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Abstract—In this paper, we introduce the trust region concept
for distributed optimization. A large class of globally convergent
methods of this type is used efficiently in centralized optimization,
both constrained and unconstrained. The methods of this class
are built on the idea of modeling the objective function at each
iteration and taking the new iteration as the minimizer of the
model in a certain area, called the trust region. The trust region
size, the minimization method and the model function depend on
the properties of the objective function. In this paper we propose
a general framework and concentrate on the first order methods,
i.e. the gradient methods. Using the trust-region mechanism for
generating the step size we end up with a fully distributed method
with node varying step sizes. Numerical results presented in the
paper demonstrate the efficiency of the proposed approach.

Index Terms—Distributed optimization, Trust region method,
multi-agent network

I. INTRODUCTION

We consider a network of N agents, each of which has
access to a local (convex) function fi : IRd 7→ IR. Agents
cooperate locally, with the view of minimizing the aggregate
objective function defined as:

f(x) =

N∑
i=1

fi(x) (1)

Problems of this form attract a lot of interest, as they are
applicable in many areas, like distributed inference in sensor
networks [9], and large-scale machine learning [14], [2], [3].

A number of iterative methods for solving (1) in distributed
environment is proposed and analysed in the literature. A large
class of gradient methods is based on the idea of two step
procedure: each node makes an update in the direction of
(local) negative gradient using a certain step size and after
that all nodes update their iteration through a consensus step.
Important questions in all of these methods are the direction
of the update at each step and the step size. A number of
methods with constant step size [11], diminishing step sizes
[7] and so on, are analysed in the literature. Furthermore,
the convergence towards the exact solution of (1) can be
obtained with a suitable direction that is a local (node specific)
approximation of the global gradient, for details see [8] and
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references therein. Second order methods are also successfully
applied in distributive environment for solving (1), see [1],
[10].

Trust region framework is widely used in centralized opti-
mization as a global solver for both constrained and uncon-
strained problems. A comprehensive theory with implementa-
tion details is available in [5]. A gradient method with adapted
step sizes based on the trust region approach is recently
analysed in [6]. The main ingredients of a trust region method
are the model function, the trust region size and a solution of
the model in the trust region area, and all three ingredients
are updated in each iteration. The trust region approach can
be adopted to nonconvex case, adding a regularization term to
the second order approximation model, [5] and to derivative
free environment [4].

In this paper we introduce the distributed trust region
framework suitable for solving (1). The key modification aims
to make the standard method fully distributed and is achieved
through a consensus part. Each node works with a local
function and its’ model, and local trust region size as well.
The general trust region rule for accepting an iteration or
decreasing the trust region size, as in the classical trust region
approach, is applied locally, by each node, while the consensus
step ensures that the full objective function is considered. The
general distributed framework is then further developed for the
first order model functions in each iteration. This particular
method in fact results in distributed gradient method with
node specific and time varying step sizes. The method is
numerically tested and its performance is compared with the
standard distributed (sub)gradient method [11].

The rest of the paper is organized as follows. Section II
introduces the concept of Trust-Region in centralized opti-
mization. The proposed algorithm is introduced in Section
III, while Section IV presents numerical results. Section V
concludes the paper, discussing the model and ideas for future
work.

II. TRUST REGION METHODS

In this section, we review the concept of trust region in
centralized settings.

A. General Framework

Trust region encompasses a wide range of optimization
methods. The general idea is to generate a model that is a good
approximation of the objective function in a specific region,



and then find the step that minimizes the model function in
that specific region, determined by the trust-region size. Let
f : IRd 7→ IR be the objective function, and let xk and ∆k

be the current approximate solution and trust region size at
iteration k, respectively. Then, at the (k + 1)th iteration, in
a typical trust region method one builds a quadratic model
function

mk(p) = f(xk) +∇T f(xk)p+
1

2
pTBkp. (2)

Here, Bk ∈ IRd×d is a symmetric matrix which approximates
the Hessian ∇2f(xk). If Bk = ∇2f(xk) we say that the
methods is Newton trust region. The next step is to minimize
the model within the trust region, i.e. the step pk is generated
as

pk = arg min
p∈IRd

mk(p) s.t. ‖p‖ ≤ ∆k. (3)

The step pk can be generated as the exact minimizer of (3) or
an inexact minimizer. Under suitable conditions, like positive
definiteness of Bk, one can guarantee that the problem (3)
is solvable and thus the reduction in the model is obtained,
i.e., mk(0) −mk(pk) > 0. Keeping in mind that the aim is
to minimize the objective function f, we define the predicted
reduction as the reduction in the model value,

pred = mk(0)−mk(pk),

and the actual reduction in the objective function

ared = f(xk)− f(xk + pk).

Based on their quotient,

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(4)

the iteration is either successful and xk+1 = xk + pk, or
unsuccessful, xk+1 = xk. In the later case one has to reduce
the trust region size ∆k and repeat the process. The size of
the trust region is usually adapted in a bit more complex way
than the simple statement successful/unsuccessful as precisely
stated in the Algorithm 1 below. But roughly speaking the
reasoning behind the update is the following. If the actual
reduction is too small (or even non-existing) then the model
function does not approximate the objective function well and
therefore we need to shrink the region and repeat the process.
If there is a good agreement between the actual reduction
in the objective function and the model reduction then the
trust region size is kept the same. Finally, if the reduction in
the model and objective function are close enough then we
conclude that the approximation is very good and increase the
trust region size hoping to obtain a larger step in the next
iteration.

Algorithm 1 Trust-Region method

Input: 0 < ∆min < ∆max, ∆0 ∈ (∆min,∆max), η ∈
[
0, 1

4

)
,

x0 ∈ IRd

1: for k = 0, 1, . . . do
2: Obtain pk by solving (3)
3: Evaluate ρk from (4)
4: if ρk < 1

4 then
5: ∆k+1 = 1

4∆k

6: else
7: if ρk > 3

4 and ‖pk‖ = ∆k then
8: ∆k+1 = min

{
2∆k,∆max

}
9: else

10: ∆k+1 = ∆k

11: end if
12: end if
13: if ρk > η then
14: xk+1 = xk + pk

15: else
16: xk+1 = xk

17: end if
18: end for

B. The Cauchy Point

The Cauchy Point is particularly important as it defines
the minimal decrease in the objective function needed for
convergence. It is based on the first order model, i.e. the
steepest descent direction. Let us consider the linear model
and its solution pk,

pk = arg min
p∈IRd

f(xk) +∇T f(xk)p s.t. ‖pk‖ ≤ ∆k. (5)

It is easy to verify that the closed-form expression for pk is
given by

pk = − ∆k

‖∇f(xk)‖
∇f(xk). (6)

Now, the Cauchy point is obtained as the minimizer of the
model function (2) along the search direction (6)

τk = arg min
τ≥0

mk(τpk) s.t. ‖τkpk‖ ≤ ∆k . (7)

So, the Cauchy point is defined as:

pkc = τkpk, (8)

with

τk =

{
1, ∇T f(xk)Bk∇f(xk) ≤ 0

min{ ‖∇f(xk)‖3
(∇T f(xk)Bk∇f(xk)∆k)

, 1}, ∇T f(xk)Bk∇f(xk) > 0
(9)

Under a set of standard assumptions, see [5] a trust region
method generates a convergent sequence if the sufficient
decrease condition

mk(0)−mk(pk) ≥ θ(mk(0)−mk(pkc ))

holds.
If we assume that the model function is linear, i.e. Bk = 0

in each iteration then the trust region method actually reduces



to the gradient method with the variable step sizes (6). The
convergence conditions in this case are standard, including the
smooth gradient and boundedness of the objective function
from below.

III. DISTRIBUTED TRUST-REGION

In this section we introduce the trust region concept in dis-
tributed settings. In Subsection III-A the general formulation
of distributed optimization problems is introduced, while in
Subsection III-B the proposed algorithm is described.

A. Network and Optimization Models

The goal in distributed optimization is to cooperatively solve
(1). Each agent keeps its local copy of the solution, xi ∈ IRd,
and the aim is for agents to achieve consensus, i.e. to achieve
x1 = x2 = . . . = xn.

Additionally, each agent can exchange information with
other agents in the network. The network is modeled as a
graph G = (V, E), where vertices represent agents, while edges
represent communication links between them. We associate a
matrix W ∈ IRn×n with graph G. The elements of W are such
that wij > 0 if {i, j} ∈ E and wij = 0 if {i, j} /∈ E . One can
observe that W respects the network’s sparsity pattern. We
make the following standard assumptions about the network
model and the matrix W :
Assumption A1. The underlying graph G is an undirected and
connected graph.
Assumption A2. The matrix W ∈ IRn×n is symmetric and
doubly stochastic.

Assumption A1 describes the network and communication
model that we assume in our work. It ensures that communi-
cation can go both ways, i.e. if {i, j} ∈ E , then agent i can
communicate with agent j and vice-versa. It also ensures that
a consensus between all agents is possible, since the network
is connected. Assumption A2 is a standard assumption for
proving convergence of distributed algorithms.

B. Proposed Method

The method we propose is a fully distributed trust region
based method. In this section we use subscripts to refer to
agents, while superscripts refer to the iteration counter.

Assume that the method is initiated with the upper and
the lower region size bounds, denoted by ∆max and ∆min,
respectively1. Let us consider the agent i at the iteration k.
The agent has the local approximate solution xki and the trust
region size parameter ∆k

i . The general concept is then the
following. First, a local (quadratic) model function is defined,

mk
i (p) = fi(x

k
i ) +∇T fi(xki )p+

1

2
pTBki p. (10)

The minimizer of the model (exact or inexact) is then com-
puted

pki = arg min
p∈IRd

mk
i (p) s.t. ‖p‖ ≤ ∆k

i . (11)

1It is possible to define trust region method without lower and upper bound
on the trust region size.

After that, the node compares the predicted and actual reduc-
tion computing

ρki =
fi(x

k
i )− fi(zki + pki )

mk
i (0)−mk

i (pki )
, (12)

with
zki =

∑
j∈Ni∪{i}

wijx
k
j . (13)

Notice that here we have different definition of the actual
reduction than in the classical trust region approach. Namely
the actual reduction is computed at the (subject to acceptance
criterion) next point which is the consensus point plus correc-
tion zki +pki . Computation of the consensus point zki is the only
step in the algorithm where inter-agent communication takes
place. The decision on the next (local) trust region size is based
on the same criterion as in the previous Section. If ρki < 1/4
then ∆k+1

i = max{1/4∆k
i ,∆min} otherwise if ρki > 3/4, the

trust region size is enlarged, ∆k+1
i = min{2∆k

i ,∆max}, and
if ρki ∈ [1/4, 3/4] then the trust region size is kept unchanged,
∆k+1
i = ∆k

i . The reasoning behind this trust region size
update is the same, if the quotient of the actual and predicted
reduction is too small then the model function is not a good
approximation of the objective function in the considered
region and we need to shrink the region. On the contrary, if
the agreement between actual and predicted reduction is good
(close to 1) then we might consider enlarging the region, to
obtain larger steps in the next iteration. The crucial difference
with respect to the centralized trust region method is the update
of the next iteration. Although the criterion for successful
iteration is defined as before with the coefficient ρki defined in
(12), i.e., if ρki > ηi, for ηi ∈ (0, 1/4), the update is performed
as

xk+1
i = zki + pki .

Otherwise the iteration is unsuccessful and xk+1
i = zki . This

way, we not only shrink the region, but move the local solution
toward a consensus solution, with the aim of obtaining a
better model function (10). Thus, the proposed method is fully
distributed, as each agent computes all the necessary infor-
mation locally, with the exception of zki , which is obtained
by exchanging information only with neighbouring agents, as
explained above.

In this paper we are particularly interested in the linear
model trust region method, i.e. in the gradient based method.
Thus we will consider the model functions

mk
i (p) = fi(x

k
i ) +∇T fi(xki )p+

1

2
pT Ip,

where I ∈ IRd×d represents the identity matrix, the simplest
Hessian approximation. Thus each node solves the problem

min
p∈IRd

fi(x
k
i ) +∇T fi(xki )p, s.t. ‖p‖ ≤ ∆k

i (14)

for pki defined as

pki = − ∆k
i

‖∇fi(xki )‖
∇fi(xki ) . (15)



After that the Cauchy coefficient is computed as in (7) and
we get

τki = min
{‖∇f(xki )‖

∆k
i

, 1
}
, (16)

and

pki,C = τki p
k
i . (17)

Equation (17) shows that the the step-size is adaptively ad-
justed, based on the performance in the previous iteration.
Furthermore, the step size is locally computed, i.e., node
specific. The algorithm below states formally the first order
model trust region method, listing one iteration at a node i.

Algorithm 2 DTR method at Agent i

Input: ∆min,∆max > 0, ∆0
i ∈ (∆min,∆max), ηi ∈

[
0, 1

4

)
,

x0
i ∈ IRd

1: for k = 0, 1, . . . do
2: Compute pki,C as in (17)
3: Evaluate ρki from (12)
4: if ρki <

1
4 then

5: ∆k+1
i = max

{
1
4∆k

i ,∆min

}
6: else
7: if ρki >

3
4 and ‖pki,C‖ = ∆k

i then
8: ∆k+1

i = min
{

2∆k
i ,∆max

}
9: else

10: ∆k+1
i = ∆k

i

11: end if
12: end if
13: if ρki > ηi then
14: compute zki by (13) and take xk+1

i = zki + pki,C
15: else
16: compute zki by (13) and take xk+1

i = zki
17: end if
18: end for

IV. NUMERICAL RESULTS

In this section, we present the results obtained from nu-
merical experiments. In Subsection IV-A distributed models
used as benchmarks are introduced. In Subsection IV-B we
define the problem used to evaluate the performances of the
distributed models. Finally, in Subsection IV-C we present the
results.

A. Benchmark

We benchmarked the performances of the proposed algo-
rithm with distributed (sub)gradient descent (DGD) [11].

DGD is a well-known first-order method that uses the
following update rule:

xk+1
i = zki − α∇fi(xki ) , (18)

where zki is defined as in (13), while α is a fixed step-size and
x0
i ∈ IRd is usually chosen to be the zero vector.

B. Problem and Parameters

We evaluated the performances of the methods on a binary
classification problem, using logistic regression. The objective
function is defined as:

f(x) =

N∑
i=1

[
λ

2N
‖x‖2+

qi∑
j=1

log
(
1+exp (−vijuTijx)

)]
, (19)

where λ is the regularization parameter, qi represents the
number of samples available to agent i, vij ∈ {−1, 1}
represents the class label of the jth sample at agent i, while
uij ∈ IRd is the jth sample of agent i.

We use N = 30 agents, and each has qi = 50 samples. The
dimension of the problem is d = 10, and the regularization
parameter is set to λ = 10−4. We define the weight matrix
using the Metropolis weighting scheme:

wij =


0, j /∈ Ni

1
2(1+max{di,dj}) , j ∈ Ni
1−

∑
k∈Ni

wik, j = i

(20)

where di denotes the degree of vertice i.
We calculate the approximate Lipschitz constant for the

gradient of f as

L =
λ

N
+ C max

i,j
‖uij‖2 , (21)

where C = maxi qi. In our example, C = 50. We use L to
calculate the step-size for DGD as α = 1/(100L). For DTR,
we set the region size boundaries at ∆min = 10−2 and
∆max = 105. Each agent had the same initial region size
∆0
i ∈ [∆min,∆max].

C. Results

We generated two synthetic datasets to test the performances
of the methods in the following way: each component of the
sample vector uij was generated from the normal distribution.
If the jth sample of agent i belongs to the class labeled 1,
its components are drawn from the normal distribution with
mean µ = 3 and standard deviation σ = 1. Otherwise, the
components of the sample vector are drawn from the normal
distribution with mean µ = −3 and standard deviation σ = 1.
The dataset generated in this way is linearly separable. We
also generated a nonseparable dataset, with parameters µ = 2
and σ = 3 if the jth sample of agent i belongs to the class
labeled 1 and µ = −2 and σ = 3 if the jth sample of agent i
belongs to the class labeled −1.

We present 3 plots: the optimality gap, the behaviour of
parameter τki , defined in (16), and the behaviour of ∆k

i , the
region size parameter. The optimality gap is defined as:

xk − x∗ =
1

N

N∑
i=1

‖xki − x∗‖
‖x∗‖

(22)

and x∗ represents the optimal point, calculated using the
centralized gradient descent algorithm. For τ and ∆, we plot
the minimum, maximum and mean values of all agents’ values
at each iteration. Additionally, we randomly choose an agent



and follow the behaviour of its parameters. Those values are
denoted by ’test’ in the graphs.

Fig. 1. Optimality gap versus the number of iterations for separable data

Fig. 2. Region size behaviour versus the number of iterations for separable
data.

Figures 1-3 concerne the separable dataset. We can see
from Fig. 1 that the proposed method has a clearly superior
convergance rate compared to the method in [11]. Also, Fig.
2 and Fig. 3 show that the region size stabilizes at the
7th iteration, approximately the same iteration as τ starts to
decrease. This represents the moment that the region size
becomes an inactive constraint, and the algorithm begins to
take the full gradient step, as defined in (15).

Figures 4-6 concerne the nonseparable dataset. We can
see from Fig. 4 that the proposed method has a comparable
convergance rate with the method in [11]. In Fig. 5 we can
see that it takes 14 iterations for all the agents to reach the
lower bound on the region size and Fig. 6 shows that the
algorithm stops taking the full gradient step after 3 iterations.

Fig. 3. Behaviour of τ versus the number of iterations for separable data.

Fig. 4. Optimality gap versus the number of iterations for nonseparable data

This means that the computed steps do not make sufficient
progress, as defined by (12), i.e. while they are accepted, they
are not good enough to warrant an increase in the region size.
Therefore, the region size remains an active constraint, unlike
in the previous example.

V. CONCLUSION

The method proposed in this paper, DTR, is a distributed
version of the Trust-Region optimization method. The key
novelty developed here is the step-size selection which is
defined in a Trust-Region manner, thus allowing for adaptable,
locally computable step-sizes. The numerical experiments
show favorable results compared to DGD. Some of the ideas
for future work include using a different Hessian approxi-
mation for the model function defined by (10) in order to
incorporate a stronger second-order information in the search
direction, and convergence analysis, to name a few.



Fig. 5. Region size behaviour versus the number of iterations for nonseparable
data

Fig. 6. Behaviour of τ versus the number of iterations for nonseparable data
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