation of the stress components near the

boundary of the cavity have oscillatory nature, as it was the case in the case of

the displacement field. The stresses attain notably large values at the cavity’s
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ur = −0.11 Å
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Figure 6: Relaxation phenomenon observed for the Ag spherical domains of radii (a) a =

0.71a0, (b) a = a0, and (c) a = 2a0 via continuum theories of interest (MSGT and GMSE)

as well as some EAMs.
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surface, just inside the matrix, and decay rapidly with distance from the cavity.

A similar phenomenon is observed within Gurtin-Murdoch surface elasticity,

except the solutions are not oscillatory.
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Figure 7: Variation of the stress field components τrr and τθθ = τϕϕ in eV/Å3 versus r/a

in the (a) Ag, (b) Au, and (c) Pt solid nanosphere of radius a according to Mindlin’s second

strain gradient theory for different ratios of α =
a

a0
.
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Figure 8: Stress components τrr = τθθ = τϕϕ in eV/Å3 versus
a

a0
via Gurtin-Murdoch surface

elasticity for solid nanospheres made of (a) Ag, (b) Au, and (c) Pt.

8. Conclusion

Mindlin’s second strain gradient theory has been formulated in an arbitrary

orthogonal curvilinear coordinate system. Using Eringen [10] mathematical

tools for transformation from Cartesian coordinates to any arbitrary curvilinear

coordinates, the equilibrium equations, generalized stress-strain constitutive re-

lations, components of the generalized strain tensors, and three different types

of traction boundary conditions in any orthogonal curvilinear coordinate system

are derived. In continue, in order to give a highly-pragmatic example in the field
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r

a

(a)

α = 0.71

α = 1

α = 3

α = 5α = 10

2 3-0.3

0

2

4

τθθ = τϕϕ(eV/Å3)
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Figure 9: Variation of the stress field components τrr and τθθ = τϕϕ in eV/Å3 versus r/a in

the (a) Ag, (b) Au, and (c) Pt domain with spherical cavity of radius a according to Mindlin’s

second strain gradient theory for different ratios of α =
a

a0
.
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Figure 10: Variation of the stress field components τrr and τθθ = τϕϕ in eV/Å3 versus r/a

in the (a) Ag, (b) Au, and (c) Pt domain solid with spherical cavity of radius a according to

Gurtin-Murdoch surface elasticity for different ratios of α =
a

a0
.
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of nanomechanics, Mindlin’s second strain gradient theory is represented in the

spherical coordinate system and surface relaxation associated with Ag, Au, and

Pt nanospheres as well as nanocavities buried in Ag, Au, and Pt is examined in

the framework of Mindlin’s second strain gradient theory. The results are com-

pared with those obtained using Gurtin-Murdoch surface elasticity. For further

verification, Ag solid nanosphere has also been simulated using molecular dy-

namics with various EAMs. It is observed that the phenomenon of relaxation

captured within Mindlin’s second strain gradient theory is remarkably affected

by the size of the nanospherical domain while that of Gurtin-Murdoch surface

elasticity is nearly size independent.

Appendix A. The expressions τ̄ij, i, j = r, θ, ϕ in spherical coordi-

nate system

τ̄rr = τrr −
(

τrrr,r + 1
r

τrϕr,ϕ + 1
r sin ϕ

τrθr,θ + 1
r

(
2τrrr − τϕϕr − τrϕϕ − τθθr − τrθθ

+ τrϕr cot ϕ
))

+ 1
r2

(
2τrrrr − 4τrrθθ + 4τrrϕr cot ϕ − 4τrrϕϕ − 6τrθθr − 2τrθϕθ cot ϕ

− 7τrϕϕr + τrϕϕr cot2 ϕ − τrϕϕr csc2 ϕ − 2τrϕϕϕ cot ϕ + 2τθθθθ − 2τθθϕr cot ϕ

+ 2τθθϕϕ + 2τθϕϕθ − 2τϕϕϕr cot ϕ + 2τϕϕϕϕ + 4τrrϕr,ϕ − τrθθr,ϕ cot ϕ

− 2τrθϕθ,ϕ + 2τrϕϕr,ϕ cot ϕ − 2τrϕϕϕ,ϕ − 2τθθϕr,ϕ − 2τϕϕϕr,ϕ + τrϕϕr,ϕϕ

+ 4τrrθr,θ csc ϕ − 2τrθθθ,θ csc ϕ + 2τrθϕr,θ cot ϕ csc ϕ − 2τrθϕϕ,θ csc ϕ − 2τθθθr,θ csc ϕ

− 2τθϕϕr,θ csc ϕ + 2τrθϕr,θϕ csc ϕ + τrθθr,θθ csc2 ϕ
)

+ 1
r

(
4τrrrr,r − 2τrrθθ,r

+ 2τrrϕr,r cot ϕ − 2τrrϕϕ,r − 3τrθθr,r − 3τrϕϕr,r + 2τrrϕr,rϕ + 2τrrθr,rθ csc ϕ
)
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+ τrrrr,rr,

τ̄rθ = τrθ −
(

τrrθ,r + 1
r

τrϕθ,ϕ + 1
r sin ϕ

τrθθ,θ + 1
r

(
2τrrθ + τrθθ − τϕϕθ − τθθθ

+ (τrϕθ + τrθϕ) cot ϕ
))

+ 1
r2

(
2τrrrθ + 4τrrθr + 4τrrθϕ cot ϕ + 4τrrϕθ cot ϕ − 6τrθθθ

− τrθθθ cot2 ϕ + 4τrθϕr cot ϕ − 3τrθϕϕ + τrθϕϕ cot2 ϕ + τrθϕϕ csc2 ϕ − 7τrϕϕθ

− 2τθθθr − 2τθθθϕ cot ϕ − 2τθθϕθ cot ϕ − 2τθϕϕr − 2τθϕϕϕ cot ϕ − 2τϕϕϕθ cot ϕ

+ 4τrrϕθ,ϕ − τrθθθ,ϕ cot ϕ + 2τrθϕr,ϕ + 2τrθϕϕ,ϕ cot ϕ + 2τrϕϕθ,ϕ cot ϕ − 2τθθϕθ,ϕ

− 2τϕϕϕθ,ϕ + τrϕϕθ,ϕϕ + 4τrrθθ,θ csc ϕ + 2τrθθr,θ csc ϕ + 2τrθθϕ,θ cot ϕ csc ϕ

+ 2τrθϕθ,θ cot ϕ csc ϕ − 2τθθθθ,θ csc ϕ − 2τθϕϕθ,θ csc ϕ + 2τrθϕθ,θϕ csc ϕ

+ τrθθθ,θθ csc2 ϕ
)

+ 1
r

(
4τrrrθ,r + 2τrrθr,r + 2τrrθϕ,r cot ϕ + 2τrrϕθ,r cot ϕ − 3τrθθθ,r

− 3τrϕϕθ,r + 2τrrϕθ,rϕ + 2τrrθθ,rθ csc ϕ
)

+ τrrrθ,rr,

τ̄rϕ = τrϕ −
(

τrrϕ,r + 1
r

τrϕϕ,ϕ + 1
r sin ϕ

τrθϕ,θ + 1
r

(
2τrrϕ + τrϕr − τϕϕϕ − τθθϕ

+ (τrϕϕ − τrθθ) cot ϕ
))

+ 1
2r2

(
4τrrrϕ − 8τrrθθ cot ϕ + 8τrrϕr + 8τrrϕϕ cot ϕ

− 4τrθθr cot ϕ − 10τrθθϕ − 2τrθθϕ cot2 ϕ + τrθϕθ − 3τrθϕθ cot2 ϕ − τrθϕθ csc2 ϕ

+ 4τrϕϕr cot ϕ − 15τrϕϕϕ + τrϕϕϕ cot2 ϕ − τrϕϕϕ csc2 ϕ + 4τθθθθ cot ϕ − 4τθθϕr

− 4τθθϕϕ cot ϕ + 4τθϕϕθ cot ϕ − 4τϕϕϕr − 4τϕϕϕϕ cot ϕ + 8τrrϕϕ,ϕ − 2τrθθϕ,ϕ cot ϕ

− 4τrθϕθ,ϕ cot ϕ + 4τrϕϕr,ϕ + 4τrϕϕϕ,ϕ cot ϕ − 4τθθϕϕ,ϕ − 4τϕϕϕϕ,ϕ + 2τrϕϕϕ,ϕϕ

+ 8τrrθϕ,θ csc ϕ − 4τrθθθ,θ cot ϕ csc ϕ + 4τrθϕr,θ csc ϕ + 4τrθϕϕ,θ cot ϕ csc ϕ

− 4τθθθϕ,θ csc ϕ − 4τθϕϕϕ,θ csc ϕ + 4τrθϕϕ,θϕ csc ϕ + 2τrθθϕ,θθ csc2 ϕ
)

+ 1
r

(
4τrrrϕ,r

− 2τrrθθ,r cot ϕ + 2τrrϕr,r + 2τrrϕϕ,r cot ϕ − 3τrθθϕ,r − 3τrϕϕϕ,r + 2τrrϕϕ,rϕ

+ 2τrrθϕ,rθ csc ϕ
)

+ τrrrϕ,rr,
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τ̄θr = τθr −
(

τθrr,r + 1
r

τθϕr,ϕ + 1
r sin ϕ

τθθr,θ + 1
r

(3τθrr − τθϕϕ − τθθθ + 2τθϕr cot ϕ)
)

+ 1
r2

(
6τrrθr − 6τrθθθθ + 12τrθϕr cot ϕ − 6τrθϕϕ − (2 + cot2 ϕ)τθθθr − 4τθθϕθ cot ϕ

− 2τθϕϕr + 5τθϕϕr cot2 ϕ − 3τθϕϕr csc2 ϕ − 4τθϕϕϕ cot ϕ + 6τrθϕr,ϕ − τθθθr,ϕ cot ϕ

− 2τθθϕθ,ϕ + 4τθϕϕr,ϕ cot ϕ − 2τθϕϕϕ,ϕ + τθϕϕr,ϕϕ + 6τrθθr,θ csc ϕ − 2τθθθθ,θ csc ϕ

+ 4τθθϕr,θ cot ϕ csc ϕ − 2τθθϕϕ,θ csc ϕ + 2τθθϕr,θϕ csc ϕ + τθθθr,θθ csc2 ϕ
)

+ 1
r

(
6τrrθr,r − 2τrθθθ,r + 4τrθϕr,r cot ϕ − 2τrθϕϕ,r − τθθθr,r − τθϕϕr,r + 2τrθϕr,rϕ

+ 2τrθθr,rθ csc ϕ
)

+ τrrθr,rr,

τ̄θθ = τθθ −
(

τθrθ,r + 1
r

τθϕθ,ϕ + 1
r sin ϕ

τθθθ,θ + 1
r

(3τrθθ + τθθr + (2τϕθθ + τθθϕ) cot ϕ)
)

+ 1
r2

(
6τrrθθ + 6τrθθr + 6τrθθϕ cot ϕ + 12τrθϕθ cot ϕ − 2τθθθθ csc2 ϕ − 7/2τθθϕϕ

+ 3/2τθθϕϕ csc2 ϕ − 4τθϕϕθ + 6τrθϕθ,ϕ + 2τθθϕr,ϕ + 1/2 cot ϕ(12τθθϕr + 5τθθϕϕ cot ϕ

+ 4τθϕϕθ cot ϕ − 2τθθθθ,ϕ + 4τθθϕϕ,ϕ + 8τθϕϕθ,ϕ) + τθϕϕθ,ϕϕ + 6τrθθθ,θ csc ϕ

+ 2τθθθr,θ csc ϕ + 2τθθθϕ,θ cot ϕ csc ϕ + 4τθθϕθ,θ cot ϕ csc ϕ + 2τθθϕθ,θϕ csc ϕ

+ τθθθθ,θθ csc2 ϕ
)

+ 1
r

(
6τrrθθ,r + 2τrθθr,r + 2τrθθϕ,r cot ϕ + 4τrθϕθ,r cot ϕ − τθθθθ,r

− τθϕϕθ,r + 2τrθϕθ,rϕ + 2τrθθθ,rθ csc ϕ
)

+ τrrθθ,rr,

τ̄θϕ = τθϕ −
(

τθrϕ,r + 1
r

τθϕϕ,ϕ + 1
r sin ϕ

τθθϕ,θ + 1
r

(
3τrθϕ + τθϕr +

(
τϕθϕ + τθϕϕ

− τθθθ

)
cot ϕ

))
+ 1

r2

(
6τrrθϕ − 6τrθθθ cot ϕ + 6τrθϕr + 12τrθϕϕ cot ϕ − 2τθθθr cot ϕ

− τθθθϕ − 2τθθθϕ cot2 ϕ − τθθϕθ − 5τθθϕθ cot2 ϕ + τθθϕθ csc2 ϕ + 4τθϕϕr cot ϕ

− 2τθϕϕϕ + 5τθϕϕϕ cot2 ϕ − 3τθϕϕϕ csc2 ϕ + 6τrθϕϕ,ϕ − τθθθϕ,ϕ cot ϕ − 2τθθϕθ,ϕ

+ 2τθϕϕr,ϕ + 4τθϕϕϕ,ϕ cot ϕ + τθϕϕϕ,ϕϕ + 6τrθθϕ,θ csc ϕ − 2τθθθθ,θ cot ϕ csc ϕ

+ 2τθθϕr,θ csc ϕ + 4τθθϕϕ,θ cot ϕ csc ϕ + 2τθθϕϕ,θϕ csc ϕ + τθθθϕ,θθ csc2 ϕ
)
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+ 1
r

(
6τrrθϕ,r − 2τrθθθ,r cot ϕ + 2τrθϕr,r + 4τrθϕϕ,r cot ϕ − τθθθϕ,r − τθϕϕϕ,r

+ 2τrθϕϕ,rϕ + 2τrθθϕ,rθ csc ϕ
)

+ τrrθϕ,rr,

τ̄ϕr = τϕr −
(

τϕrr,r + 1
r

τϕϕr,ϕ + 1
r sin ϕ

τϕθr,θ + 1
r

(
2τϕrr + τrϕr − τϕϕϕ − τϕθθ

+
(
τϕϕr − τθθr

)
cot ϕ

))
+ 1

r2

(
6τrrϕr − 6τrθθr cot ϕ − 6τrθϕθ + 6τrϕϕr cot ϕ

− 6τrϕϕϕ + 2τθθθθ cot ϕ − 3τθθϕr − 5τθθϕr cot2 ϕ + 2τθθϕr csc2 ϕ + 2τθθϕϕ cot ϕ

− 2τθϕϕθ cot ϕ − 3τϕϕϕr + τϕϕϕr cot2 ϕ − τϕϕϕr csc2 ϕ − 2τϕϕϕϕ cot ϕ + 6τrϕϕr,ϕ

− 3τθθϕr,ϕ cot ϕ − 2τθϕϕθ,ϕ + 2τϕϕϕr,ϕ cot ϕ − 2τϕϕϕϕ,ϕ + τϕϕϕr,ϕϕ + 6τrθϕr,θ csc ϕ

− 2τθθθr,θ cot ϕ csc ϕ − 2τθθϕθ,θ csc ϕ + 2τθϕϕr,θ cot ϕ csc ϕ − 2τθϕϕϕ,θ csc ϕ

+ 2τθϕϕr,θϕ csc ϕ + τθθϕr,θθ csc2 ϕ
)

+ 1
r

(
6τrrϕr,r − 2τrθθr,r cot ϕ − 2τrθϕθ,r

+ 2τrϕϕr,r cot ϕ − 2τrϕϕϕ,r − τθθϕr,r − τϕϕϕr,r + 2τrϕϕr,rϕ + 2τrθϕr,rθ csc ϕ
)

+ τrrϕr,rr,

τ̄ϕθ = τϕθ −
(

τϕrθ,r + 1
r

τϕϕθ,ϕ + 1
r sin ϕ

τϕθθ,θ + 1
r

(
3τrϕθ + τϕθr +

(
τϕθϕ + τϕϕθ

− τθθθ

)
cot ϕ

))
+ 1

r2

(
6τrrϕθ − 6τrθθθ cot ϕ + 6τrθϕr + 6τrθϕϕ cot ϕ + 6τrϕϕθ cot ϕ

− 2τθθθr cot ϕ − 2τθθθϕ cot2 ϕ − 3τθθϕθ − 6τθθϕθ cot2 ϕ + 2τθθϕθ csc2 ϕ + 4τθϕϕr cot ϕ

− 2τθϕϕϕ + 2τθϕϕϕ cot2 ϕ − 3τϕϕϕθ + 6τrϕϕθ,ϕ − 3τθθϕθ,ϕ cot ϕ + 2τθϕϕr,ϕ

+ 2τθϕϕϕ,ϕ cot ϕ + 2τϕϕϕθ,ϕ cot ϕ + τϕϕϕθ,ϕϕ + 6τrθϕθ,θ csc ϕ − 2τθθθθ,θ cot ϕ csc ϕ

+ 2τθθϕr,θ csc ϕ + 2τθθϕϕ,θ cot ϕ csc ϕ + 2τθϕϕθ,θ cot ϕ csc ϕ + 2τθϕϕθ,θϕ csc ϕ

+ τθθϕθ,θθ csc2 ϕ
)

+ 1
r

(
6τrrϕθ,r − 2τrθθθ,r cot ϕ + 2τrθϕr,r + 2τrθϕϕ,r cot ϕ

+ 2τrϕϕθ,r cot ϕ − τθθϕθ,r − τϕϕϕθ,r + 2τrϕϕθ,rϕ + 2τrθϕθ,rθ csc ϕ
)

+ τrrϕθ,rr,

τ̄ϕϕ = τϕϕ −
(

τϕrϕ,r + 1
r

τϕϕϕ,ϕ + 1
r sin ϕ

τϕθϕ,θ + 1
r

(
3τrϕϕ + τϕϕr +

(
τϕϕϕ − τθθϕ

56

Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates: 
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling, 

Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.



− τϕθθ

)
cot ϕ

))
+ 1

r2

(
6τrrϕϕ − 6τrθθϕ cot ϕ − 6τrθϕθ cot ϕ + 6τrϕϕr + 6τrϕϕϕ cot ϕ

+ 2τθθθθ cot2 ϕ − 4τθθϕr cot ϕ − 2τθθϕϕ − 6τθθϕϕ cot2 ϕ + 2τθθϕϕ csc2 ϕ − τθϕϕθ

− 3τθϕϕθ cot2 ϕ + τθϕϕθ csc2 ϕ + 2τϕϕϕr cot ϕ − 3τϕϕϕϕ + τϕϕϕϕ cot2 ϕ − τϕϕϕϕ csc2 ϕ

+ 6τrϕϕϕ,ϕ − 3τθθϕϕ,ϕ cot ϕ − 2τθϕϕθ,ϕ cot ϕ + 2τϕϕϕr,ϕ + 2τϕϕϕϕ,ϕ cot ϕ + τϕϕϕϕ,ϕϕ

+ 6τrθϕϕ,θ csc ϕ − 2τθθθϕ,θ cot ϕ csc ϕ − 2τθθϕθ,θ cot ϕ csc ϕ + 2τθϕϕr,θ csc ϕ

+ 2τθϕϕϕ,θ cot ϕ csc ϕ + 2τθϕϕϕ,θϕ csc ϕ + csc2 ϕτθθϕϕ,θθ

)
+ 1

r

(
6τrrϕϕ,r

− 2τrθθϕ,r cot ϕ − 2τrθϕθ,r cot ϕ + 2τrϕϕr,r + 2τrϕϕϕ,r cot ϕ − τθθϕϕ,r − τϕϕϕϕ,r

+ 2τrϕϕϕ,rϕ + 2τrθϕϕ,rθ csc ϕ
)

+ τrrϕϕ,rr.
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