
International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 7 No.11 (2012)
© Research India Publications; http://www.ripublication.com/ijaer.htm

Vhdl Implementation of A Mips-32 Pipeline Processor

1Kirat Pal Singh, 2Shivani Parmar
1,2Assistant Professor

1,2Electronics and Communication Engineering Department
1SSET, Surya World Institutions of Academic Excellence, Bapror, Rajpura, Punjab, India

2 Sachdeva Engineering College for Girls, Gharuan, Punjab, India
Email: 1kiratpal.singh@suryaworld.edu.in, 2shivaniparmar03@gmail.com

Abstract - This paper presents the design and implement a
basic five stage pipelined MIPS-32 CPU. Particular attention
will be paid to the reduction of clock cycles for lower
instruction latency as well as taking advantage of high-speed
components in an attempt to reach a clock speed of at least
100 MHz. The final results allowed the CPU to be run at over
200 MHz with a very reasonable chip area of around 900,000
nm2.
Keywords- MIPS Processor, Datapath, ALU, register file,
pipeline

I. INTRODUCTION
The intent of this paper is to outline the processes taken in
designing, implementing and simulating a five stage pipelined
MIPS-32 processor.

A five stage pipeline was chosen because it represents a
standard view of the division of the CPU workload.

Basic background on the CPU to be designed is provided.
A breakdown of the important functional units, along with the
reasoning behind the design decisions behind each one follows.
Simulation and synthesis results are included as an indication
of the success of this exercise.

II. BACKGROUND
A MIPS-32 compatible Central Processing Unit (CPU) was
designed, tested, and synthesized as shown in figure 1. The
processor had the following attributes:

 5 stage pipeline

 Hazard Detection and correction

 Data Forwarding to reduce stall cycles

In order to allow the simulation of the CPU program data
files were created and read into the instruction memory of the
CPU. A small amount of memory for both data and
instructions was also included to prove the concept and
functionality of the CPU while also maintaining focus on the
optimization of control and data path units of the main CPU
design. The processor designed was a traditional five stage
pipeline design. The stages were Instruction Fetch, Instruction
Decode, Execute, Memory Access, and Write Back.

Figure 1. MIPS pipeline Processor [1]

The Instruction Fetch stage is where a program counter will
pull the next instruction from the correct location in program
memory. In addition the program counter was updated with
either the next instruction location sequentially, or the
instruction location as determined by a branch.

The Instruction Decode stage is where the control unit
determines what values the control lines must be set to
depending on the instruction. In addition, hazard detection is
implemented in this stage, and all necessary values are fetched
from the register banks.

The Execute stage is where the instruction is actually sent
to the ALU and executed. If necessary, branch locations are
calculated in this stage as well. Additionally, this is the stage
where the forwarding unit will determine whether the output of
the ALU or the memory unit should be forwarded to the ALU’s
inputs.

The Memory Access stage is where, if necessary, system
memory is accessed for data. Also, if a write to data memory is
required by the instruction it is done in this stage. In order to
avoid additional complications it is assumed that a single read
or write is accomplished within a single CPU clock cycle.

Finally, the Write Back stage is where any calculated
values are written back to their proper registers. The write
back to the register bank occurs during the first half of the
cycle in order to avoid structural and data hazards if this was
not the case.

The CPU included a hazard detection unit to determine
when a stall cycle must be added. Due to data forwarding, this
will only happen when a value is used immediately after being
loaded from memory, or when a branch occurs. The hazard
detection unit presents the Program Counter from updating
with its next calculated value, clears out the Instruction Fetch
registers, and forwards a No-op through the rest of the pipeline.
A diagram of the hazard detection unit and its influence on the
CPU as a whole is shown in figure 2.

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 7 No.11 (2012)
© Research India Publications; http://www.ripublication.com/ijaer.htm

Figure 2. Hazard Detection Highlighted [1]

Data forwarding is required to eliminate the majority of the
stall cycles. Without a forwarding unit, any time a value is
used immediately after being calculated a stall cycle must be
added. In addition, any time a value is fetched from memory,
two stall cycles are introduced. This is shown in figure 3.

Figure 3. Data Forwarding [1]

With a forwarding unit, these stall cycles can be alleviated.
See Figure 4.

Figure 4. Stall Cycles Removed

The forwarding unit monitors the output of the ALU and
system memory and determines whether these values are going
to be needed as ALU inputs. If the recently calculate value is
needed elsewhere in the data path before it is written to the
register bank it will sent to the appropriate ALU input. A
diagram of the forwarding unit and its affect on the CPU is
shown in figure 5.

Figure 5. Forwarding Unit

III. IMPLEMENTATION
The overall CPU block is responsible for tying all of the stages
together as well as providing the access to the outside world
that the test bench uses to load instruction memory and monitor
the register bank for test verification. Because the individual
stages were made responsible for buffering their own
individual outputs, it was not necessary for the CPU to contain
any “glue” logic, it was simply necessary to correctly connect
the different stages together. The designers and authors of the
CPU itself and the individual stages can be seen in Table 1 The
CPU is composed of the five different stages: Instruction Fetch,
Instruction Decode, Execution, Data Memory, and the
Writeback stage.

The instruction fetch stage has multiple responsibilities in that
it must properly update the CPU's program counter in the
normal case as well as the branch instruction case. The
instruction fetch stage is also responsible for reading the
instruction memory and sending the current instruction to the
next stage in the pipeline, or a stall if a branch has been
detected in order to avoid incorrect execution. The instruction
fetch stage is composed of three components: instruction
memory, program counter, and the instruction address adder.
The instruction memory also takes inputs from the outside
world that allow the loading of instruction memory for later
execution.

The unit responsible for maintaining the program counter
itself consisted of a 32-bit register for the address and an
update line that would allow the address to update or not. This
update line was necessary because for some hazards it is
necessary to stall a cycle so it is required to ensure the same
instruction will be executed on the next cycle.

The instruction memory unit was designed to model a small
amount of cache and therefore was made to be accessed within
a single CPU cycle. The instruction memory was sized at 1k
bits and could therefore at maximum contain 32 separate
instructions. In a real system this would be much larger to
accommodate much larger instructions or would be attached to
a much larger memory hierarchy. The instruction memory
handled the reading or writing of a value into instruction
memory within a single CPU cycle.

The final piece of the instruction fetch stage was the
instruction memory address adder. This piece of purely
combinational logic was responsible for adding 4 to address
that was currently being read in the instruction memory.
Whether or not this result was actually used to update the

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 7 No.11 (2012)
© Research India Publications; http://www.ripublication.com/ijaer.htm

program counter was controlled by the hazard detection unit in
the instruction decode stage.

The Decode Stage is the stage of the CPU's pipeline where
the fetched instruction is decoded, and values are fetched from
the register bank. It is responsible for mapping the different
sections of the instruction into their proper representations
(based on R or I type instructions). The Decode stage consists
of the Control unit, the Hazard Detection Unit, the Sign
Extender, and the Register bank, and is responsible for
connecting all of these components together. It splits the
instruction into its various parts and feeds them to the
corresponding components. Regisers Rs and Rt are fed to the
register bank, the immediate section is fed to the sign extender,
and the ALU opcode and function codes are sent to the control
unit. The outputs of these corresponding components are then
clocked and stored for the next stage.

The Control unit takes the given Opcode, as well as the
function code from the instruction, and translates it to the
individual instruction control lines needed by the three
remaining stages. This is accomplished via a large case
statement

The hazard detection unit monitors output from the execute
stage to determine hazard conditions. Hazards occur when we
read a value that was just written from memory, as the value
won't be available for forwarding until the end of the memory
stage, and when we branch. The hazard detection unit will
introduce a stall cycle by replacing the control lines with 0s,
and disabling the program counter from updating. When a
branch is detected the hazard detection unit will allow the PC
to write, but will feed it the branch address instead of the next
counted value.

The sign extender is responsible for two functions. It takes
the immediate value and sign extends it if the current
instruction is a signed operation. It also has a shifted output for
branches.

One of the primary pieces of data storage in the CPU is the
register bank contained within the instruction decode stage.
This bank of registers is directly reference from the MIPS
instructions and is designed to allow rapid access to data and
avoid the use of much slower data memory when possible. The
register bank contained in the CPU consisted of the MIPS
standard 32 registers with register 0 being defined as always
zero. The registers are defined as being written in the first half
of the cycle and read in the second half. This is done to avoid
structural hazards when one instruction is attempting to write to
the register bank while another is reading it. Setting the
register bank to this configuration also avoids a data hazard
because a value that was just written can be read out in the
same cycle.

The execute stage is responsible for taking the data and
actually performing the specified operation on it. The execute
stage consists of an ALU, a Determine Branch unit, and a
Forwarding Unit. The execute stage connects these
components together so that the ALU will process the data
properly, given inputs chosen by the forwarding unit, and will
notify the decode stage if a branch is indeed to be taken.

The alu is responsible for performing the actual calculations
specified by the instruction. It takes two 32 bit inputs and
some control signals, and gives a single 32 bit output along

with some information about the output – whether it is zero or
negative. This was accomplished by a large case statement
dependent on the input control signals.

The determine Branch object is responsible for looking at
the output of the alu, and the type of instruction it is decoding,
and determining whether the system is to branch or not. For
example, if the determine Branch unit sees a BEQ instruction;
it will be looking at the 'is Zero' output of the ALU to
determine branch success. The output of this unit is fed back to
the decode stage's hazard detection unit.

The forwarding unit is responsible for choosing what input
is to be fed into the ALU. It takes the input from the decode
stage, the value that the alu has fed to the Memory stage, and
the value that the Alu has fed to the write back stage, as well as
the register numbers corresponding to all of these, and
determines if any conflicts exist. It will choose which of these
values must be sent to the ALU. For example, if one
instruction uses a value that was calculated in the previous
instruction, the forwarding unit would ignore the basic input
value, and instead forward the output of the memory stage to
the input of the alu instead.

The Memory stage is responsible for taking the output of
the alu and committing it to the proper memory location if the
instruction is a store. The memory stage contains one
component: the data_memory object. It connects the data
memory to a register bank for the write back stage to read, and
also forwards on information about the current write back
register. This register's number and calculated value are fed
back to the forwarding unit in the execute stage to allow it to
determine which value to pass to the ALU.

The data_mem object is a simulation of actual memory. It
is a 1k block of cache that acts as data storage. This memory is
responsible for storing both words and bytes, so it must
implement optional sign extension for bytes. It must handle
both read and write operations as requested.

The writeback stage is responsible for writing the
calculated value back to the proper register. It has input
control lines that tell it whether this instruction writes back or
not, and whether it writes back ALU output or Data memory
output. It then chooses one of these outputs and feeds it to the
register bank based on these control lines.

IV. SIMULATION RESULTS
For simulation, a number of instructions were fed into the CPU
and the outputs of registers 0 through 5 were monitored. The
instructions that were tested included register based and
immediate adds, subtracts (both signed and unsigned),
multiplication (signed and unsigned), reading and writing data
memory, and a loop that would force the CPU to jump back to
the start of instruction memory and execute those same
instructions again. The different adds were important because
each exercised different parts of the CPU including the data
forwarding unit, multiple registers and different functions
within the ALU itself. The multiply instruction was also
significant in that it proved that the instruction itself worked
but also that the MFHI and MFLO registers within the ALU
could be read and written to properly for the storing and
reading of the 64 bit resultant. The jump instruction was very
important also in that it exercised the branch detection unit,
hazard detection unit as well as the ability of the instruction

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 7 No.11 (2012)
© Research India Publications; http://www.ripublication.com/ijaer.htm

fetch stage to be able to jump to an address and continue
execution with only the input of a single stall cycle. The
simulation results can be seen in figures 6, 7 and 8.

Figure 6. Simulation Waveform

Figure 7. Simulation Waveform

Figure 8. Simulation Waveform

This was then synthesized using Design Compiler. A clock
speed of 200 MHz was achieved, along with an area of
896546.44 nm2. See Table 1.

Table 1. Area and speed
Module Area(nm2

)
Speed (ns)

CPU (Top Level) 896546.4
4 4.69

Instruction Fetch Stage 158685.6
4 3.7

Instruction Decode
Stage

188066.9
7 2.1

Execute Stage 2170616
25 2.55

Memory Stage 1839218
75 3.23

WriteBack Stage 835.48 1.65

Program Counter 3760.84 1.38

Instruction Memory 147963.0
9 2.17

Control 1869.31 2.3

Sign Extender 976.03 0.51

Register Bank 150129.4
2 2.25

Hazard Detection Unit 677.43 2.3

ALU 196370.3
8 2.04

Forwarding Unit 11011.88 2.38

Data Memory 176022.1
3 2.32

V. CONCLUSION
MIPS processor is widely used RISC processor in industry and
research area. In this paper, we have successfully designed and
synthesized a basic model of pipelined MIPS processor. The
design has been modeled in VHDL and functional verification
policies adopted for it. The simulation results show that
maximum frequency of pipeline processor is increased from
100MHz to 200MHz.

VI. FUTURE WORK
This paper presents a comparative performance analysis and
finding longer path delay at different pipeline stages using
different technologies device. Our future work includes
changing the processor architecture to make it capable of
handling multiple threads and supporting network security
application more effectively.

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 7 No.11 (2012)
© Research India Publications; http://www.ripublication.com/ijaer.htm

VII. REFERENCES

[1] Hennessy, John L. and Patterson, David A. Computer

Organization & Design. 1998
[2] Hennessy, John L. and Patterson, David A. Computer

Architecture: A Quantitative Approach. 2003
[3] M. Shabaan “Course Notes”

http://www.ce.rit.edu/~meseec/eecc550-winter2004
[4] M. Shabaan “Course Notes”

http://www.ce.rit.edu/~meseec/eecc551-spring2005
[5] Anon. “MIPS Architecture”

http://www.cs.wisc.edu/~smoler/x86text/lect.notes/MI
PS.html

[6] Kane, Gerry MIPS RISC Architecture 2001
[7] Anon. “MIPS Reference”

http://edge.mcs.drexel.edu/GICL/people/sevy/architect
ure/MIPSRef(SPIM).html

[8] Anon. “Basic CPU Design”
http://webster.cs.ucr.edu/AoA/Windows/HTML/CPU
Architecturea3.html

[9] University of Calgary “Formal Verification in Intel
CPU design”
http://www.cpsc.ucalgary.ca/Dept/seminars.php?id=31
0&category=10

[10] University of Temple “How to Design a CPU”
http://www.math.temple.edu/doc/howto/en/html/CPU-
Design-HOWTO-4.html

[11] Hema Kapadia, Luca Benini, and Giovanni De
Micheli, “Reducing Switching Activity on Datapath
Buses with Control-Signal Gating” IEEE Journal Of
Solid-State Circuits, Vol. 34, No. 3, March 1999

[12] Shofiqul Islam, Debanjan Chattopadhyay, Manoja
Kumar Das, V Neelima, and Rahul Sarkar, “Design of
High-Speed-Pipelined Execution Unit of 32-bit RISC
Processor” IEEE 1-4244-0370-7 June.2006

[13] XiangYunZhu, Ding YueHua, “Instruction Decoder
Module Design of 32-bit RISC CPU Based on
MIPS”Second International Conference on Genetic
and Evoltionary Computing,WGEC pp.347-351 Sept.
2008

[14] Rupali S. Balpande, Rashmi S. Keote, “Design of
FPGA based Instruction Fetch & Decode Module of
32-bit RISC (MIPS) Processor”, International
Conference on Communication Systems and Network
Technologies,2011.

[15] Mamun Bin Ibne Reaz, Md. Shabiul Islam, Mohd. S.
Sulaiman, “A Single Clock Cycle MIPS RISC
Processor Design using VHDL”, IEEE International
Conference on Semiconductor Electronics, pp.199-203
Dec. 2003

[16] MIPS Technologies, MIPS32™ Architecture for
Programmers Volume I: Introduction to the MIPS32™
Architecture, rev. 2.0, 2003.

[17] Diary Rawoof Sulaiman, “Using Clock gating
Technique for Energy Reduction in Portable
Computers” Proceedings of the International
Conference on Computer and Communication
Engineering pp.839 – 842, May 2008

