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Abstract

In this paper, Mindlin’s second strain gradient theory is formulated and pre-
sented in an arbitrary orthogonal curvilinear coordinate system. Equilibrium
equations, generalized stress-strain constitutive relations, components of the
strain tensor and their first and second gradients, and the expressions for three
different types of traction boundary conditions are derived in any orthogonal
curvilinear coordinate system. Subsequently, for demonstration, Mindlin’s sec-
ond strain gradient theory is represented in the spherical coordinate system as
a highly-practical coordinate system in nanomechanics. Second strain gradi-
ent elasticity have been developed mainly for its ability to capture the surface
effects in the presence of micro-/nano- structures. As a numeric illustration
of the theory, the surface relaxation of spherical domains in Mindlin’s second
strain gradient theory is considered and compared with that in the framework

of Gurtin-Murdoch surface elasticity. It is observed that Mindlin’s second strain
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gradient theory predicts much larger value for the radial displacement just near

the surface in comparison to Gurtin-Murdoch surface elasticity.

Keywords: second strain gradient theory, orthogonal curvilinear coordinates,

surface effect, nanosphere, nanocavity, relaxation

1. Introduction

Recently, there has been a flurry of interest in such unusual forms as nanowires,
nanotubes, and nano-particles of commonplace materials like metals, semicon-
ductors, insulators, and organic compounds. In view of their vast possible appli-
cations in electronics, energy conversion, optics, chemical sensing, cancer ther-
apy, and drug delivery, among other fields, consideration of the mechanics and
physics of these forms of nano-structures is inevitable. The most important key
features in these structures are their nanometer scale in two/three dimensions
as well as their special symmetrical shapes.

It is well-known that traditional continuum theories are inadequate in treat-
ing mechanical aspects of nano-scale structures and resorting to augmented con-
tinuum theories seems to be remedial. For example, Lazar [1] deals with strain
gradient elasticity of defects to give a non-singular dislocation continuum theory.
Lazar and Agiasofitu [2] provide fundamental quantities in generalized elasticity
and dislocation theory of crystals. The development of higher order continuum
theories such as strain gradient elasticity has been brought into focus, mainly
in the period of about 1960-1975. In first strain gradient theory, Toupin [3]
assumed that the potential energy density function of the material depends on

both the second order strain tensor and its first gradient. The correspondence
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between first strain gradient theory and the atomic structure of the material is
exhibited by Toupin and Gazis [4] through consideration of the nearest and next
nearest interatomic interactions; they realized that the drawing in or pushing
out the surface layer happens only in non-centrosymmetric materials. Later,
Toupin, in a private communication with Mindlin [5], suggested that one can
remove this restriction with the inclusion of the components of the second gradi-
ent of the strain tensor in the potential energy density function. Subsequently,
Mindlin [5] proposed second strain gradient theory in which the strain energy
density function depends on, not only the strain field and its first derivative, but
also the second derivative of the strain field. Formulation within Mindlin’s sec-
ond strain gradient theory gives rise to two surface parameters, namely, surface
characteristic length and modulus of cohesion, enabling this theory to capture
the surface effect of nano-structures on their mechanical properties [6, 7, §].
Factually, consideration of the surface effect in nano-scale structures has been
one of the most important stimuli in the development of higher order continuum
theories. Recently, Shodja et al. [8] have proposed an atomistic model for the
calculation of the additional constants for fcc materials in second strain gradi-
ent elasticity. Subsequently, they studied the surface effects on the behavior of
nano-size Bernoulli-Euler beams. Moreover, Ojaghnezhad and Shodja [6] em-
ployed a combined first principles and analytical approach for determination of
the modulus of cohesion, surface energy, and the additional constants in sec-
ond strain gradient elasticity. Later, Ojaghnezhad and Shodja [7] reformulated

Gurtin and Murdoch [9] surface elasticity theory in the context of second strain
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gradient theory. In surface elasticity theory which has been formulated to cap-
ture the surface effects, the bulk material and surface layer are treated as two
separate entities. Formulation in this framework entails the introduction of the
notion of two surface parameters as surface residual stresses and surface elastic
moduli tensor. The work of Ojaghnezhad and Shodja [7] lead to a linkage be-
tween the surface elastic parameters such as surface stress and surface elastic
constants of surface elasticity theory and the elastic parameters stemming from
second strain gradient elasticity.

However, utilization of Mindlin’s second strain gradient theory to treat a vast
variety of nano-scale problems involving various geometries in a mathematically
rigorous manner requires the employment of suitable coordinate systems. Erin-
gen [10] provides a simple but effective mathematical tool to transform any
formulation written in the Cartesian coordinates to any curvilinear coordinate
system. As an effort, Ji et al. [11] derived the general formulations of the simpli-
fied first strain gradient theory proposed by Zhou et al. [12] in the framework of
orthogonal curvilinear coordinates. However, to date, in spite of the vast appli-
cation of Mindlin’s second strain gradient theory in prediction of the mechanical
behavior of nano-structures, its general formulation in orthogonal curvilinear co-
ordinates is absent in the literature. In this paper, the methodology proposed
by Eringen [10] is utilized to provide the formulation of Mindlin’s second strain
gradient theory in any arbitrary orthogonal curvilinear coordinates. As it was
alluded to, such formulation would be of great value for the treatment of nano-

structures of various shapes where the surface effect is important. In continue,
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in order to illustrate the usefulness of the presented formulation in applications,
relaxation of a spherical domain and a spherical cavity is examined based on
Mindlin’s second strain gradient theory. Recently, solid and hollow nanospheres
made of dielectric and precious metals such as gold and silver have absorbed
great attention of the researchers due to their effective application in nanotech-
nology. Dielectric nanospheres are promising structures for light trapping in
plannar thin-film solar cells [13]. Moreover, metal nanospheres due to their
optical properties, have various technological applications such as surface plas-
mon resonance detection and imaging, surface-enhanced Raman scattering, and
biomedical imaging and therapy. In the case of hollow gold nanospheres, the
unique combination of small size, spherical shape, and strong tunable surface
plasmon resonance is ideal for biomedical applications [14]. Hollow Pd spheres
have been fabricated for usage as heterogeneous catalyst for suzuki coupling
reactions [15]. Tunability of surface plasmon resonance by interior cavity size
in Au hollow nanospheres has been examined by Liang et al. [16]. Au hol-
low nanosphere has also been used for drug delivery [17]. Metal nanoshell has
found application in tumor therapy [18]. The present work focuses on the phe-
nomenon of relaxation as an application of the current theoretical developments.
In particular, we examine the relaxation of spherical domain as well as spher-
ical cavity made of Ag, Au, and Pt based on Mindlin’s second strain gradient
theory. The results are compared with the corresponding ones obtained from

Gurtin-Murdoch surface elasticity as well as molecular dynamics simulation.



Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates:
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling,
Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.

2. Second strain gradient theory in Cartesian coordinates

Based on strain gradient theory formulated by Mindlin [5], strain energy
density of a homogeneous and centrosymmetric material depends not only on
the traditional infinitesimal strain, €;;, but also on its first and second spatial
gradients, €;;, and €;;5;, respectively, as below

1 1
W = §C¢jkz€ij€kz + Fijrimn€ij€rimn + §Gijklmn€ijk€lmn

1
(o)
+ 5 Lijkimnpq€ijki€mnpg + Bjiki€ijhi- (2.1)

where the summation convention for repeated indices is employed and

€ij = %(ui,j + uji), (2.2a)
€ijk = Uk, ij, (2.2b)
€ijkl = UL, ijk- (2.2¢)
In the above relations w; is the displacement component and “,” in subscript

denotes the usual partial differentiation with respect to the Cartesian coordi-
nates x;, ¢ = 1, 2, 3. Based on the considered strain energy density, second-,

third-, and forth-order stress tensors of any hyperelastic material are defined as

ow ow ow

Tij = @7 Tijk = ?ijk;’ and Ty = fjkz Thus,
Tij = Cijri€rt + Fijkimn€himn, (2.3a)
Tijk = Gijklmnelmna (23b)
Tijkl = Fpqijki€pq + Lijkimntu€mntu + Bl (2.3¢)

b
In the last relation, ijkl = goéijkl, where by is Mindlin’s modulus of cohesion

and 0551 = 0350k + 0;105, + 05104 in which d;; is the Kronecker delta. Utilizing
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the above relations together with the symmetry considerations of the strain and
stress tensors, it is inferred that the fourth, sixth, and eighth order tensors,

respectively, Cijkt, Fijkimn, Gijkimn, and Iijrimnts have the following symmetry

properties
Cijit = Criij = Cjirt = Cijir, (2.4a)
Fijklmn = Ljiklmn = Lijlkmn = Lijgmlkn — Fijk’mlna (24b)
Gijklmn = Glmmﬁjk’ = ijlklmn = Gz’jkmln; (24C)
1jklmnrs — dmnrsijkl — Ljiklmnrs — dkjilmnrs — Lijlkmnrs
Lij = Kkl = Ljiki = Ikjil = Lijik

= Lijklrnms — Llijkinmrs = Lijklmrns- (24d)

Based on the above-mentioned symmetries and Egs. (2.2), the strain energy

density function can be represented in the following form

1
W = ZCijrithi jui,i + Fijrimnti jUn kim + = Gijlimnh,ijUn,im
2 2

+ S Lijhimnpgti,ijitigmnp + Bijp i (2.5)

For isotropic materials, the components of the fourth order tensor, Cj;i
are written in terms of the usual Lamé constants A\ and p as Cy111 = A + 24,
C1122 = A, and C212 = . The not-mentioned nonzero components are obtained
via cyclic permutation of indices. The nonzero components of the higher order
elastic tensors, Fijkimn, Gijkimn, and Iijkimnpq for isotropic materials are related
to Mindlin’s additional constants a;’s, i = 1,...,5, b;’s, i = 1,...,7, and ¢;’s,
1 =1,2,3 as displayed in Tables 1 and 2. The other nonzero components which
are not displayed in the table can be obtained through the cyclic permutation

of indices of the presented components.
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Table 1: The relations between the higher order tensors, F;;ximn and G kimn and Mindlin’s

additional constants, a;’s and ¢;’s.

1+ ¢ c1+c3
Fii1122 = Fii1133 = —5 Fi11201 = Fi11331 = —3
C1
Fi12000 = Fl13333 = €1 F112233 = F113320 = 3
C3 Cc3
Fi21112 = Fi31113 = > Fi21332 = Fi22331 = 6
C2 C3
Fi21121 = Fi31131 = 3 + 5 Fii1111 =c1+c2+c3
C2
Fio1233 = —
6
as 2a1 + ao
G112233 = G113322 = > Gii1122 = Gi11133 = —a

Ga21111 = G331111 = a2 + 2a3 Gii2112 = Gris113 = 2(as + ay4)

az + 2as a1 + 2a4 + as
Gii2211 = G113311 = — Gh22122 = G133133 = —
G112332 = 2a3 G123123 = a4
Giiiii1 =a G122133 = %
Gi23132 = %

A material is referred to as “grade N” if the order of the highest position
gradient in its energy density function expression is equal to N. Mindlin [5]
showed that for a grade 3 material of volume V' with boundary S, the stress-

equation of motion in rectangular coordinate system has the following form

Tip,i = Tijp.ij + Tijkp.ijk + fp = Plip, (2.6)

in which f, is the body force per unit volume and p is the mass density of the

material. By substituting from Egs. (2.3) and (2.2) into the stress-equation of
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Table 2: The relations between the higher order tensor, I;;ximnpg and Mindlin’s additional

constants, b;’s.

2by + 2ba + b3

Iii111111 = b Ini111122 = T11111133 = 3
2b1 + bz + 2bs + 2b
T11112222 = 201 Ii1111221 = T11111331 = %
2bq
111122221 = 2b4 111112233 = 111113322 = 7
b3 4 2by + 2b7
Iii121112 = 11131113 = 2(bs + be) 1121121 = T1131131 = — 5
bs + 2b bs + 2b,
I11121222 = I11131333 = % I1212331 = I11232333 = %
b3 2bs
I11121233 = 11131232 = 5 In1121332 = T11131223 = =5
2by 2(21)2 + b3 + b5 + 3bg + 2b7)
I11122331 = 11133221 = = Iii211121 = T11311131 = 5
2(2ba + b3 + by) 4ba + b3
I112112220 = ————————— Ii1211233 = 11311322 = ————
9 18
b3 + 2by 2(by + b2 + bs + bs + 3bg + b7)
111211332 = 111311223 = T 111221122 = 111331133 = 9
2(by + ba) 2(b1 + bz + 2b7)
Ii1221133 = ————— 1221201 = ———F—————
9 9
2by + bs 2(b1 + ba + bs)
I11221331 = I11331221 = — I11222332 = — 5
2(1)5 + 3b6) 2(174 + b7)
I11231123 = 11321132 = — g Ii1231132 = — g
b3 + 4by ba + 3bg + b7
I11231231 = 11321231 = EETEE Ii2311231 = —

motion, the displacement-equation of motion is derived as below

piii = Ciriur,ij + (Fpgjkti + Fligjrp — Grlijap) Up,qjkl

+ Ijklimm"sus,mnrjkl + fz (27)

For isotropic materials, the equation of motion is written in terms of Lamé
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constants and Mindlin’s additional parameters as below

(A +2p) (1= 6,V7) (1 - 6,V%) w5

— (1= 03,V?) (1= 03,V?) esjuermitum; + fi = pii, (2.8)
where e;;;, is the permutation tensor and

20 +2u) 2, =a — 2c % [(a — 26)% — 4b(\ + 2)]7, (2.9a)

2003, =a —c3£[(@ — c3)? — 4%, (2.9b)

for p =1 and 2 pertinent to the positive and negative signs, respectively, and

a=2(a; +az+ a3+ ag + as), (2.10a)
b=2(by +bo +bs + by + bs + bg + br), (2.10b)
c=c1+co+cs, (2.10c)
a' = 2(az + aq), (2.10d)
b = 2(bs + b). (2.10e)

l11, €12, U321, and fo5 are the so-called “bulk characteristic lengths” which are
related to Lamé constants and the additional parameters as given by Eqgs. (2.9).
Moreover, Mindlin’s second strain gradient theory gives rise to another physi-

cally important length scale defined as

c

Gy =—=.
10 )\+2M

(2.11)

This length scale appears in the surface energy [5, 7] and surface residual stress

formula and thus, it is referred to as surface characteristic length [7].

10
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Suppose that the outward unit normal at any point along S is defined by

2 3
n(x). Then the generalized surface tractions, t, t, and t on S are derived as

1
ti = 1 (Tji — Thjike + Thigikt) + Lie(0j T — 0 Tmjkim) + Li(Lj (Rn Tmjiki))

— Le(neninmnNp pTrmjki — Lt (M) M Tmjika ), (2.12a)
2
ti = nng(Tjki — Tijkin) + Le(nTine) + Li(ngng k), (2.12b)
3
ti = NNENTikli, (2120)

in which L; =n;np, — V; +n;n,;V; and V,; = 9/0x;.

3. Second strain gradient theory in orthogonal curvilinear coordi-

nates

In this section, the stress-equation of equilibrium as well as the boundary
conditions of second strain gradient theory described in the previous section is
derived in the framework of orthogonal curvilinear coordinates. To this end,
consider a set of orthogonal curvilinear coordinates z?, i = 1, 2, 3 with base
vectors g; and metric tensor g;; = g,.g; [10]. The base vectors of the curvi-
linear coordinate system are obtained via g; = dr/0x" where r = 4" is the
position vector in Cartesian coordinate system; ik, k =1, 2, 3 are the Cartesian
coordinate base vectors. So the square of the element of the arc length ds in

terms of the curvilinear coordinates is written as below
ds® = dr.dr = gppmdztdz™. (3.1)

In formulations within curvilinear coordinates, Einstein summation convention

is applied for repeated indices on diagonal positions. Representation of the

11
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position vector » = x;t" in the above discussion is based on this convention.

The unit base vectors of the curvilinear coordinates are obtained as

_ 9
9;]

e; (no sum). (3.2)

Now, consider the displacement vector u and express it via the curvilinear co-

ordinates as
u=u'g, =ule;, (3.3)
where the physical components of u denoted by u(*) is obtained as
u® =g, |u’, (no sum). (3.4)

According to Eringen [10], the passage from rectangular coordinates to curvi-
linear coordinates is made by replacing the usual partial differentiation by the
covariant partial derivative which is indicated by the symbol “;”. Hence, the
stress-equation of equilibrium in the curvilinear coordinates is displayed as fol-

lows
i+ =0, (3.5)
in which

_ i ij . ijk
Op=Tp =T pj+ T pijk- (3.6)

In the above relation, Tip, Tijp, and Tijkp are the mixed components of the
stress tensors of second-, third-, and fourth-order, respectively. According to

Eringen [10], A%/} ; is called a mixed tensor if it changes under coordinate

12
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transformation through the following rule

ox't 9z oxP Ozt

ri...J N _ Am..n

(3.7)

where 2/° denotes the component of the new coordinate system. Moreover,
covariant partial differentiation of the second-, third-, and fourth-order mixed

tensors is defined as below

) ) ) |t
gz,gz,ﬂt{,}al{.}, (3.80)
piJ PyJ P jt t jip
ij ij i i [ ij Jt
0 p =0k + Utjp{kt} to tp{kt} -0 Jt{k’p}’ (3.8b)
ijk ijk jk i itk | J ij k
o p;m:O"l p,m+UtJ p{km}+0t p{mt}+thp{mt}
i t
— U”kt{ }, (3.8¢)
mp
where {jk} is the Christoffel symbol of the second kind defined as follows
) 0%z, Ox'
= 3.9
{jk} 0xidzk dx,, (3.9)
It can easily be shown that the physical components of the second-, third-, and

fourth-order tensors are obtained as follows

7 )(j) - |gZ»|T s (no sum) (3.10a)
j
7-(i)(j)(k) _ |g|i;|kg|j7ijk7 (no sum) (3.10Db)
iy 9:llg;llgx]
# )(J)(k)(l) = #T ik, (no sum) (3.10¢)

According to the definition of covariant partial derivative (3.8), the stress

equation of equilibrium (3.5) becomes

) ) . t
le’iﬁ-gtp{;} —O'Zt{ip}+fp:07 (311)

13
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i)}
(Tijk-p’k_i_thkp{ljt}_,'_Titkp{k{t}_i_Tijtp{ } ik, {kt }>
{af (et et e ad =)
i (e £ {Jk} o)
i ondE)

nk

Subsequently, the equilibrium equation can be rewritten in terms of the physical

components as below

<|gp ‘o) +o )(,,)| p| A )<t>|?t,| ip + fwlgpl =0, (3.13)
l (2

where
o'p= %a(“@) = %T“)(m - zj: (wji'T(n(j)(p)) )

> (mgnsl "ol o} ot - e o)

- (|g¢||3f||gt|T(iw)“’>>,jt)

> ( (|gt||zf|gk| (t)(J)(M(P){k‘t}) s <|gi:zf|gk|7(iw)<’”{ift}),j

! (|gi||zf||gt|Tm(”“*@{i}),]. - <|gi|§f|||gk|7(i>(j)(k)<t>{pr})d
(Fven
- (weden

+

|9, £) () (k ( 9, NG J

L IR A B D00 ) 0T

lg:1lg;llg5| » Lt l9:119./195] x U
9.l DO, )> { t }
9.119,llg.]” w Lp

14
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|9, (n) () () { t }{ Z}
+ )G ‘
Z (Ignlgjlgkl I CAL
Ig,,l RO { }{ Z} 9] wumm { k }{@
Ta— Il + Pl 0O ,
EAFArT O\ nk 9.119,119..] @\ nk [ tj

gl A0, { }{ } gl ZMO®), ){ }{
Igtllgj\lgk\ 19,1199 Pr kn
gl A, { t }{ } 9, | AOOm) >{ k }{J
19:119.. 1195 nk lg;llg:llg,| Prnk [\ tg
_ gl _mew _ gl o t
(n) (t) k .
" laillgllgn] kp lgn\lgjl\gkl nf | jp
gl t){ J }{ } g <¢)<j>(n>(t>{ k }{ t }
aillgnllgel nk | | jp lg:llg;1g.| nk | | jp

gl ¢
WDE (3.14)
Iglllg]\lgk kt | \jp

Moreover, the components of the second-, third-, and fourth-order strain

tensors in curvilinear coordinates are written as

' 1 _ 1/ . 1 i m
¢y =5 Wy +gimg"u"m) = 3 <ul’j i Ut{tj} *9mg™ (um’" " Ut{nt}) )

(3.15a)

15
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(R e R )

(3.15¢)
Using Egs. (3.4) and (3.10), the physical components of the second-, third-, and

=3 (124 (), (o) i (=)
P () o5 ((m{) ,+<““>> {4
S I A AR T T R

P = gz||5f||gk|< TSJ) <<|g(){l}) +<<|g()|> {tlg}>k
(ORIRRNE <|l::>t.{;} () ()
s {H }) ol m D) A
CORM: R
() K >{}
NCORMIN M

|

|

"
{ l

)
l

T‘é : > ;(“;:
S O )
S L)
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Next, the traction boundary conditions in curvilinear coordinates are de-
rived as below. To this end, define the reciprocal base vectors g* such that
g".g, = 0%, where §%; is the Kronecker delta. Moreover, g*™ = g*.g™. Among
the tractions, i has the simplest representations, and so we come up with its
curvilinear representation first.

3t . ,
t = g"gipGrggrn’nin M, (3.17)

and in terms of the physical components

30 ®) (@ p) g.|
t ; n\P) n\ U plr g
N E: is T k@), sl
— 9 GjpGkqJir T s . (318)
9.0 — 477 P g, gyl 1, “1g;llgxllgi]

R,
p,q,7,8

If orthogonal curvilinear coordinates are used, then it simplifies to

3 () . ,
= B0 G0 (3.19)

The second traction boundary condition is similarly written as follows

2m

kj ljk .
t Gmi =n'n9gp;9qk (7" — T

ikl ikl
)+ ’I’L 7’L n gslgrk:gwjnp ij —-n gsl(n gr]T] ),k:
jkl ikl S ikl
+nin® npglqgsk(n g:chj ) + np,pnqn n gqlgerSJT] (n7négrkgjs7—1 i);l

+ npntgpl(nrnsgrkgszjkli);h (320)

and in terms of the physical components we have

5 (m)
1 n® @ , , 9]
A K)G), . _ (G (k) )
9mi = g ig k(T i T i);(1 )
; 19,0 Z l9,] g, 77" @ W g, lg;]
J,k l
(8) p(r) p(=@) ‘
n n gz|
+  Gaigrkgan®) T WO 1Tl
Z 19,1 19,1 192 ] 7w Dlg;llgcllg:]
j,k,l,p
OO0 gl
gz n™g,.ir )ik
Z y 7 @58 g Tlgllg, ]
],k‘ l

17



Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates:
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling,
Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.

n() np) p(o) |9:/19, |
|gskgql(n( )ngT ?

QICTONS W— L T
9.119,!19x119:]

+ Z (i));

q,r,8,T |gé| |gp| |gq
7k Lp

() () (@ |
n n gil
+ ; T 98 grkgqm W ) —
qzr:s ®g. [ 1g,] 1g,| 77 “1g;llgxlg.]
gk, l,p
(8) (1) g,
n n
() (k) (1) gi
- T 9s59rkT )
Z lg.l 19,17 RAPAIPN
]kl
® p® )
n n n gz g
t 2 g g g oo™ ooy ||| ;
p, g, s 1Ipl 19t 9rl 19s g; gillall
Ik, 1t
(3.21)

In orthogonal curvilinear coordinates, it can further be simplified to

i(i):n<ﬂ')n<’“>(7<’“>() o = 7DD Y OO OGO
nO (@ rDOO ) o 1 pPp@ O (D OO
+ 0@, @@ pOr OO0 o @O OO0y
nOn® (nF @ OO . (3.22)

where for an arbitrary tensor of any order

ADD oy omy = 19 lo;| |gj|Ai”'jk;m = ol <Aimjk,m + At"'j’f{ : }
19%119m] 191g.m] tm

) 1 o t
Az~-t J — At
eorarnd ) boad )
_ ‘g'L||g]| < 9] A(i)m(j)(k)>
|9l1g.m| 9:] -+~ 19,1 .
Lol o0, ){ ' }+...+|9k|A<z‘>-~<t>(k){ J }
lg:] - 1g,l tm lg;] - 19| tm

l9:| N (s t
S By YO R ) . 3.93
gl g O km (3.23)

Likewise, it can be shown that the first traction boundary condition in curvilin-

ear coordinates which is more involved than the second and third traction types

18
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has the following representation

m X . ) . .
¢ k Kkl t k k
gmit  =n"g (77 — Tk + T ) + 0P pn g (R g T — 0G5 T Vi)

t jk s mjk m jk jk
+ n9ggen® (n'ge; 77" — n°gs; ™™ i) ip — Gmgn ™ g (T — TV p)

t( . jk mj t s l n mjk
L (Tj ik — T jpi;mp) + ngun ;8T gljnp;pn InmT J i

s n mjk r s l t mjk
7npgpkn ;s(n InmT J i);j +n grgn ;5T gljnp(n GtmT J i)'p

— (n'ge;m? o1 GsmT™ )k + (0 g™ ™ )k — (0'giin? (0" Grm™ ™) )ik
+n"grkn® (nlgljnp;pnmg:cmejki);s —nPgprn® (nngmejki);js

St T mjk t, s r mjk
+nngkn (’fl gtjnp(n GrmT J i);p);s —nn ;snp;tgpknngmn 9riT I

ht T mjk tr T mjk
+ (np;hgpkg nin 9gmGrjT J i);t —nmn (np;tgpknqn 9qmGzjT J i);r

s T t mjk t T s mjk
+n ;snpn GaemM gtjnq;pquT I — (n npnngmn GaiN pGskT J i)'t

3

t

+ nxgta:ns (n npnqgmangrj n® ;pgszMjki);s s (324)

which in terms of the physical components within the orthogonal curvilinear
coordinate system has the following form

1(8) L . , S
t = n(])(T(J)(i) — 7.(k)(a)(i);(k) + T(k)(l)(j)(i);(k)(l)) + n(p);(p)n(k)n(])(T(J)(k)(i)

— DO g @ (OB @ mOE

. o o S .
— @) gy (rE) ) PDE oy gD EOE D@

IO MO IR MO CORIGIC

. o — n®n®,

() £ (m) () (k)

(s)( (0)):()

IO MO IO MOIMCORMIGID)

; iiny — (A ®

(m) (m)(5) (k) )

i(p)T i(k)

+ (n) M G) ) 5 2) () (M)

@)k — (0 {));(k)

+ @) (D@, MG ) R () mOE )
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+ ) () () P) (1) £ (m) () () OO CIRCOMOMIDIGICIN

®)i(p))i(s) =1

1 (n®) D ME® D@ (P, ™) @) (MG (R)

) —"n (¢ @))i(r)

1),y n@ @0 6 E ) ) () () B (m) () (R)

@ —(n )T @)i(t)

+ 0O (@ @) mGOE ) (3.25)

Finally, by substituting the components of the elastic tensors in Egs. (2.3) in
terms of Lamé constants and Mindlin’s additional parameters, the constitutive
relations for isotropic materials in the curvilinear coordinates are obtained as

follows

7@ ) = AV 6P (g) + 2™ () + e16P 3y 0P) () + c2W iy )
+ 2( €D @wm + e How) (3.26a)
T(P)(‘I)(T) = ay (0 ( Y )5(11) 4l )( Y )5@) )+ 5 ( (p) )5((1)
+ 26(1) (™) 5((1)( )+ 6(q) )5(19) ) + 2a3¢™) @) 5(1)) @
+ 2046 (g ) + 5Py ) + €V ), (3.26D)
T(P)(Q)(7')(S) = %ble(j)(i)(i)(j)(5(p)(q)5(7')(5) + 5(1’)(T)5(Q)(s) + 5(Q)(T)5(p)(s))
" %bQG( D (550 (69 180 (80 () + 69 68 1,60
+09 ()88 ()61 () + ébB( ® @5 69 (0™ (6T )
+ 09 )80 ()81 () + 69 ()80 ()6 () + €9 333y 1y (89 ) 8™ ()87 (4
+ 0 )8 (98 () + 61 ()0 (18P () + 26D (55 (6 () 6@
+ 09 0@ () + 69 98P ())) + b4€( ) @) (69 (81

+09 (0P (1) + 09 (196P () + gbse(s)u)(i)(]‘)(5(j)<p>5(q)<r> + 09 (0@,
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. R 2
+ 87 0P ) + 2b6€” gy + F07(P (@) ) + €V ye) )

r 1 7 T
+ €O m) + 361€7 007 ()07 ) + 0P ()00 () + 00 (5D )
1 N N
+ 5026 () (80 )0 (01 () + 81 (50D (170D ) + 61 ()00 ()07 )
+ 536 () (00 ()00 ) + 8 ()0P ) + 01357 )

1
+ g1,0(5(@)((])5(7”)(S) + 6@ (T)(;(q)(s) + 5(?)(8)5(61) ) (3.26¢)

4. Second strain gradient theory in spherical coordinates

In the spherical coordinate system shown in Fig. 1, the independent curvilin-
ear variables ! = r, 22 = 0, and 23 = ¢ are related to the Cartesian coordinates
as

x1 = rsin¢cos,
To = rsin¢sinb,
T3 = 1 COS ¢.
The corresponding base vectors are obtained via g, = dr/d2%, i = 1, 2, 3.
Thus, letting g, = g1, gy = g5, and g, = g3 we obtain
g, = sin ¢ cos 03" + sin ¢ sin 032 + cos ¢i>,
gy = —rsin¢sin 03 + rsin ¢ cos 032,
94 = 7 cos ¢ cos 03 + r cos ¢ sin 0% — rsin . (4.1)
The unit base vectors are obtained by the normalization of the above base
vectors as

e, = sin ¢ cos #i' + sin ¢ sin 032 + cos ¢i°,
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€re,
P(r,0,9)
¢ /| C
o
i/,
1:1 2 i)
0

T

Figure 1: Geometrical representation of the Cartesian and spherical coordinate systems and

the pertinent unit base vectors

eg = —sin 03 + cos 032,
€4 = COS ¢ Cos 03 + cos ¢sin % — sin ¢i°. (4.2)
Since the base vectors given in Egs. (4.1) are orthogonal, then the nonzero

diagonal components of the pertinent metric tensor and their corresponding

reciprocal components are as below

grr = 1; goo = 7‘2 Sinz ¢7 9o = 7"2, (43&)
1 1

", 00— __ — ¢ = = 4.3b

g g r2sin® ¢ g r2 ( )

Moreover, the nonzero components of the Christoffel symbol of the second kind

in spherical coordinates are as below

{;9} — rsin?g, {fe} — sindoosd, {(;;} .
{fg} B {aar} B {j;} N {cfr} B %’ {:qs} = {;0} =cotg.  (4.4)

Remark 1. In section 2, the physical components of a quantity within a curvi-

linear coordinate system were indicated by embracing the pertinent superscripts
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and subscripts by parentheses. In what follows, for convenience we drop out
the parentheses and, subsequently, move the superscript to the subscript. For
example, the physical strain component e(i)(j) with respect to the spherical

coordinates will be presented as €,,, €9, €74, €99, €44, and €gg.

Using Egs. (3.16), the strain field and its first and second gradients in the
spherical coordinates, after some manipulations, are derived in terms of the

components of the displacement field (u,, ug, ug) as below

1

€rr = Upy, €0 = oo (Mg T UrocsCO—up), g = 5 (Ung +TUsr — Ug),

1 1
€9p = - (ur + ug,g CSC O + ug cOt @), €9y = % (ug,p + Ug,p CSCH — ug COL @),

1
€pp = ; (UT -+ U¢7¢) s (45&)
Erprr = Up rr, €rrg = UG, rr, €rrgp = Up,rr,

1 1

€rgr = 73 (UO — Uy g CSC (rb) + ; (UT,TQ CsC (b - u9,r) 5

1 1
€99 = — (Upr + Ug rg CSC P + Uy, COt P) — 2 (ur + ug,g cSC P + ugp COL @) ,

.
1 1

€rog = - (ug,ro CSC O — ug , cOt @) + ) (ugcot ¢ — ug gcsce),
1 1 1 1

Cror = (Ur,rp — Ug,r) + = (ug — Urp) s €ro0 = —Uo,ro — b0,
1 1

€rop = (Uprg + ) = 5 (ur +us0),
1

1
€00r = ] (ungg csc? @ — 2ug,9 csc @ + Uy ¢ cot ¢ — 2uy cot @ — ur) + ;um,
1
€000 = — (ue,gg csc? @ + 2ug 6 cot @ csc @ + 2u, g cSC O + Ug, g COt P — ug csc? (/)) + —ug,r,
r r
1 9 9 1
€00 = ) (u¢,99 csc” ¢ — 2ug,g cot csc @ + ug g cot ¢ — ug cot gb) + ;u¢,r7
1
Coor = 3 (Ur,6¢ CSC P — Ug,9 CSC O — Uy g CSC P COt P — Ug ¢ + Ug COt D) ,

1
€00 = 2 (“r,rb ~+ Ug,p¢ CSC P — g9 COt @ CSC P + Ug, 6 COL P — Ug csc? ¢) ,
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1
€0pp = = (u¢,9¢ CSC @ — Ug 9 CSC ¢ cOt @ + Uy g CSC P — Ug, ¢ COL P + Ug cot? ¢) ,

1 1 1 1
Eppr = ;unr + ﬁ (ur7¢¢ — 2u¢7¢ — UT) s €Epp = ;u&r + 772“9,45%

1 1
€opp = “Usr T 5 (Uspp + 2urg —ug), (4.5b)
Errrr = Ur rrr, Errro = UG rrr) Errre = Up,rrr)

2 2 1

Errfr = ﬁ (Ur,e Csc ¢ - Ue) + ﬁ (U«O,r — Uy, rp CSC (b) + ; (UT','I"TG csc ¢ — UG,M") ,
2 2

€rro = 3 (ur + ug,p cSC P + ug cOt @) — = (Ur,r + Ug,ro CSC P + Ug., COt D)

1

+ - (U, rro + Ug rro CSC P + Ug ryr COL @)
2 2 1

€rrop = 3 (ug,g cSC P — up cOt P) — = (ug,ro CSC P — Ug - COL P) — - (Uem cot ¢

— Ug,rr CSC (b) ,

9 1
errgr = -5 (Urg = ug) + 5 (Up,r = Uprg) + — (Urrrg = Ug,rr)

2
r3
2 2 1
Errpd = T73Ut9,¢ - ﬁue,'rd) + ;ue,r'r‘(;h
2 2 1
€rrog = 5 (Ur +Uog) = 5 (Uny + Ugpro) + = (Urrr +Uprro)
2
€roor = 3 (ur + 2ug cot ¢ — Uy ¢ cOt @ + 2ug g CSC P — Ur 00 csc? gb)
1 9 1
+ 2 (uwgg esc” @ — 2Uy . — 2Ug 9 CSC P — 2Ug - COL P + Uy rg COL gb) + ;uwr,
2 2 2
€r000 = —3 (ue csc” @ — ug,¢ cot @ — 2y g CSC P — 2Ug g CSC P COt P — Ug g9 CSC qﬁ)
r
1
+ 2 (U97r99 csc? @ — 2ug r + 2Uy 19 CSC P + 2Ug rg COL P CSC G + Ug,rg COL P — Ug cot? gb)
+ —ug rr,
r
2 9 2
€009 = —3 (ug cot® ¢ — ug,y cot @ + 2ug g cot ¢ csc d — ug g csc” @)

1 1
+ 2 (ug,ro0 csC* ¢ — 2ug g COL H CSC & + Ug rp COL ) — Ugs - Ot P — Ug ) + SUgrrs

2
€rgpr = 3 (—Ur,0p CSC P + Ugp, g CSC G + Uy g COL P CSC P + Ug,p — Up COL D)

24



Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates:
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling,
Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.

1
+ 2 (ug,r COt @ — Ug rp — Ur,ro COL G CSC P — Ug 19 CSC O + Uy rgp CSC P)
2 2
€rogo = 3 (u¢ eSC” @ — Up,p — Ug, COL P + Ug g COL P CSC P — Ug g4 CSC ¢)
1
+ 2 (fugm csc? @+ Up g + Ugp,rp COL P — Ug g cOt @ CSC P + Ug 14 CSC gb) ,
2 2
€rogp = 3 (—ue cot” @ + ug,y COt @ — Uy g CSC P + Ug g COt P CSC P — Ug 9¢ CSC QS)
1
+ = (ug, cOt? ¢ — Up g COL P + Uy, CSC ) — Ug 1 COL P CSC P + U roy CSC P)
2 1 1
€roor = 5 (Ur + g — Urgg) = 5 (2 + g6 = Urrog) + —Urer,

9 1
€rogo = — 3Uoos T 5 (uo,rpp — ug,r) + U,

2 2 1
€rovs = 3 (Up = 2urg = Up.g0) = 5 (g = 2unre = Upros) + —Usrr,
1
€000r = —3 (Sug csc? ¢ — 3ug, 4 cot @ — Su, g csc P — 2u, g cot? g esc ¢ — 6ug g cot @ csc @
r
2 3 3
=+ 3uy 94 COt @ CSC ) — 3Up g9 CSC™ @ + Uy gog CSC (b) + ol (r,rocSCH — ug ),
1 3 3 9
€o000 = —3 ( — 3u, + 1 (—5cos ¢ + cos 3¢) csc” pug + 3uy, 6 cot ¢ + 3ug ¢ cot” ¢
r
— Sug.6 csed ¢+ 3ug 04 cot @ csc @ + 3u, gg csc? ¢ + 3ug g9 cot @ csc? ¢ + 6,000 esc? ¢)
3
+3 (U + Ug,p cOt ) + Ug rg CSC D)
1
€0006 = —3 (3’(},9 cot ¢ csc? ¢ — 3ug, ¢ cot? ¢ — 2ug,0 CSC O — Sug g cot? ¢ csc ¢
r
3
+ 3ug,04 cot ¢ csc ¢ — 3ug g cOt desc o+ Ug,000 cse? (,25) + 2 (ug,ro cSC P — Ug » COL D),
_ 1 2 _ 2 _
€90pr = 3 (2 + 3 cot gf)) Ug (2 + cot d)) Uy g — SUgp, ¢ COL ¢+ Uy, p COb 10}
+ 4ug g cot g csc ¢ — 2ug gy cSC P — 2Uy gg COL P csc? ¢ — Ug,00 csc? ¢+ U004 csc? (;5)
1
+ ) (Ur,rg — Ug,r)
1
€00g0 = —3 (2 cot ¢ csc? pug — 2ug, ¢ csc? ¢+ Ug, g COt @ — 2y g cOt P CSC P
r

— 2uy g csC P cot? ¢ — 2ug g csc® ¢+ 2 csc Pu,. g + 2 cot G esc Pug gg
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1

— 2cot (i)(zsc2 Pug g9 + csc? ¢u@7g9¢> + ﬁuo’m’

1
€00pp = 3 ( — Uy + 2ug cot? @+ UpgcOt d —Ugp g — 2Ug ¢ cot? @+ Ug, g COt P
+4ug g cot? @ csc P — 2ug gy cot @ csc @ + Uy 99 csc? 10}

2 2 1

— 2U¢,99 cot ¢ csc” ¢ + Ugp,00¢ CSC ¢> + 7‘72 (Ur,r + U¢,T¢) ,

1
€0ppr = —3( — 2cot? gug + 2ug 4 COt ¢ — U,y — 2y g CSC P + Uy g CSC P COL? P

r
+ Uy g €5 @ + Uy g cOt P CSC P — 2uy g COL B CSC P — 2 pg CSC P

1

+ Ur,fp¢p CSC ¢ + ﬁ (u’l‘,T9 csc ¢ - u@,r) 5

1
Cops0 = 3 ( — ty + cot ¢(2csc? ¢ — 1)ug — 2ug, 5 €5 @+ Ur g + Ug,pp COL

1
+ 2ug.6 cot? ¢ csc ¢ — 2 cot p cse QUG 9p + Up,9pp CSC qﬁ) + (Ur,r + Uy, cOt @
r

+ Up,re CSC ¢)7

1
€06pd = —3 ( — 2cot?3 Pug + 2ug 4 cot? @ — Ug,p¢ Ot P — 22U, g cOt P CSC P — 2Ug g CSC P

r
+ Ug,0 CSC P cot? ¢ + Ug,0 csed ¢+ 2Uy 9 CSC P — 2Ug g¢ COL P CSC P

1

+ Ug 040 CSC d)) + 2 (ug,ro CSC P — Ug r cOL @) ,

1

3
Copor = 3 (3up — Bur,g — 3ug,pp + Ur,gpp) + 2 (Urrp — Ug,r) s

1 3
€op00 = 3 (uo,ppp — 2ug,¢) + —2U0re;

1 3
€opo0 = 3 (=3ur — Bug,¢ + ur,gp + Up o) + 2 (U, + Ug,rg) - (4.5¢)

Finally, the set of equilibrium equations in spherical coordinate system is derived

as follows

_ 1 _ 1_ 1, _ _ _
Trrr + m’mr,g + ;T,ﬁr@ + ; (QTTT + Tor cot (;5 — Teg — T¢¢) -+ fr =0, (46&)
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B 1 1_ 1, _ _ _
Tror + mmo,a + 7000 + - (279 + Tor + (Togp + Tgo) cot @) + fo =0,

(4.6b)

_ 1_ 1, _ _ _
To0.0 + ~Top.0 + — (2Trg + Tor + (Tos — Too) cot 9) + fo = 0,

Trér + —
"er T L sin 10}

(4.6¢)

where the expressions for 7;;, 7, j = r, 0, ¢ are given in Appendix A.

5. Application to problems involving Spherical symmetry

As a three-dimensional useful application, consider a spherical surface of
radius @ bounding an isotropic body. In the absence of any type of external
loading and under the assumption of central symmetry, it is expected that due
to the effect of surface, the components of the displacement field along 6 and ¢

be zero, ug = ug = 0 and hence
u = (u-(r), 0, 0). (5.1)

Based on the formulations given in Section 4 and using the relations (4.6), the

only nontrivial equilibrium equation governing the body has the following form

P20 """ 4 6003 Bou™ — (r2 (0 + 6y) + 60365 )u)" — 4r (6, + £1y)u)

+ (4(03, 4+ 035) + )l 4 2rul, — 2u, = 0. (5.2)

By defining the new parameters p; and po as

02+ 03, 1
P1L= 55 P2 = 55,
03,63, 0G0,

the equilibrium equation may be rewritten as
rSu"" 4 6roul" — (61t + prr®)ul’ — drPpiu + (Ap1rt + porS)ull + 2pordul.
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— 2partu, = 0. (5.4)

In the above equation, » = 0 is a regular singular point. Its solution may be

obtained by employing the Frobenius series

o0
Up = Z anr™te. (5.5)
n=0

Tts substitution into Eq. (5.4) yields

i(n—&—s)(n—!—s —1D(n+s5—2)(n+s5—-3)(n+s—5)(n+s+2)a,r"t*

n=0 N
- m Z(n +5—=2)n+s—3)(n+s—5)(n+s)ay_or""*
n=2
+ D2 i(n +5—=5)(n+s—2)a,_4ar"" =0. (5.6)
n=4
The indicial polynomial, P(s) corresponding to n = 0 becomes
P(s) =s(s—1)(s —2)(s —3)(s — 5)(s + 2). (5.7)

By the assumption ag # 0, s is required to be a root of the indicial polynomial.
It is observed that P(s) has six integer roots as s = —2, 0, 1, 2, 3, and 5. In
Eq. (5.6), by equating the coefficients of 7% for n > 1, the following relations

are resulted

n=1:  ai(s+1)s(s—1)(s—2)(s —4)(s+3) =0, (5.8a)
n=2:  s(s—1)(s—3)(s+2)[(s+ 1)(s + 4)as — prao] = 0, (5.8b)
n=3: s(s+1)(s—2)(s+3)[(s+2)(s+5)az — pra1] =0, (5.8¢)
n>4:  apnP(n+s)—pran_sn+s—2)(n+s—3)(n+s—5)(n+s)

+ p2an_a(n+s5—5)(n+s—2)=0. (5.8d)
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A close scrutiny of the above relations reveals that by considering the roots, s =

2, —2, 0 the complete list of the independent solutions will be obtained. First

of all by considering s = 2 relations (5.8a)-(5.8d) result in a1 # 0, as = xgl*ag;
as 7& 0) and
n+2
an = = i o (M) ez
2n_p2(n+1)(n+2)(2n+1)' — D1 Do k—1 ’ =
(5.9a)
n+1
2
1680as n+2 konti—2k k(MK
n = — e _].
a2n41 2 (2n+5)! ]; ( )pl D2 k—1
SO ED SR g (TR Ly gy
(2 1 5)! AN B A '

Subsequently, employing the relation (5.5), the corresponding solution reduces

to
U £ I
Up = —30(62 +€2 )611 ( LS 1 Uy, + 12 'LLT_)
N A
840as3 (Un 4 1 )
P2 3 5%1 - 5%2 ’ @1 - 5%2 °
_ 2a9 (4u 401, " 401, " 4019 " 4015 " )
b2 ! 6%1 - 6%2 ’ 6%1 - 6%2 ’ 5%1 - 6%2 ° 4%1 - 5%2 °)7
(5.10)
where ag, a1, and a3 are arbitrary and
Up, =T, (5.11a)
cosh - £11 sinh EL
Upy = . 11 _ = L (5.11b)
cosh EL {19 sinh EL
Uy = —— 12 _ - 12 (5.11c)
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Up, = 2 (5.11d)
o
Y/ 231
Urs = 4( 1 +:2>e ) (5116)
o
¢ Lo
Upg = % (5.11f)
r
Likewise, for s = —2 it can be shown that
4611 4511 4612 4€12 )
Ur = ag | —3up, + Upe — Upy — A m—
( S e I T N A
2a9011012 6as
— —liotypy, — L11Upg + L11Upy) — ——5———5—~ (Upy — Upy) s
2, o, (Cr2try — LioUp, — Lr1tipg + L1110y 202 (B — 5y (Upy — Upg)

(5.12)
for arbitrary ag, as, and az. Finally, if one assumes s = 0, the series solution

will collapse to the following form

2
Ur = ag (2(5%1 +l)ur, — 2 2 (rury — Eur, — Lyt +£§2UT3)>
11— 2

4511 4(11 4612 4512
4u, Ty T T
+ as ( Uy, + 61 82 Upy — £ 62 Uy e £2 Urg + ( 62 u 3)

3aq 60a
E Z (511ur2 641121147«3) + m (zlluTz 6%2’“7”3) s (513)

with arbitrary ag, a1, a2 and az. In view of Eqs. (5.10), (5.12), and (5.13) it
is concluded that the solution to Eq. (5.4) associated with spherical geometry

problem having central symmetry can be represented as
Up = L{Upyy Upg, Upg, Upyy Upgy Upg b (5.14)

Next, the traction boundary conditions associated with the proposed spheri-
cal problem are extracted from the general treatment given in the earlier sections

in curvilinear coordinates. Recall that the spherical body is traction free and

30



Preprint of Farzaneh Ojaghnezhad, Hossein M. Shodja, Second strain gradient theory in orthogonal curvilinear coordinates:
Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity, Applied Mathematical Modelling,
Volume 76, 2019, Pages 669-698, https://doi.org/10.1016/j.apm.2019.06.021.

deforms just under the surface effect. The nontrivial components of the trac-
tions in second strain gradient theory for this special problem which are derived
using the relations (4.5), (3.26), (3.25), (3.22), and (3.19) must be equalized to

zero on the spherical free surface (r = a) as below

L 2b0+<2)\ 4(ag + a5+ a — 2ca — 2c3) 8(b—2b1+4b6+4b7))u

, r3 ro

4 a —10¢  8(b — 2by + 4bg + 4b
+()\+2M+ (a4+a5+c;+(:1) c. ( 1+4 6 + 7)) .
r r
4¢ —2a + 2 8(bg + b3 + by +b 10D
+< c-2at2a (b2 + b3 ! 4 5)>Umr+ (2c—a—2> —
r r r
45 r,rrrr 7
+ Dlrrrer + buypprrr =0, on T =a, (5.15a)
r
2 2b 4 4ey + 2¢ b — 20y + 4bg + 4b
tro+((a1+a2+a§)+ a1+ c+8( 1+4 6 + 7))ur
r r r
<4((L1 + as + a3) 8(5 — 2by + 4bs + 4b7)>
+ - 3 ur,r
r r
120 —8(ba+bg+by+b
+<a—c+ (b 23 2 5>> rrr
T
2b _
= Urerr bup prer =0, on r=a, (5.15b)
3 2 8(by +b3+by+b 8(by +b3+bs+b
trzbo+<61+ (b2 + 3—;— 4 + 5))ur—|—<c— (b2 + 3"21‘4+ 5)>unr
r r r
20 + 4by — 4bg — 4b _
—|—< + 20 . 6 7)um.,.—|—bu,.,,.,.,.=O on T =a. (5.15¢)

For illustration, the formulations for spherical geometries are specialized to an
isotropic solid nanosphere in Section 5.1 and isotropic infinite body with spher-
ical nanocavity in Section 5.2. The corresponding numerical examples will be

given in Section 7.
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5.1. Isotropic solid nanosphere
For an elastic isotropic spherical solid considered under the surface effect,
the solution must be bounded at its center, Thus, from the solutions presented

by Egs. (5.11), the solution of the problem od interest may be written as

up = Aruy, + Astyp, + Az,

r . r r . r
cosh — {11 sinh — cosh — {15 sinh —
481 i A lio lio

- 2 T4 - 2

r T r T

= A1T+A2

(5.16)

The unknown coefficients A; through Az are determined using the boundary

conditions given by Egs. (5.15).

5.2. Infinite isotropic domain with spherical nanocavity
For an infinite isotropic domain containing a spherical void under the surface
effect, u,,, ur,, and u,, given in Egs. (5.11) are not suitable since they do not

diminish as r — oo, and thus the displacement field has the following form

Up = A1y, + Aoty + Aty
r r

T T
A e B arne b

. (5.17)

Again, in a similar manner to the previous case, the unknown coefficients A;

through Az are determined using the boundary conditions given by Egs. (5.15).

6. Comparison to Gurtin-Murdoch surface elasticity solution

One can obtain nontrivial solutions for two problems of isotropic spherical

solid and infinite isotropic domain containing a spherical void under the surface
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effect in the framework of Gurtin-Murdoch surface elasticity [9], as well.
According to Gurtin and Murdoch [9], in the absence of body forces, the
system of governing equilibrium equations in the bulk volume V' of the solid can

be simplified as below

Tpa,p = 0,

(6.1)
Tpq = A€iilpq + 2€pq,

where ¢;; follows definition given by Eq. (2.2a). In Gurtin-Murdoch theory,
these equations are coupled with the following governing equilibrium equations

on the surface of the volume, 0V

inSing,j = NpTpi,

1
Evn = 3 (Pari wi i Lin + Pagjwij lin) (6.2)

Sinve = ooling + MENN ling + 210liv Enar + oo j Lin

In the above equations, upper-case indices belong to the two-dimensional sub-
space of the three-dimensional Euclidean space. Consider a three-dimensional
vector space ¥ and its two-dimensional subspace I, through which the struc-
ture of a surface 3 at each € 3 is defined. According to the definition given
by Gurtin and Murdoch [9], l;5s is an inclusion map that linearly transforms
any vector in the two-dimensional subspace (9) to its corresponding vector
in the three-dimensional space (7'), while Pyy; is the perpendicular projection
from 7" onto J,. In the above relations, Esn is the tangential surface strain
tensor, S;ps is the first Piola-Kirchhoff surface stress tensor, n; is the outward

unit normal vector of the surface 3, and o, Ag, and pg are, respectively, residual
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surface tension and surface Lamé moduli for the isotropic surface 3. It may be
noteworthy to mention that |;3/S;a ; in the first of Eqgs. (6.2) represents the
surface divergence of the surface stress tensor S;j; as defined by Gurtin and
Murdoch [9, 19].

For the problems involving spherical symmetry, as discussed in Section 5, the
displacement field has the form (5.1). The displacement form of the governing

equilibrium equation for the bulk is derived using Eq. (6.1)
TQuMT + 2ru,, — 2u, =0, (6.3)
with the general solution
up= At o (6.4)

The unknown constants A and B will be obtained using the surface boundary

conditions given by Egs. (6.2).

6.1. Isotropic solid nanosphere

In this case, since r = 0 is a field point it requires that B = 0, and the
unknown A is determined via the first relation of Egs. (6.2) on r = a. Thus,

the displacement field will take the following form

_ —20¢T
2(20 + 210 + 00) + (3N + 2p)a’

(6.5)

Uy

It is interesting to note that comparison of the above solution with that of
Mindlin’s second strain gradient theory given by (5.16) reveals that the two

solutions share the linear term, but Mindlin’s theory gives rise to two additional
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terms. The effect of these additional terms will be numerically demonstrated in

Section 7.

6.2. Infinite isotropic domain with spherical nanocavity

Since the displacement field induced by the surface due to the spherical
nanocavity should diminish at infinity, then A = 0. By employing the rela-
tions (6.2) on r = a, the displacement field will have the following form

—00 a3

. _ 6.6
Y (2ua + 2X0 + 20 + 0¢) 12 (6.6)

As it is seen, in this case surface elasticity theory recovers only the first term
of the solution obtained via Mindlin’s second strain gradient theory. In fact,
the Mindlin’s solution (5.17) contains two additional terms which are absent

in (6.6).

7. Numerical results

For the illustration of the current theoretical developments, surface relax-
ation of spherical domains are considered. More specifically, the displacement
field of a nano-spherical medium as well as the displacement field within an
infinite domain containing a spherical nanocavity is examined. To the end of
comparison, the numerical results are given in the framework of both Mindlin’s
second strain gradient elasticity and Gurtin-Murdoch surface elasticity. The re-
sults are presented for some face-centered cubic crystals (fcc) as Ag, Au, and Pt.

First, a brief explanation for the determination of the numerical values of the
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material parameters in second strain gradient elasticity and Gurtin-Murdoch

surface elasticity is given in Section 7.1.

7.1. Evaluation of Mindlin’s material parameters via lattice dynamics and ab-

initio calculations

In order to present the numeric solution of problems involving spherical
symmetry through second strain gradient elasticity, one should first determine
the pertinent numerical values of the components of the fourth, sixth, and eighth
order elastic moduli tensors of the crystals of interest. To this end, a short
introduction to the atomistic description of materials via lattice dynamics is
given here.

Consider the bulk of a centrosymmetric crystal with perfect lattice of infinite
extension in space and denote the position of an arbitrary primitive unit cell of
volume v within by the vector 2. Suppose that the distance between the ot!
primitive unit cell from the reference unit cell at « is indicated as R,. Moreover,
let K7 present the atomic force constant between the unit cells with location
vectors « and  + R,,.

For any perturbation of the atomistic configuration from the equilibrium,
the potential energy density function pertinent to the one-atom unit cell at x

to within a harmonic approximation may be expressed as

W= SR (il + Ra) — @) (wi(@ + Ra) —ws(@)). (T1)

By writing Taylor’s expansion of u(x + R,,) about « and based on the fact that

for centrosymmetric crystals the odd-ranked elastic moduli tensors are equal to
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zero, the potential energy density function may be written as

~ ~ 1=
Cijmnti,mUjn + CijmnpgUimUjnpg + §Cijmnpqui,mnuj,pq

W:

+ Cijmntpqrui,mntujﬁpqw (72)

[N R NOY

The coefficients C' appearing in the above relation depend on the atomic force

constants and the equilibrium positions of the atoms as follows

~ 1 N
Cijmn = —% . inam Ran; (73&)
- 1 N
Cijmnpq - 12v Za Kino‘m Ro‘n RapRaq’ (73b)
- 1 N
Cijmnpqrs = —% Ea KinamRanRoszaqRarRas, (730)
z 3 . ) 7 o )
and Cijmnpg = icijmnpq' Employing the Hamilton’s principle as described by

Ojaghnezhad and Shodja [7] and Shodja et al. [20], the equations of motion for

centrosymmetric crystals are obtained as

puz = Cijmnuj,mn + Cijmnpquj,mnpq + Cijmnpqrsuj,mnpq'r‘sv (74)

in which p is the ratio of the mass of the atom in one primitive unit cell to its
volume, and “,” in the subscript denotes differentiation with respect to x.

The atomic force constants, K;; are equivalent to the components of the
Hessian matrix which are in turn equal to the value of the second derivative of
the total potential energy with respect to the corresponding atomic positions at
the equilibrium. The Hessian matrix is obtained from the first principles density
functional theory (DFT) and, subsequently, the fourth, sixth, and eighth order

constants given by relations (7.3) are evaluated. From comparison of Egs. (2.7)
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and (7.4) in the absence of body forces f; the following relations are obtained

~ijmn + CNijin - Cmijn, (75&)

Cimjn

~ 1
Cijkimn = 1 (Fjkmnti + Fjimnki + Fjminii + Finmiti + Fiikmng + Fritmng + Fiking

1
+ Foikmij) — 6 (Grtimij + Gukimij + Griimnj + Gumitkj + Gmiinkj

+ Gmkinlj)a (75b)

Cijklmnpq = 270 (qulimnpj + Iqmliknpj + anlimkpj + qulimnkj + qumilnpj + qunimlpj
+ qupimnlj + Imkliqnpj + Inklimqu + kalimnqj + Iqmniklpj + Iqmpiklnj
+ anpimklj + Imkniqlpj + Imkpiqnlj + Inkpimqu + Imnliqkpj + Implianj

+ Inplim,qkj + Imnpiqklj) . (75C)

Using the above relations, a set of equations for @ — 2¢, @ — ¢3, b, b', \, and y,
pertinent to isotropic materials, in terms of the components of the tensors C is
obtained. Subsequently, the bulk characteristic lengths are readily available via
Egs. (2.9).

To obtain the other additional parameters of Mindlin’s theory, one may
equalize the higher order terms of the strain energy density functions perti-
nent to the continuum model (2.5) and the pertinent lattice dynamics formula-

tion (7.2) as below

Oknijlmuk,ijun,lm = Gijklmnuk,ijun,lma (763)
Cinjklmui,jun,klm = LjklmnUi jUn kim, (76b)
Clqijk:mnpul,ijkuq,mnp = LijklmnpqUl,ijkUq,mnp- (76C)

Using the above equalities, one may obtain the following relations between the
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additional parameters

a1 = as = as, 2a3 = ay, (7.7a)

261 = C2 = C3, (77b)
3

4b1 = 2b2 = bg = 4b4 = 2b7, b5 = 566 (77C)

Based on the numerical values of Lamé constants, bulk and surface character-
istic lengths and modulus of cohesion for Ag, Au, and Pt given by Ojaghnezhad
and Shodja [7] and summarized in Table 3, one may determine all the material
parameters in Mindlin’s second strain gradient theory. Moreover, Ojaghnezhad
and Shodja [7] have also provided the surface residual stress and surface elastic
constants for Ag, Au, and Pt within Gurtin-Murdoch surface elasticity. For

convenience, the numerical values of these are displayed in Table 4.

Table 3: Lamé constants in units of €V /A3, bulk and surface characteristic lengths in units of

A, and modulus of cohesion in units of eV/A for Ag, Au, and Pt.

element X (eV/A3)  pu (eV/A3) 011,012 (R) lo1,£2a (A) £10 (R) bo (eV/A)
Ag 0.56 0.24 0.91 £ 1.03% 1.37 + 1,664 2.167 -1.87

Au 1.08 0.26 0.56 £ 0.634 0.69 + 0.69:¢ 0.2594-0.4207 -0.157+0.3147
Pt 1.55 0.60 0.81 £ 0.914 1.44 £+ 1.454 0.2714+0.9361 -0.984+0.6221

7.2. Descriptive examples

Based on the numerical values of the material parameters and characteristic
lengths as determined in the previous section, one may evaluate the displacement

and stress field through the domains of the spherical symmetry in the framework
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Table 4: Surface residual stress and surface elastic constants in units of eV/ A2 for Ag, Au,

and Pt.

element ) Ao Lo

Ag 0.088 -0.047 -0.044
Au 0.073 -0.028 -0.036
Pt 0.160 -0.083 -0.081

of Mindlin’s second strain gradient theory. Let ag denote the lattice constant
for the element under consideration, then the normalized parameter, o = a%
provides a sense on the size of the spherical domain as compared to the lattice
constant of the element. Exploiting the given numerical data for the material
constants, the variation of the displacement field u, in units of A versus the
normalized variable r/a for nanosphere and spherical nanocavity of radius a
pertinent to various values of o = a% is plotted in Figs. 2 and 3, respectively.
These plots are given for fcc metals of (a) Ag, (b) Au, and (¢) Pt according to
(1) Mindlin’s second strain gradient elasticity and (2) Gurtin-Murdoch surface
elasticity. Since Mindlin’s bulk characteristic lengths are complex numbers,
the displacement fields pertinent to Mindlin’s second strain gradient theory
represent oscillatory behavior with increasing 2 (Figs. 2 and 3). Moreover, it
is observed that the Gurtin-Murdoch solutions for nanosphere and spherical

nanocavity are less sensitive to the sphere radius in comparison to Mindlin’s

solutions. Additionally, Mindlin’s second strain gradient theory provides values
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of u, on the boundary of the nanosphere much larger than Gurtin-Murdoch
surface elasticity.

The normalized change of the radius <ij> versus the normalized radius
of the sphere ((i)) is also plotted for the fce crystals of (a) Ag, (b) Au, and
(¢) Pt in Figs. 4(a)-(c) according to both Mindlin’s second strain gradient elas-
ticity (MSGE) and Gurtin-Murdoch surface elasticity (GMSE). For the sake of
comparison, the relaxation of the nanosphere is also calculated by simulating
the spherical domain via the molecular dynamics package LAMMPS at abso-
lute temperature using Embedded-Atom-Method (EAM) functions reported by
Foiles et al. [21]. It is observed that the result obtained from Gurtin-Murdoch
surface elasticity is approximately size independent while the results of Mindlin’s

strain gradient theory and LAMMPS are size-dependent. Likewise, the normal-

A

ized change of the radius (a) of an embedded nano-sized spherical cavity
ao

is plotted versus the normalized cavity radius (a> for Ag, Au, and Pt in

ao

Figs. 5(a)-(c), respectively, using Mindlin’s strain gradient theory and Gurtin-
Murdoch surface elasticity. As it is observed the phenomenon of relaxation
captured within MSGT is remarkably affected by the size of the spherical cav-

ity, whereas GMSE remains nearly size independent.
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Figure 2: Variation of the displacement field u, in A versus r/a in the (a) Ag, (b) Au, and
(c) Pt nanospheres of radius a according to (1) Mindlin’s second strain gradient theory and

a
(2) Gurtin-Murdoch surface elasticity for different ratios of « = —.
ao
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Figure 3: Variation of the displacement field u, in A versus r/a in the (a) Ag, (b) Au, and (c)
Pt infinite domain with spherical cavity of radius a according to (1) Mindlin’s second strain

a
gradient theory and (2) Gurtin-Murdoch surface elasticity for different ratios of & = —.
ag
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Figure 4: Variation of the normalized change in the sphere radius (—a) with the normalized
ag

radius of the sphere (i) obtained via Mindlin’s second strain gradient theory (MSGT),
ao

Gurtin-Murdoch surface elasticity (GMSE), and LAMMPS simulation for (a) Ag, (b) Au, and
() Pt.

In order to compare the results on relaxation of a spherical solid predicted
by the current continuum theories (MSGT and GMSE) with those of atomistic
simulations, the atomic displacements calculated for Ag spherical domains via
LAMMPS using different EAMs [21, 22, 23, 24] as well as the corresponding
results of the thories of interest are inserted in a common picture, Fig. 6. In
Figs. 6(a)-(c), three different sizes of solid nanospheres with ratios a = 0.71, 1,
and 2 are considered, respectively. In Figs. 6(a)-(b), it was feasible to indicate

the atoms in a common radial distance from the center atom by letters. The
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Figure 5: Variation of the normalized change in the embedded spherical void radius (—)
ao
a
with the normalized radius of the sphere (—) obtained via Mindlin’s second strain gradient
ag

theory (MSGT) and Gurtin-Murdoch surface elasticity (GMSE) for (a) Ag, (b) Au, and (c)

Pt.
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computed radial displacement for each atom is also given in A in this figure.
Under the surface effect in the above-discussed problems involving spherical
symmetry, the non-trivial displacement field induces non-trivial stress field with
non-zero components 7,..(r) and 7pa(r) = Tpe(r). Figs. 7(a)-(c) represent the
variation of 7., and Tgg = 744 in eV /A3 versus 2 for some different values
of «, respectively, within nano-spherical domains of Ag, Au, and Pt based on
Mindlin’s second strain gradient theory. It is observed that the phenomenon of
relaxation for larger spheres (« larger) has little or no effect on the stress field
distribution as the center of the sphere is approached, whereas steep variations
in the stresses near its surface occur and attain notable values just beneath
the surface. Through Gurtin-Murdoch surface elasticity, however, all the non-
zero components of the induced stress field in nanosphere are constant and
Trr = Tg9 = Tpe- Lhe variation of these stress components in eV/A3 versus
normalized sphere radius <:0> are plotted in Figs. 8(a)-(c) for Ag, Au, and
Pt, respectively. As it is seen, the surface effect is more pronounced for smaller
spheres; in all the considered cases the variation of stresses becomes sharper
as a/ag — 0. Likewise, in the case of an embedded spherical nanocavity, the
variation of 7, and 7g9 = T4 in eV/ A3 versus g for different values of cavity
size are displayed in Figs. 9 and 10 for Ag, Au, and Pt based on Mindlin’s second
strain gradient theory and Gurtin-Murdoch surface elasticity, respectively. In
Mindlin’s solution, generally, the variation of the stress components near the
boundary of the cavity have oscillatory nature, as it was the case in the case of

the displacement field. The stresses attain notably large values at the cavity’s
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Figure 6: Relaxation phenomenon observed for the Ag spherical domains of radii (a) a =
0.7lag, (b) a = ag, and (c) a = 2ag via continuum theories of interest (MSGT and GMSE)

as well as some EAMs.
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surface, just inside the matrix, and decay rapidly with distance from the cavity.
A similar phenomenon is observed within Gurtin-Murdoch surface elasticity,

except the solutions are not oscillatory.
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Figure 7: Variation of the stress field components 7, and Tp9 = T3¢ in eV/A3 versus r/a
in the (a) Ag, (b) Au, and (c) Pt solid nanosphere of radius a according to Mindlin’s second

a
strain gradient theory for different ratios of a = —.
ag
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Figure 8: Stress components 7 = Tgg = Tg¢ in eV/A3 versus — via Gurtin-Murdoch surface
ao

elasticity for solid nanospheres made of (a) Ag, (b) Au, and (c) Pt.
8. Conclusion

Mindlin’s second strain gradient theory has been formulated in an arbitrary
orthogonal curvilinear coordinate system. Using Eringen [10] mathematical
tools for transformation from Cartesian coordinates to any arbitrary curvilinear
coordinates, the equilibrium equations, generalized stress-strain constitutive re-
lations, components of the generalized strain tensors, and three different types
of traction boundary conditions in any orthogonal curvilinear coordinate system

are derived. In continue, in order to give a highly-pragmatic example in the field
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Figure 9: Variation of the stress field components 7 and 799 = T4 in eV/A3 versus r/a in
the (a) Ag, (b) Au, and (c) Pt domain with spherical cavity of radius a according to Mindlin’s
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of nanomechanics, Mindlin’s second strain gradient theory is represented in the
spherical coordinate system and surface relaxation associated with Ag, Au, and
Pt nanospheres as well as nanocavities buried in Ag, Au, and Pt is examined in
the framework of Mindlin’s second strain gradient theory. The results are com-
pared with those obtained using Gurtin-Murdoch surface elasticity. For further
verification, Ag solid nanosphere has also been simulated using molecular dy-
namics with various EAMs. It is observed that the phenomenon of relaxation
captured within Mindlin’s second strain gradient theory is remarkably affected
by the size of the nanospherical domain while that of Gurtin-Murdoch surface

elasticity is nearly size independent.

Appendix A. The expressions 7;;, i, j = r, 8, ¢ in spherical coordi-

nate system
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