
PMDA-Parallel Molecular Dynamics Analysis
Shujie Fan1†, Max Linke2†, Ioannis Paraskevakos3, Richard J. Gowers4, Michael Gecht2, Oliver Beckstein1

1Department of Physics, Arizona State University, Tempe, AZ, USA 2 Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
3 Rutgers University, Piscataway, NJ, USA 4 Department of Chemistry, University of New Hampshire, Durham, NH, USA

E-mail: sfan19@asu.edu max.linke88@gmail.com i.paraskev@rutgers.edu richardjgowers@gmail.com michael.gecht@biophys.mpg.de obeckste@asu.edu

 import MDAnalysis as mda
 from pmda import rms

 u = mda.Universe(top, trj)
 ca = u.select_atoms('name CA')
 u.trajectory[0]
 ref = u.select_atoms('name CA')
 rmsd = rms.RMSD(ca, ref)
 rmsd.run(n_jobs=4, n_blocks=4)

 print(rmsd.rmsd)

 import MDAnalysis as mda

 u = mda.Universe(top, traj)
 protein = u.select_atoms('protein')

 def rgyr(ag):
 return (ag.universe.trajectory.time,
 ag.radius_of_gyration())

 import pmda.custom
 parallel_rgyr =
 pmda.custom.AnalysisFromFunction(
 rgyr, u, protein)
 parallel_rgyr.run(n_jobs=4, n_blocks=4)
 print(parallel_rgyr.results)

 import numpy as np
 from pmda.parallel import ParallelAnalysisBase
 class RGYR(ParallelAnalysisBase):
 def __init__(self, protein):
 universe = protein.universe
 super(RGYR, self).__init__(
 universe, (protein,))
 def _prepare(self):
 self.rgyr = None
 def _conclude(self):
 self.rgyr = np.vstack(self._results)
 def _single_frame(self, ts, atomgroups):
 protein = atomgroups[0]
 return (
 ts.time, protein.radius_of_gyration())
 parallel_rgyr = RGYR(protein)
 parallel_rgyr.run(n_jobs=4, n_blocks=4)
 print(parallel_rgyr.results)

https://www.mdanalysis.org/pmda/

Pre-defined Analysis

User-defined Analysis
pmda.custom.AnalysisFromFunction():

pmda.parallel.ParallelAnalysisBase:

Installation

PMDA is released under the GNU General Public License, version 2
Source code is available in the public GitHub repository
https://github.com/MDAnalysis/pmda/.

Install with conda:
conda config --add channels conda-forge
conda install pmda

Install with pip:
pip install --upgrade pmda

Install from source:
git clone git@github.com:MDAnalysis/pmda.git
cd pmda
python setup.py install

Using PMDA

_prepare()

_conclude()

_single_frame()

_reduce()

end of
block

k
?

no

yes

_single_frame()

_reduce()

end of
block
k+1
?

no

yes

............

split

apply

combine

0 10 20 30 40 50 60 70
Number of cores

0

50

100

T
im

e
 f

ra
ct

io
n
 (

%
)A pmda.rdf on 900 frames

0 10 20 30 40 50 60 70
Number of cores

0

50

100

T
im

e
 f

ra
ct

io
n
 (

%
)B pmda.rdf on 9000 frames

prepare

universe

compute

I/O

wait

concludePerformance Evaluation

100 101

Number of cores

101

102

to
ta

l
ti

m
e
 (

s)

A pmda.rdf on 900 frames

0 20 40 60
Number of cores

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

B pmda.rdf on 900 frames

0 20 40 60
Number of cores

0

10

20

30

40

50

60

70

S
p

e
e
d

u
p

C pmda.rdf on 900 frames

100 101

Number of cores

102

103

to
ta

l
ti

m
e
 (

s)

D pmda.rdf on 9000 frames

0 20 40 60
Number of cores

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

E pmda.rdf on 9000 frames

0 20 40 60
Number of cores

0

10

20

30

40

50

60

70

S
p

e
e
d

u
p

F pmda.rdf on 9000 frames

Lustre-distributed-3nodes

Lustre-distributed-6nodes

Lustre-multiprocessing

SSD-distributed

SSD-multiprocessing

MD simulation
Newton's 2nd Law
+Predefined Forcefields

u = MDAnalysis.Universe(
 top, trj)

Introduction

PMDA is a Python library
that builds upon
MDAnalysis[1] and Dask[2]
to provide parallel analysis
algorithms for molecule
dynamics (MD) simulations.
At the core of PMDA is the
idea that a common
interface makes it easy to
create code that can be
easily parallelized.

Methods
split-apply-combine
approach[3]:
The trajectory is split into
blocks, analysis is
performed separately
and in parallel on each
block ("apply"), then
results from each block
are gathered and
combined.

100 101

Number of cores

100

101

to
ta

l
ti

m
e
 (

s)

A pmda.rms on 900 frames

0 20 40 60
Number of cores

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

B pmda.rms on 900 frames

0 20 40 60
Number of cores

0

20

40

60

S
p

e
e
d

u
p

C pmda.rms on 900 frames

100 101

Number of cores

101

102

to
ta

l
ti

m
e
 (

s)

D pmda.rms on 9000 frames

0 20 40 60
Number of cores

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

E pmda.rms on 9000 frames

0 20 40 60
Number of cores

0

20

40

60

S
p

e
e
d

u
p

F pmda.rms on 9000 frames

Lustre-distributed-3nodes

Lustre-distributed-6nodes

Lustre-multiprocessing

SSD-distributed

SSD-multiprocessing

0 10 20 30 40 50 60 70
Number of cores

0

50

100

T
im

e
 f

ra
ct

io
n
 (

%
)A pmda.rms on 900 frames

0 10 20 30 40 50 60 70
Number of cores

0

50

100

T
im

e
 f

ra
ct

io
n
 (

%
)B pmda.rms on 9000 frames

prepare

universe

compute

I/O

wait

conclude

Acknowledgments
We would like to thank reviewer Cyrus Harrison for the idea to plot the fractional time spent on different stages of
the program. This work was supported by the National Science Foundation under grant numbers ACI-1443054 and
used the Extreme Science and Engineering Discovery Environment (XSEDE) supported by National Science
Foundation grant number ACI-1548562. The SDSC Comet computer at the San Diego Supercomputer Center was
used under allocation TG-MCB130177. Max Linke was supported by NumFOCUS under a small development grant.

[1] Gowers, Richard J.; Linke, Max; Barnoud, Jonathan; Reddy, Tyler J. E.; Melo, Manuel N.; Seyler, Sean L.; Dotson,
David L.; Domański, Jan; Buchoux, Sébastien; Kenney, Ian M.; and Beckstein, Oliver. MDAnalysis: A Python package
for the rapid analysis of molecular dynamics simulations. In S. Benthall and S. Rostrup, editors, Proceedings of the
15th Python in Science Conference, pages 102 – 109, Austin, TX, 2016. SciPy. URL: https://www.mdanalysis.org/.
[2] Dask Development Team. Dask: Library for dynamic task scheduling, 2016, URL https://dask.org.
[3] Hadley Wickham. The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1), 2011.
doi:10.18637/jss.v040.i01.
[4] Alan H. Karp and Horace P. Flatt. Measuring parallel processor performance. Commun. ACM 33, 539-543, 1990.
doi: https://doi.org/10.1145/78607.78614.

References
0 10 20 30 40 50 60 70

Number of cores

0.00

0.02

0.04

0.06

S
e
ri

a
l
Fr

a
ct

io
n

A pmda.rdf on 900 frames

0 10 20 30 40 50 60 70
Number of cores

0.00

0.02

0.04

0.06

S
e
ri

a
l
Fr

a
ct

io
n

B pmda.rdf on 9000 frames

Lustre-distributed-3nodes

Lustre-distributed-6nodes

Lustre-multiprocessing

SSD-distributed

SSD-multiprocessing

0 10 20 30 40 50 60 70
Number of cores

0.00

0.25

0.50

0.75

1.00

S
e
ri

a
l
Fr

a
ct

io
n

A pmda.rms on 900 frames

0 10 20 30 40 50 60 70
Number of cores

0.00

0.25

0.50

0.75

1.00

S
e
ri

a
l
Fr

a
ct

io
n

B pmda.rms on 9000 frames

Lustre-distributed-3nodes

Lustre-distributed-6nodes

Lustre-multiprocessing

SSD-distributed

SSD-multiprocessing

Speed-up:

Efficiency:

Serial fraction[4]:

Conclusion

RDF
Water oxygen-oxygen radial distribution
function for all 24,239 oxygen atoms in the
water molecules.

The PMDA Python package provides a
framework to parallelize analysis of
MD trajectories with a simple split-
apply-combine approach by
combining Dask with MDAnalysis.
We showed that performance depends
on the type of analysis that is being
performed. Compute-intensive tasks
such as the RDF calculation can show
good strong scaling with up to about a
hundred cores on a typical
supercomputer and a sizable speed-
up that approached 40. Such
performance should make this an
attractive solution for many users. For
tasks such as the RMSD calculation,
whose speed-up is limited by a
considerable serial fraction, a single
multi-core workstation seems
sufficient to achieve speed-ups on the
order of 10 and HPC resources would
not help improve the performance.

We tested two tasks(RDF
and RMSD) with different
combinations of Dask
schedulers with different
means to read the
trajectory data as shown in
the Table.

RMSD
Time series of root mean square distance
after optimum superposition (RMSD) of all
564 Cα atoms of a protein.

