The Radio Neutrino Observatory

Targeting the radio emission of neutrinos above 10 PeV at South Pole

Albrecht Karle and Anna Nelles for the RNO Collaboration

The science case

- > A neutrino flux is expected from the interaction of ultra-high energy cosmic rays with the CMB.
- > Flux predictions of neutrino production in sources extend to energies beyond 10 PeV.
- > IceCube measured astrophysical neutrinos. The continuation of the flux to higher energies is to be investigated.

- > No existing detector with promising sensitivity beyond 10 PeV.
- > Radio emission can travel large distances in the ice, therefore a sparse instrumentation can cover large effective volumes.
- > Covering a large fraction of the neutrino parameter space will help to pinpoint the sources of ultra-high energy cosmic rays.

The design of RNO

60m-

RNO at South Pole

- > 61 stations deployed with a power grid.
- > Station distances of 1.25 km.
- > Each station acts independently.

Design of a single RNO station

- > Deep antennas make use of large effective volume at depth.
- > Surface antennas provide large gain and polarization sensitivity.
- > Coincidence (deep + surface) provide excellent reconstruction.

Technical features

- > Central phased array string.
- > Phased array trigger lowers threshold.
- > Lower threshold increases effective volume at all energies.

Project Timeline

Installation of an antenna in ARA station 5. Students and Postdocs are vital to construction.

- > Funding for RNO has been requested from the National Science Foundation.
- > International collaboration from 18 institutions with already secured non-US funding.
- > Build on experience from ALL previous radio neutrino detectors (ANITA, ARA, ARIANNA, RICE, ...)
- > Extensive field experience with ARA critical for construction planning.
- > RNO at South Pole will be deployed at the same time as the IceCube Upgrade.
- > IceCube Gen2 will also contain a large radio component building on the experiences with RNO.

Calendar Year	2019		2020		2021		2022		2023		2024	
	7 8	9 10 11 12	1 2 3 4 5 6 7	8 9 10 11 12	1 2 3 4 5	6 7 8 9 10 11 1	2 1 2 3 4 5 6	7 8 9 10 11 12	1 2 3 4 5 6	7 8 9 10 11 12	1 2 3 4 5	6 7 8 9
Project year			PY 1		PY 2		PY 3		PY 4		PY 5	
Design work												
Preliminary Design Review												
Final Design Review												
Production Readiness Review												
Production			Long le	ead, test sy	stems							
Production (# of stations)				6		16	26	5	18	3		
Deployment preparation			R <mark>evi</mark> ew	Readiness								
Deployment (# of stations)					5		16	2	3	1	7	

