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Abstract

Game theoretic models of evolution such as the Hawk-Dove game assume that
individuals gain fitness (which is a proxy of the per capita growth rate) in
pair-wise contests only. These models assume that the equilibrium distribution
of phenotypes involved (e.g., Hawks and Doves) in the population is given by
the Hardy–Weinberg law, which is based on instantaneous, random pair for-
mation. On the other hand, models of population dynamics do not consider
pairs, newborns are produced by singles, and interactions between phenotypes
or species are described by the mass action principle. This article links game
theoretic and population approaches. It shows that combining distribution dy-
namics with population dynamics can lead to stable coexistence of Hawk and
Dove population numbers in models that do not assume a priori that fitness
is negative density dependent. Our analysis shows clearly that the interior NE
of the Hawk and Dove model depends both on population size and on inter-
action times between different phenotypes in the population. This raises the
question of the applicability of classic evolutionary game theory that requires
all interactions take the same amount of time and that all single individuals
have the same payoff per unit of time, to real populations. Furthermore, by
separating individual fitness into birth and death effects on singles and pairs,
it is shown that stable coexistence in these models depends on the time-scale
of the distribution dynamics relative to the population dynamics. When ex-
plicit density-dependent fitness is included through competition over a limited
resource, the combined dynamics of the Hawk-Dove model often lead to Dove
extinction no matter how costly fighting is for Hawk pairs.
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1. Introduction1

Game theoretic models (e.g., the Hawk-Dove game; Maynard Smith and2

Price, 1973) assume that all individuals instantaneously and randomly pair,3

and each interaction has the same duration. These assumptions lead to the4

distribution of pairs that is given by the Hardy–Weinberg (HW) principle (see,5

for example, equation (2) below). Křivan and Cressman (2017) (see also Zhang6

et al., 2016) considered a more general situation where interaction times between7

different strategies can take different amounts of time. They assumed that all8

individuals pair immediately so there were no singles.9

In this article, we do not assume instantaneous pairing, but consider random10

pair formation among singles based on the mass action principle instead. Thus,11

the population consists both of single individuals and paired individuals and12

we study distributional dynamics of pairs and singles assuming that the overall13

population numbers of each strategy are fixed. Together with distributional14

dynamics we also consider population dynamics that model how the numbers15

of each strategy evolve in two-strategy games.16

In Section 2, we start with the replicator equation (Taylor and Jonker, 1978)17

that has often been used in the context of evolutionary modeling. Replicator18

dynamics assume that a strategy’s growth rate is given by its average payoff19

(fitness). The standard approach also assumes that individuals meet at random20

(which implicitly means that all interaction times must be the same) and that21

payoff is density independent since it is given by this pairwise interaction. The22

replicator equation for two-strategy games then predicts that the frequencies of23

strategies in the population will converge to an evolutionarily stable strategy24

(ESS) of the game and that the overall population will grow (or decay) expo-25

nentially thereafter (Hofbauer and Sigmund, 1998; Cressman, 2003). These two26

properties are captured by saying that replicator dynamics are frequency de-27

pendent but density independent. Section 2 generalizes the standard replicator28

equation to the case where interaction times depend on strategies and singles29

get some (density independent) fitnesses too. We show that the replicator equa-30

tion can now lead to stable equilibria at finite, positive population size. We31

document evolutionary outcomes where both strategies coexist at the equilib-32

rium using generalizations of the Hawk-Dove model and distributional dynamics33

that evolve on a faster time scale compared to the replicator equation. In other34

words, it is no longer necessary to assume a priori density dependent fitnesses35

to obtain coexistence.36

Section 3 considers the effect on the stable evolutionary outcome when dis-37

tributional and population dynamics operate on a commensurable time scale.38

To do so, the combined dynamics must model how payoffs translate into chang-39

ing numbers of singles and pairs. Specifically, we assume that payoffs to singles40

only influence the number of singles whereas payoffs to pairwise interactions are41

interpreted in terms of birth and death rates of the individuals in the pair and42

any newborns increase the number of singles. It is shown that non-zero death43
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rates when in pairs alter the stable evolutionary outcome in the combined dy-44

namics. In fact, for our generalized Hawk-Dove game, we find that the stable45

coexistence equilibrium when distributional dynamics are fast can disappear46

altogether when time scales are similar and, in such cases the Doves go extinct.47

Combining distributional and evolutionary dynamics suggests a natural way48

to extend the Hawk-Dove game to a model of competition over a limited re-49

source. Section 4 develops such a model where the resource is a fixed number of50

breeding sites that are available to be occupied either by singles or by interacting51

pairs and any other singles are searching for sites. Fitnesses are now automat-52

ically density dependent. Although the state space of the resulting dynamical53

system becomes quite large in this complex model, we show that the underlying54

density dependence drives Doves to extinction when reasonable assumptions on55

the system parameters are made.56

Through the models of Sections 2, 3 and 4, we show how implicit and explicit57

density dependence arises naturally when population and evolutionary models58

are integrated. The Discussion (Section 5) expands further on this theme by59

emphasizing how the Hawk-Dove game, originally developed to model the fre-60

quency evolution of aggressive behavior in a biological species, can serve to61

understand the effects of competition on the combined evolutionary and popu-62

lation outcome.63

2. Evolutionary games when distribution dynamics are independent64

of fitness65

In this section, we generalize the replicator dynamics to the case where66

interaction times between strategies are not the same and there is time needed67

for pair formation.68

2.1. Distributional dynamics, fitness, and Nash equilibrium69

In what follows we consider symmetric, two-strategy games with strategies70

denoted as H and D (motivated by, but not limited to, the Hawk–Dove model71

that we use throughout this article) and payoff matrix72

( H D

H πHH πHD
D πDH πDD

)
. (1)

These payoffs to the row player result from pairwise interactions between players.73

Classic evolutionary game theory interprets the payoffs as changes in individual74

fitnesses due to an interaction. To calculate fitness, one then needs to describe75

the distribution of interacting pairs in the population.76

The classic approach assumes that individuals immediately and randomly77

pair. The equilibrium of the pair formation process is then given by Hardy–78

Weinberg distribution79

nHH =
H2

2N
, nHD =

HD

N
, nDD =

D2

2N
(2)
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where nij is the number of ij pairs (i, j = H,D), H = 2nHH + nHD, and80

D = 2nDD + nHD, where H is the number of Hawks, D is the number of81

Doves, and N = H + D is the population size.2 In mixed pairs, we do not82

distinguish between HD and DH pairs, i.e., nHD consists of all mixed pairs.83

Assuming that the distribution of pairs is at its Hardy–Weinberg equilibrium,84

the expected payoffs per interaction to a Hawk and to a Dove are85

ΠH =
2nHH
H

πHH +
nHD
H

πHD =
H

N
πHH +

D

N
πHD,

ΠD =
nHD
D

πDH +
2nDD
D

πDD =
H

N
πDH +

D

N
πDD.

(3)

Underlying the Hardy–Weinberg distribution and the resulting expected payoffs86

given in (3) is an assumption that interactions take the same amount of time in87

order that all individuals are available to randomly pair (see the pair formation88

dynamics (7) below when individuals instantaneously pair). Although the effect89

of interaction time is not generally included in classic evolutionary game theory90

models, it is important for us here since we will relax the assumption that all91

interactions take the same amount of time for the remainder of this article.92

Following Křivan and Cressman (2017), we introduce the (symmetric) inter-93

action time matrix94 ( H D

H τHH τHD
D τHD τDD

)
(4)

where τij is the average interaction time an ij pair takes (with all τ ’s positive).95

Furthermore, contrary to classic evolutionary game theory, we will not assume96

that all individuals instantaneously pair, i.e., we consider singles in the popula-97

tion. The problem of finding the distributional equilibrium of pairs and singles98

is then much more complex when compared to the Hardy–Weinberg distribution99

(2).100

Let nH and nD denote the numbers of singles in the population. Consider101

2Note that H (respectively D) is used to denote the Hawk (respectively, Dove) strategy
as well as the number of Hawks (respectively, Doves). The meaning will be clear from the
context in which it appears.
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the distributional dynamics of pairs and singles102

dnH
dt

= −λn2H − λnHnD + 2
nHH
τHH

+
nHD
τHD

dnD
dt

= −λn2D − λnHnD + 2
nDD
τDD

+
nHD
τHD

dnHH
dt

= −nHH
τHH

+
λ

2
n2H

dnHD
dt

= −nHD
τHD

+ λnHnD

dnDD
dt

= −nDD
τDD

+
λ

2
n2D

(5)

that leaves the number of Hawks and Doves unchanged. These dynamics model a103

pair formation process (see also Mylius, 1999) that is based on the mass action104

law whereby single individuals meet at random with encounter (or pairing)105

rate λ. The 2’s and 1/2’s in these equations relate to the fact that two single106

individuals appear when a pair disbands and that two singles produce one pair107

when they meet, respectively. Appendix A shows that, given H and D, there108

exists a unique distributional equilibrium of (5). This distributional equilibrium109

can be obtained using computer algebra software (Appendix F), but it is too110

complicated for analysis. We observe that at the distributional equilibrium we111

have a generalized Hardy–Weinberg distribution112

nHH =
1

2
λτHHn

2
H , nHD = λτHDnHnD, nDD =

1

2
λτDDn

2
D. (6)

If individuals instantaneously pair (i.e., λ converges to infinity in distribu-113

tional dynamics (5)), the pair dynamics are described by (Křivan and Cressman,114

2017)115

dnHH
dt

= −nHH
τHH

+

(
2nHH

τHH
+ nHD

τHD

)2
4
(
nHH

τHH
+ nHD

τHD
+ nDD

τDD

)
dnHD
dt

= −nHD
τHD

+
2
(

2nHH

τHH
+ nHD

τHD

)(
nHD

τHD
+ 2nDD

τDD

)
4
(
nHH

τHH
+ nHD

τHD
+ nDD

τDD

)
dnDD
dt

= −nDD
τDD

+

(
nHD

τHD
+ 2nDD

τDD

)2
4
(
nHH

τHH
+ nHD

τHD
+ nDD

τDD

) .

(7)

Provided all τ ’s are the same, the above pair dynamics converge to the Hardy–116

Weinberg distributional equilibrium (2).117
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We define individual fitness as average payoff per unit of time. Assuming118

that singles gain payoff πH and πD (these payoffs can be positive, negative, or119

zero) per unit of time, while individual i in pair ij gains payoff πij per interaction120

when the pair disbands (and so payoff πij/τij per unit of time), the fitnesses for121

the two phenotypes are now122

ΠH =
2nHH
H

πHH
τHH

+
nHD
H

πHD
τHD

+
nH
H
πH ,

ΠD =
2nDD
D

πDD
τDD

+
nHD
D

πDH
τHD

+
nD
D
πD.

(8)

We now analyze the game that consists of the Hawk and Dove strategies123

together with their fitnesses (8) evaluated at the unique equilibrium distribution124

of (5). Substituting equilibrium distribution of pairs (6) in the equation for an125

interior Nash equilibrium (NE) ΠH = ΠD and into the total population size126

N = nH+nD+2nHH+2nHD+2nDD leads to the following system of equations127

nHλπHH + nDλπHD + πH
nHλτHH + nDλτHD + 1

=
nDλπDD + nHλπDH + πD
nDλτDD + nHλτHD + 1

(9)

and128

nH(nHλτHH + nDλτHD + 1) + nD(nDλτDD + nHλτHD + 1) = N. (10)

Equations (9) and (10) are difficult to solve analytically as these are two quadratic129

equations in nH and nD.130

However, when all τ ’s are the same and equal to τ , there is at most one131

interior NE and it is given by132

nH =
(πDD − πHD)(

√
4λNτ + 1− 1) + 2τ(πD − πH)

2λτ(πDD − πDH − πHD + πHH)

and133

nD =
(πHH − πDH)(

√
4λNτ + 1− 1) + 2τ(πH − πD)

2λτ(πDD − πDH − πHD + πHH)

when both these expressions are positive. In this case, the proportion of Hawks134

in the population at NE is given by135

pH =
H

N
=

πDD − πHD
πDD − πDH − πHD + πHH

+
(πD − πH)

(√
4λNτ + 1 + 1

)
2λN(πDD − πDH − πHD + πHH)

.

(11)
In particular, the NE depends on population size when there are payoffs to sin-136

gles. This contrasts with the classic result of evolutionary game theory whereby137

the strategy proportion at NE depends only on the payoff matrix and not on138

N . On the other hand, in the special case where the payoff to singles for both139
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strategies are the same (i.e., πH = πD),3 we recover the classic result (Hof-140

bauer and Sigmund, 1998) of matrix game theory with two strategies and equal141

interaction times where the NE proportion of Hawks is142

pH =
πDD − πHD

πDD − πDH − πHD + πHH
.

In the following example, our analysis of the Hawk-Dove model with stan-143

dard payoff matrix shows clearly that, in general, interior NE depend both on144

population size and on interaction times. This raises the question of the appli-145

cability of classic evolutionary game theory to real populations. In particular,146

the classic results require that all interactions take the same amount of time147

and that all single individuals have the same payoff per unit of time.148

Example 1. The Hawk-Dove model (e.g., Maynard Smith and Price, 1973;149

Křivan and Cressman, 2017) has payoff matrix150

( H D

H V − C 2V
D 0 V

)
(12)

where 2V > 0 is the benefit of winning the contest (this can be interpreted151

as, e.g., the value of the contested resource) and C > 0 is the individual cost152

of the fight that each contestant bears (i.e., the total cost for both individuals153

is 2C). When two Hawks interact, the average payoff is thus (2V − 2C)/2.154

If singles payoffs are the same (πH = πD) so that differences in payoffs are155

through pairwise interactions only and all interactions take the same time, then156

for C > V from formula (11) we get the NE pH = V/C, which is independent of157

N . This is the unique evolutionarily stable strategy (ESS) of the classic matrix158

game (12) (Figure 1A). When C < V, all Hawks is the only NE (it is also an159

ESS).160

If all interactions take the same time τ and πH 6= πD, then the proportion161

of Hawks (11) at an interior NE is given by162

pH =
V

C
− (πD − πH)(

√
4λNτ + 1 + 1)

2CλN
(13)

and is no longer independent of population size N . The dependence of pH on163

λ and N is illustrated in Figure 1, left panels. When total population N tends164

to infinity, the proportion of Hawks converges to V/C as in the classical case.165

When πD > πH , we see from (13) that pH decreases with smaller λ and N166

(Figure 1, Panels A, C, E, G) and larger τ . On the other hand, when πD < πH ,167

we observe the opposite effect as seen in Figure 1, Panel I.168

3These equal payoffs to singles can be considered a type of strategy-independent back-
ground fitness (Cressman, 1992) that does not affect the evolutionary outcome since it is
selectively neutral. From this perspective, πH 6= πD is a form of heterogeneity in background
fitness (see also Hauser et al., 2014) that alters the evolutionary outcome to (11).
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When interaction times are not all the same, interior NE can be approxi-169

mated by numerically solving equations (9) and (10). The proportion of Hawks170

at NE are shown in the right panels of Figure 1 as a function of τHH when all171

other interaction times are 1. The top row of Figure 1 shows the case where172

individuals pair almost instantaneously, because pairing rate λ is high. In this173

case, there are practically no singles and distributional dynamics converge to174

(7). Panel B then corresponds with Figure 3B in Křivan and Cressman (2017)175

where instantaneous pairing was assumed. When pairing is not instantaneous176

and singles payoffs are negative but unequal (right panels D, F, H, J), it can177

be shown for the Hawk-Dove payoffs (12) that there is a finite threshold value178

such that the all Hawk population is a NE if and only if fighting time τHH is179

above this threshold. Moreover, panels D and J with intermediate pairing rate180

(λ = 1) document the existence of two interior NE when τHH is sufficiently181

large. In this case, one interior NE is stable (indicated by a solid curve) since182

ΠH − ΠD is positive (negative) just below (above) the curve and the other is183

unstable (indicated by a dashed curve). In both panels, all Hawks is then a NE184

as well since ΠH > ΠD when pH = 1. Panel F assumes yet lower pairing rate185

and we observe complex dependence of NEs on interaction times between two186

Hawks. In particular, it shows that for short interaction times between Hawks,187

the proportion of Hawks is below V/C = 1/2. As this interaction time increases,188

the proportion of Hawks increases too, and a second NE where initially all indi-189

viduals are Hawks appears. For intermediate interaction times between Hawks190

(approx. 4.9 < τHH < 9.6), the only NE is all Hawks. For yet higher interaction191

times, there are again two interior NE, and the stable lower one decreases with192

increasing interaction time. Finally, for extremely low pairing rate and πD > πH193

(panels G and H), the all Dove population is a NE independent of fighting time194

when population size is small enough since almost all individuals are singles.195

2.2. Replicator and population dynamics196

The replicator equation of evolutionary game theory is based on a popula-197

tion dynamics that assumes the per capita population growth rate of a strategy’s198

numbers is proportional to its payoff (Taylor and Jonker, 1978). In particular,199

unlike Section 2.1, total population size N can change. Under the implicit as-200

sumptions of classical evolutionary game theory that all interactions take one201

unit of time and that individuals instantaneously pair at Hardy–Weinberg dis-202

tribution (2), the replicator equation is independent of N as we will now see.203

First, the population dynamics becomes204

dH

dt
= ΠHH

dD

dt
= ΠDD

(14)

where the per capita population growth rate is equal to fitness. Moreover, by205

the second assumption, fitnesses are given by (3) and so population dynamics206
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Figure 1: (Previous page.) The proportion of Hawks (pH) at the NE for the Hawk-Dove
game parametrized by (12) as a function of population size N (left panels) and of interaction
time between Hawks τHH (right panels). Stable (unstable) NE are indicated by solid (dashed)
curves. The left panels assume that all interaction times are the same (in particular, τHH = 1)
and in the right panels the constant total population size is N = 100. The top row assumes
very fast pairing rate (λ = 10000), the second and fifth rows intermediate pairing rate (λ =
1), and the third and fourth row low and very low pairing rates (λ = 0.1 and λ = 0.007,
respectivelly). Since there are effectively no singles in the top row, the left panel gives the
NE of the classic Hawk-Dove game with payoff matrix (12) and the right panel reproduces
Figure 3B in Křivan and Cressman (2017). The top three panels on the left (A, C, E) assume
different singles payoff (πH = −1, πD = −0.5) whereas the top three panels on the right (B,
D, F) assume equal singles payoff (πH = −1, πD = −1). Panels G and H assume πH = −1
and πD = −0.5 as in A, C, E whereas panels I and J assume πH = −0.5, πD = −2. Other
parameters used in simulations: τHD = 1, τDD = 1, V = 1, C = 2.

(14) can be rewritten in terms of the proportion pH ≡ H/(H + D) of Hawks207

and the total population size N ≡ H +D as208

dpH
dt

= pH(1− pH)

(
ΠH −ΠD

)
dN

dt
= ΠN,

(15)

where Π = pHΠH + pDΠD is the average fitness in the population. Since209

ΠH = pHπHH + pDπHD and ΠD = pHπDH + pDπDD where pD ≡ 1 − pH ,210

the proportion of Hawks evolves according to the replicator equation of classic211

evolutionary game theory which is independent of total population size. It is212

well-known (Hofbauer and Sigmund, 1998) that every trajectory of the repli-213

cator equation for a two-strategy game evolves to an equilibrium.4 Depending214

on whether the average fitness Π in the population is positive or negative at215

this equilibrium, the population size will then either grow (in which case the216

extinction equilibrium (H,D) = (0, 0) is unstable) or decay (the extinction equi-217

librium is then stable) exponentially and so no positive equilibrium population218

size exists. Such population dynamics are called density independent.219

In the remainder of this section, we generalize the population dynamics220

approach to evolutionary games where the classic assumptions do not hold. We221

continue to assume that distributional dynamics (5) operate on a fast time scale222

so that, in the population dynamics (14), the population distribution tracks223

instantaneously the unique equilibrium distribution of (5) at current Hawk and224

Dove numbers.5 From (6) and (8), population dynamics (14) simplify to225

dH

dt
= (πHHλnH + πHDλnD + πH)nH

dD

dt
= (πDHλnH + πDDλnD + πD)nD,

(16)

4This equilibrium is a NE of the game (and, generically, an ESS) if initially there are both
Hawks and Doves present.

5See, however, Section 3, where this assumption is relaxed.
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which can be analyzed by rewriting it as a dynamics in nH and nD alone.226

Specifically, using generalized Hardy–Weinberg distribution (6), Hawk and Dove227

population size at the distributional equilibrium are228

H = 2nHH + nHD + nH = nH(nHλτHH + nDλτHD + 1),

D = 2nDD + nHD + nD = nD(nDλτDD + nHλτHD + 1).
(17)

Calculating derivatives of H and D in (17) and substituting them into (16) leads229

to 6
230

dnH
dt

= nH
nDλ(πD + nDλπDD + nHλπDH)τHD − (πH + nDλπHD + nHλπHH)(1 + 2nDλτDD + nHλτHD)

nDnHλ2τ2HD − (1 + 2nDλτDD + nHλτHD)(1 + nDλτHD + 2nHλτHH)

dnD
dt

= nD
nHλ(πH + nHλπHH + nDλπHD)τHD − (πD + nHλπDH + nDλπDD)(1 + 2nHλτHH + nDλτHD)

nDnHλ2τ2HD − (1 + 2nDλτDD + nHλτHD)(1 + nDλτHD + 2nHλτHH)
.

(18)
In contrast to (14), population dynamics (18) also have non-trivial equilibria.231

Here we provide conditions (proven in Appendix B) for their local asymptotic232

stability.233

The extinction equilibrium (nH , nD) = (0, 0) is locally stable when πH < 0234

and πD < 0. This can be understood intuitively by Figure 2, where panels C235

and E (gray lines) show that, as the total population size decreases toward 0, the236

frequency of singles (pS ≡ (nH + nD)/N) in the population increases toward237

1. For low population size, individual fitness is then essentially given by the238

singles payoff, which then determine population dynamics and hence the fate239

of the population. Thus, when payoffs of singles are negative, the population240

will go extinct. Figure 2C also shows that the frequency of Hawks (pH) in the241

population does not tend to V/C even in the case that single Hawks and Doves242

have the same payoff (i.e., πH = πD) and all τ ’s are equal (see the gray solid243

line in panel C). In fact, the limiting proportion of Hawks depends on the initial244

conditions that determine the angle with which the corresponding trajectory245

tends to the origin in Figure 2, panel A.246

The black lines of Figure 2, panels C and E, show that, as population size247

increases toward infinity, the frequency of pairs (pP ≡ 1−pS) in the population248

increases toward 1. For large populations, it is the payoffs from interacting pairs249

that determine population dynamics. For the Hawk-Dove payoff matrix (12), the250

frequency of Hawks then approaches V/C when all τ ’s are equal, independently251

of the initial conditions.252

Other boundary equilibria may exist where exactly one strategy is extinct.253

6We note that rewriting these dynamics in analogy to (15) where we separated frequency
dynamics from population dynamics is cumbersome now, because the analytic expression for
the equilibrium of (5) as a function of Hawk and Dove population numbers is a very complex
formula (it can be calculated in Mathematica).
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For instance, the Hawk only boundary equilibrium254

(nH , nD) =

(
− πH
λπHH

, 0

)
(19)

exists if and only if πHH 6= 0 and πH/πHH < 0. Moreover, it is locally stable if255

and only if πH > 0 and πDπHH < πHπDH . Similarly, the Dove only boundary256

equilibrium257

(nH , nD) =

(
0,− πD

λπDD

)
(20)

exists if and only if πDD 6= 0 and πD/πDD < 0 and is locally stable if and only258

if πD > 0 and πHπDD < πDπHD.259

Most importantly, there are payoff parameters for which the interior equi-260

librium261

(nH , nD) =

(
πDDπH − πDπHD

λ(πDHπHD − πDDπHH)
,

πDπHH − πDHπH
λ(πDHπHD − πDDπHH)

)
(21)

exists. It is interesting to note that equilibrium (21) is independent of interaction262

times. This can also be seen from (16) where the right hand-side is independent263

of interaction times and, consequently, the values of nH and nD at which both264

Hawks and Doves have zero growth rate are independent of interaction times265

too. However, due to (17), equilibrium numbers of Hawks and Doves do depend266

on interaction times. Stability analysis of equilibrium (21) also depends on267

interaction times and leads to complex expressions. Below we will analyze its268

stability for the Hawk-Dove game.269

Before doing so, we observe two important effects of singles on population270

dynamics (16) (or (18)). First, when singles do not get any payoff (πD = πH =271

0), then (0, 0) is the only equilibrium. Second, as the pairing rate of singles272

λ tends to infinity, both boundary and interior equilibria tend to (0, 0). These273

observations clearly show that existence of non-extinction equilibria in these274

dynamics depends on singles being considered.275

The important observation here is that, unlike classic evolutionary game276

theory, generalization of replicator dynamics that include singles payoff (i.e.,277

πH or πD) can lead to density dependence, and so to non-extinction equilibria.278

For this to happen it is essential that singles receive payoffs. We note that279

our payoffs (to pairs and to singles) are independent of population size unlike280

the background fitness approach of Cressman (1992) where payoffs decrease as281

population size increases or of Argasinski and Broom (2013) who assume density282

dependent fertility rates.283

Example 1 continued. For the classic assumptions of evolutionary game284

theory applied to the parametrization of the Hawk-Dove model (12), the average285

fitness in the population at its unique NE is286

Π =
V

C
(C − V ) > 0
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when C > V and Π = V − C > 0 when V > C. Thus, the population will287

eventually grow exponentially, i.e., there is no stable population equilibrium. In288

fact, even if singles do not pair instantaneously, the population will eventually289

grow exponentially when πH = πD = 0.290

Now we consider the case where individuals do not pair instantaneously, pair291

interaction times may differ, and singles receive payoff. Provided πH−2πD

λ(C−V ) > 0292

and πD < 0, the interior population equilibrium (21) is293

(nH , nD) =

(
πH − 2πD
λ(C − V )

,−πD
V λ

)
(22)

and the population of Hawks and Doves at this equilibrium are294

H =
(2πD − πH)((C − V )(πDτHD − V ) + V (2πD − πH)τHH)

(C − V )2V λ

and295

D =
πD((C − V )(V − πDτDD) + V (πH − 2πD)τHD)

V 2(V − C)λ
.

Appendix B gives conditions on parameters that guarantee the stability of this296

equilibrium. However, these conditions also imply that for C > V the interior297

equilibrium is always unstable (Figure 2A). In fact, since πH < 0 and πD < 0 in298

this panel, the extinction equilibrium is locally stable and we observe the Allee299

effect where the population goes extinct when initially at low numbers, but it300

survives once it overcomes the extinction threshold (Courchamp et al., 2008)301

and grows to infinity (Figure 2E).302

In order to avoid this Allee effect in Example 1 whenever there is an interior303

equilibrium and (0, 0) is locally stable, we re-parametrize the payoff matrix for304

the Hawk-Dove game as in the following example by decreasing payoffs from305

pairs (specifically, by subtracting V from each entry of (12)). As we will see,306

the decrease in population growth rates due to the fitness component based307

on pairs results in the stability of the interior equilibrium whenever it exists308

(Figure 2B and F). Thus, singles payoff can lead to stable interior equilibria for309

the combined replicator and population dynamics.310

Example 2. The second parametrization of the Hawk-Dove model we consider311

has payoff matrix312 ( H D

H −C V
D −V 0

)
. (23)

Here, two fighting Hawks always pay a cost C > 0, while when a Hawk interacts313

with a Dove, it gets a positive payoff V , e.g., by stealing the resource owned314

by its opponent. In this parametrization, the payoff a Hawk obtains when315

interacting with a Dove is the same as the cost a Dove pays when interacting316

with a Hawk.317
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For the classic assumptions of evolutionary game theory, this parametriza-318

tion as a matrix game has the same NE (and ESS) as parametrization (12) in319

Example 1.7 On the other hand, the average fitness in the population at the320

unique NE is now321

Π = −V
2

C

for C > V and Π = −C for V ≥ C. Thus, the population will go extinct.322

Now we consider the case where individuals do not pair instantaneously, pair323

interaction times may differ and singles have fitness consequences. Provided324

πD > 0 and CπD > V πH , the interior population equilibrium (21) is325

(nH , nD) =

(
πD
λV

,
CπD − V πH

V 2λ

)
. (24)

At this equilibrium, the population of Hawks and Doves are326

H =
πD(τHD(CπD − V πH) + V (V + πDτHH))

V 3λ

and327

D =
(CπD − V πH)(τDD(CπD − V πH) + V (V + πDτHD))

V 4λ
.

Appendix B shows that if this equilibrium exists, it is stable (Figure 2, right328

panels). Moreover, if all τ ’s are equal and πH = πD, the equilibrium frequency329

of Hawks is the unique NE, pH = V/C, of (23) (Figure 2D).330

On the other hand, as illustrated by the dependence of this equilibrium on331

πD > 0 in Figure 3, pH 6= V/C if the payoffs to singles are different. From (24),332

equilibrium population size increases to infinity as πD increases (Figure 3B).333

Moreover, from (6), the proportion of paired individuals converges to 1 (Fig-334

ure 3A, see also Appendix F). Interestingly, the proportion of Hawks does not335

converge to 0 (for the parameters of Figure 3, the limiting proportion is 1/3)336

even when the payoff πD to single Doves tends to infinity since most of the337

fitness is due to pair interactions at high population size.338

3. Distributional–population dynamics339

In the previous section, we assumed distributional dynamics that were in-340

dependent of population dynamics. In particular, the distributional dynamics341

reached its equilibrium very fast at given strategy numbers and then the pop-342

ulation dynamics acted on this equilibrium distribution. However, this com-343

plete separation of time scales need not hold. For example, perceptual con-344

straints (Abrahams, 1986; Gray and Kennedy, 1994; Berec and Křivan, 2000)345

7This follows from the fact that each entry of the payoff matric (23) differs from the
corresponding entry of (12) by the same constant V .
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Figure 2: Simulations of Hawk and Dove population dynamics (16). Left panels correspond
to Example 1 (πH = πD = −1) and right panels to Example 2 (πH = πD = 1). Top row
shows stream plot of singles population dynamics (18). The middle row shows frequency of
Hawks (pH), frequency of single individuals (pS) and frequency of individuals that are in pairs
(pP ) in the population as a function of time. The bottom row shows the total population
size as a function of time. Panels C and E show two trajectories. Along one (black lines)
the population grows to infinity, while along the other (gray) it declines to extinction. Other
parameters: τHH = 1, τHD = 1, τDD = 1, λ = 1, V = 1, C = 2.
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Figure 3: Dependence on single Dove payoff πD of the interior equilibrium (24) for Example 2,
which exists for πD > (V/C)πH . Panel A shows frequency of Hawks (pH), frequency of single
individuals (pS) and frequency of individuals that are in pairs (pP ) while panel B shows the
total population size at the equilibrium. Other parameters are the same as those in Figure 2,
right panels (i.e., τHH = 1, τHD = 1, τDD = 1, λ = 1, V = 1, C = 2, πH = 1).

may prevent individuals from having perfect information about their environ-346

ment, making them only locally omniscient. In order to model distributional347

and population dynamics on similar time scales, we split payoffs in (1) as348 (
πHH πHD
πDH πDD

)
=

(
βHH βHD
βDH βDD

)
−
(
µHH µHD
µDH µDD

)
, (25)

where we assume that all β’s and µ’s are non-negative. Here we interpret β’s349

as the part of payoff that increase fitness (e.g., birth rate) while µ’s decrease350

fitness (e.g., mortality rate). For example, βHD is the expected number of351

offspring produced per interaction by a Hawk when it interacts with a Dove.352

In the following continuous-time distributional-population dynamics (e.g., (26)353

and (29)), δ βHD

τHD
is then interpreted as the probability that, over a small time354

interval δ, this Hawk produces an offspring. Similarly, δ µDH

τHD
is the probability355

the Dove dies during this time interval.356

We stress here that similarly to π’s for pairs, all β’s and µ’s in (25) are357

measured per single interaction. To express these per unit of time, we need358

to divide them by the average pair duration. Then distributional-population359
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dynamics are described by the following set of differential equations8360

dnH
dt

=ν(−λn2H − λnHnD + 2
nHH
τHH

+
nHD
τHD

)+

πHnH + 2
βHH + µHH

τHH
nHH +

βHD + µDH
τHD

nHD

dnD
dt

=ν(−λn2D − λnHnD + 2
nDD
τDD

+
nHD
τHD

)+

πDnD + 2
βDD + µDD

τDD
nDD +

βDH + µHD
τHD

nHD

dnHH
dt

=ν(−nHH
τHH

+
λ

2
n2H)− 2

µHH
τHH

nHH

dnHD
dt

=ν(−nHD
τHD

+ λnHnD)− µHD + µDH
τHD

nHD

dnDD
dt

=ν(−nDD
τDD

+
λ

2
n2D)− 2

µDD
τDD

nDD.

(26)

These equations assume that newborns are singles and that, if a pair disbands361

due to mortality of one individual, the surviving individual becomes a single.362

For example, if a Dove paired with a Hawk dies, the surviving Hawk becomes363

a single Hawk. For this reason there is µDH

τHD
(and not µHD

τHD
) in the equation for364

single Hawks. Thus, we assume that one individual in a pair always survives.365

Parameter ν > 0 allows us to study changes in the relative time scales of dis-366

tribution and demographic dynamics. When ν < 1 (ν > 1), then population367

dynamics are faster (slower) than distributional dynamics.368

For arbitrary ν, we observe that369

dH

dt
=
d(2nHH + nHD + nH)

dt
= 2

βHH − µHH
τHH

nHH+
βHD − µHD

τHD
nHD+πHnH = ΠHH

and370

dD

dt
=
d(2nDD + nHD + nD)

dt
= 2

βDD − µDD
τDD

nDD+
βDH − µDH

τHD
nHD+πDnD = ΠDD

where ΠH and ΠD are given by (8) with payoff matrix (25). That is, fitnesses371

derived from distributional-population dynamics (26) coincide with those of372

Section 2. What has changed is how these individual fitnesses are divided among373

singles and pairs.374

8Note that it is unnecessary to write the payoff to singles as a difference (e.g., πH =
βH − µH) since these births and deaths only affect the number of singles.
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At the coexistence equilibrium of (26), the HW distribution (2) and (6)375

generalizes to376

nHH =
λνnH

2τHH
2ν + 4µHH

, nHD =
λνnDnHτHD

ν + µDH + µHD
, nDD =

λνnD
2τDD

2ν + 4µDD
. (27)

These numbers now depend on fitness through the death rates (i.e., the µ’s).377

When µ’s are all zero, then the HW distribution (27) and (6) coincide. Moreover,378

the equilibria for the distributional-population dynamics (26) will then coincide379

with those of (16). However, when some µ’s are positive, equilibrium points of380

(26) differ from those given by (16). To illustrate these differences at a stable381

equilibrium, we will parametrize model (26) by payoff matrix (23) because, as382

we saw in Example 2, this parametrization leads to a stable interior equilibrium383

of population dynamics (18).384

Example 2 continued. To parametrize model (26) for the Hawk-Dove game385

given by (23), we follow (25) and write payoff matrix (23) as a difference of two386

matrices, where the first describes benefits and the second losses, e.g.,387 (
−C V
−V 0

)
=

(
0 V
0 0

)
−
(
C 0
V 0

)
. (28)

Here the birth rate of a Hawk from an interaction with a Dove (V ) is the same388

as is the death rate of a Dove when interacting with a Hawk. Distributional-389

population dynamics (26) are then390

dnH
dt

= ν(−λn2H − λnHnD + 2
nHH
τHH

+
nHD
τHD

) + πHnH + 2
C

τHH
nHH +

2V

τHD
nHD

dnD
dt

= ν(−λn2D − λnHnD + 2
nDD
τDD

+
nHD
τHD

) + πDnD

dnHH
dt

= ν(−nHH
τHH

+
λ

2
n2H)− 2

C

τHH
nHH

dnHD
dt

= ν(−nHD
τHD

+ λnHnD)− V

τHD
nHD

dnDD
dt

= ν(−nDD
τDD

+
λ

2
n2D).

(29)
Provided the interior equilibrium exists, it is391

(nH , nD) =

(
πD(ν + V )

λνV
,

(ν + V )(CπD(ν + V )− πHV (2C + ν))

λνV 2(2C + ν)

)
(30)

and the number of pairs at the equilibrium is given by (27). We note that the392

equilibrium numbers of singles continue to be independent of the interaction393

times and, as ν tends to infinity, is given by (24) (see also (21)).394

Since equilibrium (30) converges to equilibrium (24) as ν tends to infinity, we395

assume that equilibrium (24) is in the interior (i.e., πD > 0 and CπD−πHV > 0)396
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in what follows. We observe that Doves exist (i.e., nD > 0) at equilibrium (30)397

if and only if distributional dynamics are fast enough so that398

ν >
CV (2πH − πD)

CπD − πHV
.

Figure 4E shows this bifurcation curve in the πD − ν parameter space. The399

curve separates the values such that Doves go extinct (parameter values below400

the curve) from those where Doves survive (above the curve).401

Figure 4A and B (respectively C and D) show the dependence on ν of Hawk402

and Dove numbers (respectively, proportion of Hawks) at the stable population403

equilibrium. For slow distributional dynamics, total population size is increasing404

as ν tends to 0 since singles have positive payoffs (πH > 0, πD > 0 in Figure 4).405

However, since ν = 2 is the threshold below which Doves go extinct in Panel406

A where πD = 1, this payoff to single Doves is too low to rescue Doves from407

extinction when ν is small. Panel B with πD = 2.5 shows the opposite case408

where the Dove population does not go extinct for any ν > 0 and, in fact, as409

the speed of distributional dynamics decreases toward 0, both Hawk and Dove410

population numbers become arbitrarily large. As ν tends to infinity in these411

four panels, the stable interior equilibrium of (29) converges to that of model412

(16) of Section 2. In particular, for the left panels, this equilibrium approaches413

that of the right panels in Figure 2 where N = H+D = 6 and pH = V/C = 0.5414

since all τ ’s are equal and πH = πD.415

4. Contest competition for a limited resource416

The Hawk-Dove model, when interpreted as a model of contest competition,417

can represent competition for resources, such as breeding sites where each site418

can be owned by at most one individual (Kokko et al., 2014). We represent these419

K sites as a resource with finite environmental carrying capacity. Individuals420

are again either Hawks or Doves, and they can be either searching for the421

resource (nHs , nDs), owning the resource (nHo , nDo), or interacting with each422

other when a searcher finds an owner. During the competition for a site there423

are four possible types of searcher-owner pairs and the numbers of these pairs424

are denoted as nHsHo
, nHsDo

, nHoDs
, and nDsDo

. Once the competing pair is425

formed and jointly occupy the site, the individuals are no longer searchers for426

the site or owners of the site. The notation for competing pairs indicates how427

the pair formed. In particular, nHsDo is the number of occupied sites where a428

searching Hawk encountered an owning Dove.429
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Figure 4: Dependence of the stable equilibrium of model (29) for Example 2 on the relative
speed of distributional dynamics to demographic dynamics. Hawks (Doves) abundance is
shown as the solid (dashed) curve in top panels. The middle panels (C and D) show Hawk
frequency. Left panels (A, C) assume relatively low payoff to single Doves (πD = 1) and as
ν increases, population abundances converge to the equilibrium shown in Figure 2F (N =
H+D = 6). Right panels (B, D) assume a higher payoff to single Doves (πD = 2.5) for which
both populations become arbitrarily large as ν decreases toward 0. Panel E shows the critical
threshold in the (ν, πD) phase space, below which Doves go extinct and above which both
Hawks and Doves coexist at positive numbers. Other parameters are the same as those used
in Figure 2, right panels (i.e., τHH = 1, τHD = 1, τDD = 1, λ = 1, V = 1, C = 2, πH = 1).
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4.1. Distributional dynamics430

Distributional dynamics at fixed population sizes H and D of Hawks and431

Doves, respectively, that are based on the mass action principle are432

dnHs

dt
=− λnHs

F − λnHs
nHo
− λnHs

nDo
+
nHsHo

τHH

dnHo

dt
=λnHsF − λnHsnHo − λnDsnHo +

nHsHo

τHH
+
nHoDs

τHD
+
nHsDo

τHD

dnDs

dt
=− λnDs

F − λnDs
nHo
− λnDs

nDo
+
nDsDo

τDD
+
nHsDo

τHD
+
nHoDs

τHD

dnDo

dt
=λnDs

F − λnDs
nDo
− λnHs

nDo
+
nDsDo

τDD

dnHsHo

dt
=− nHsHo

τHH
+ λnHsnHo

dnHsDo

dt
=− nHsDo

τHD
+ λnHs

nDo

dnHoDs

dt
=− nHoDs

τHD
+ λnDs

nHo

dnDsDo

dt
=− nDsDo

τDD
+ λnDsnDo

(31)
where433

F ≡ K − nHo
− nDo

− nHsHo
− nHsDo

− nDsDo
− nHoDs

(32)

is the nonnegative number of free sites (i.e., sites that are neither occupied by a434

single owner or by a pair). Model (31) assumes that individual search rate is λ.435

If a searching individual encounters a free site, it will occupy it and will become436

an owning consumer. When a searching Hawk encounters a site owned by a437

Dove, the Hawk wins the competition and, when the pair disbands, becomes an438

owning Hawk while the Dove that lost the site becomes a searching Dove. This439

assumption leads to the term
nHsDo

τHD
in the second and third equations. Once440

again this shows that distributional dynamics such as (31) may depend on how441

entries in the payoff matrix are interpreted.442

From (31), the number of free sites evolves according to443

dF

dt
= −λ(nHs + nDs)F. (33)

That is, the number of free sites changes at a rate proportional to the number444

of searchers encountering them. Equation (33) shows that the system either445

converges to a state where there are no searchers (i.e., nHs
+nDs

= 0) or to the446
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set of states where there are no free sites (i.e., F = 0). Appendix C shows that447

for each fixed Hawk and Dove population numbers, system (31) has a unique448

equilibrium. It also shows that this equilibrium depends on the abundances of449

Hawks and Doves and on the number of sites, K, according to the following450

three cases.451

1. When the number of individuals is no larger than the number of sites452

(H + D ≤ K), all Hawks and all Doves own sites, i.e., the equilibrium is453

nHo
= H,nDo

= D.454

2. When the total number of individuals is larger than the number of sites455

(H + D > K) while the number of Hawks in the population is no larger456

than the number of sites (H ≤ K), all Hawks occupy sites either as single457

owners or in HoDs pairs and all other K−H sites are occupied by Doves.458

3. When the number of Hawks in the population is larger than the number459

of sites (H > K), all sites are occupied by Hawks, either as single owners460

or in HoHs and HoDs pairs.461

As the distributional equilibrium is quite complicated in the last two cases,462

the next example considers distributional dynamics (31) when only Hawk–Hawk463

interactions are time consuming.464

Example 3. In this example, we will assume that τHD and τDD tend to 0.465

As τHD and τDD tend to 0, the number of pairs, except nHsHo , will quickly466

equilibrate with the number of singles, i.e.,467

nHsDo = λτHDnHsnDo

nHoDs = λτHDnDsnHo

nDsDo
= λτDDnDs

nDo
.

(34)

We substitute this pseudo-equilibrium into distributional dynamics (31) to get468

dnHs

dt
=− λnHs

F − λnHs
nHo
− λnHs

nDo
+
nHsHo

τHH

dnHo

dt
=λnHs

F − λnHs
nHo

+ λnHs
nDo

+
nHsHo

τHH

dnDs

dt
=− λnDs

F + λnHs
nDo

dnDo

dt
=λnDs

F − λnHs
nDo

dnHsHo

dt
=− nHsHo

τHH
+ λnHsnHo

(35)

where F = K − (nHo + nDo + nHoHs). Appendix D analyzes the unique469

distributional equilibrium of (35) and proves that it is globally asymptotically470

stable at any Hawk and Dove population abundances.471

In particular, the three cases above simplify to472
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1. When the number of individuals is no larger than the number of sites473

(H +D ≤ K), all Hawks and all Doves own sites, i.e., the equilibrium is474

(nHs , nHo , nDs , nDo , nHsHo) = (0, H, 0, D, 0) (36)

(see Figure 5 for K ≥ 100).475

2. When the total number of individuals is larger than the number of sites476

(H + D > K) while the number of Hawks in the population is no larger477

than the number of sites (H ≤ K), all Hawks own sites while Doves occupy478

the rest of the sites and some Doves are searching, i.e., the equilibrium is479

(nHs , nHo , nDs , nDo , nHsHo) = (0, H,H +D −K,K −H, 0), (37)

(see Figure 5 for 60 ≤ K < 100).480

3. When the number of Hawks in the population is larger than the number481

of sites (H > K), all sites are occupied by Hawks and all Doves are single482

searchers.483

nHs =
−1 + (H − 2K)λτHH +

√
1 + λτHH(2H + (H − 2K)2λτHH)

2λτHH

nHo
=
−1− (H − 2K)λτHH +

√
1 + λτHH(2H + (H − 2K)2λτHH)

2λτHH
nDs = D

nDo = 0

nHsHo =
1 +HλτHH −

√
1 + λτHH(2H + (H − 2K)2λτHH)

2λτHH
.

(38)
(see Figure 5 for K < 60).484

4.2. Distributional–population dynamics485

To combine distributional dynamics (31) with changing population size, we486

must include fitness effects (cf. Section 3). Single Hawk and Dove searchers487

(owners) gain payoffs πHs
(πHo

) and πDs
(πDo

) per unit of time, respectively.488

When in pairs, payoffs are given by a payoff bi-matrix489

( Ho Do

Hs πHsHo
, πHoHs

πHsDo
, πDoHs

Ds πDsHo
, πHoDs

πDsDo
, πDoDs

)
(39)

where the first (second) payoff in each entry of the matrix is that of the row490

(column) player. With fitness defined as the average payoff per unit of time (cf.491
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Figure 5: Dependence of the number of searchers (nHs and nDs ) and number of owners (nHo

and nDo ) at the distributional equilibrium of model (35) as a function of K. The overall
number of individuals is fixed at H = 60 and D = 40. Hawks are described by solid lines,
Doves are described by dashed lines. Black lines denote owning individuals and gray lines
denote searching individuals. The dotted line denotes the number of Hawk pairs, i.e, nHsHo .
Parameters: λ = 1, τHH = 1, τHD = 0, τDD = 0.

(8)), we now have492

ΠH =
nHsHo

(
πHsHo

τHH
+

πHoHs

τHH
) + nHsDo

πHsDo

τHD
+ nHoDs

πHoDs

τHD
+ nHo

πHo
+ nHs

πHs

H

and

ΠD =
nDsDo

(
πDsDo

τDD
+

πDoDs

τDD
) + nHoDs

πDsHo

τHD
+ nHsDo

πDoHs

τHD
+ nDo

πDo
+ nDs

πDs

D
(40)

where H = 2nHsHo
+ nHsDo

+ nHoDs
+ nHs

+ nHo
and D = 2nDsDo

+ nHsDo
+493

nDsHo + nDs + nDo are the total number of Hawks and Doves, respectively.494

To add the fitness terms in (40) to the distributional dynamics (31) in order495

to produce a distributional-population dynamics in analogy to model (26), we496

again split payoffs for pairs into birth and death rates, i.e., πij = βij − µij .497
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Distributional-population dynamics are then498

dnHs

dt
=ν
(
− λnHs

F − λnHs
nHo
− λnHs

nDo
+
nHsHo

τHH

)
+ (βHs

− µHs
)nHs

+

βHonHo +
βHsHo

+ βHoHs

τHH
nHsHo +

βHsDo

τHD
nHsDo +

βHoDs

τHD
nHoDs

dnHo

dt
=ν
(
λnHs

F − λnHs
nHo
− λnDs

nHo
+
nHsHo

τHH
+
nHoDs

τHD
+
nHsDo

τHD

)
−

µHo
nHo

+
µHsHo

+ µHoHs

τHH
nHsHo

+
µDoHs

τHD
nHsDo

+
µDsHo

τHD
nHoDs

dnDs

dt
=ν
(
− λnDsF − λnDsnHo − λnDsnDo +

nDsDo

τDD
+
nHsDo

τHD
+
nHoDs

τHD

)
+

(βDs
− µDs

)nDs
+ βDo

nDo
+
βDsDo

+ βDoDs

τDD
nDsDo

+
βDoHs

τHD
nHsDo

+
βDsHo

τHD
nHoDs

dnDo

dt
=ν
(
λnDsF − λnDsnDo − λnHsnDo +

nDsDo

τDD

)
−

µDo
nDo

+
µDsDo + µDoDs

τDD
nDsDo

+
µHsDo

τHD
nHsDo

+
µHoDs

τHD
nHoDs

dnHsHo

dt
=ν
(
− nHsHo

τHH
+ λnHs

nHo

)
− µHsHo

+ µHoHs

τHH
nHsHo

dnHsDo

dt
=ν
(
− nHsDo

τHD
+ λnHsnDo

)
− µHsDo

+ µDoHs

τHD
nHsDo

dnHoDs

dt
=ν
(
− nHoDs

τHD
+ λnDs

nHo

)
− µHoDs + µDsHo

τHD
nHoDs

dnDsDo

dt
=ν
(
− nDsDo

τDD
+ λnDs

nDo

)
− µDsDo

+ µDoDs

τDD
nDsDo

(41)
where F is given by (32). Here the model assumes that newborns are single499

searchers. This makes it important to also write payoffs to singles as differences500

(e.g., πHo
= βHo

− µHo
). Population demography is given by two processes.501

First, the model assumes demographic changes associated with singles. For ex-502

ample, in the first equation in (41), the term (βHs
−µHs

)nHs
describes changes503

due to birth and death among single Hawk searchers. Note that, in the simula-504

tions below, we assume that only individuals who are on a site either as singles505

or in pairs can give birth (and so βHs
= βDs

= 0). Term βHo
nHo

describes birth506

for those Hawks that own a site. Second, (41) considers demographic changes507

due to contests between individuals. For example, term
βHsHo+βHoHs

τHH
nHsHo

de-508

scribes newborns produced as a consequence of a contest between two Hawks,509

i.e., when a searching Hawk is paired with an owning Hawk. One of the two510

Hawks will win the site and will gain fitness by the opportunity of reproducing511

in the site. The probability of winning the contest and reproducing is cap-512

tured by terms βHsHo
in the case it is the searching Hawk that wins the contest513

and βHoHs
when the owning Hawk retains the site after the contest. Term514

βHsDo

τHD
nHsDo represents newborn Hawks produced when a searching Hawk is515
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paired with an owning Dove, because in this case we assume that with probabil-516

ity one the Hawk will win the contest. In the second equation for owning Hawks,517

term
µDoHs

τHD
nHsDo

represents the situation where the owning Dove paired with518

a searching Hawk dies and the searching Hawk becomes a single owning Hawk.519

The other terms follow the same logic.520

A lengthy but straightforward calculation based on (41) yields521

dH

dt
=
d(2nHsHo

+ nHsDo
+ nHoDs

+ nHs
+ nHo

)

dt
= ΠHH

and522

dD

dt
=
d(2nDsDo

+ nHsDo
+ nHoDs

+ nDs
+ nDo

)

dt
= ΠDD

where ΠH and ΠD are given by (40). Thus, when distributional dynamics are523

fast (i.e., ν tends to infinity), H and D evolve according to this dynamical524

system where ΠH and ΠD in (40) are evaluated at the unique equilibrium of525

(31) for current population sizes.526

Since the notation for pairs only indicates how the pair was formed (i.e., there527

is no owner or searcher when in a pair), we assume that once two individuals528

occupy a site, their payoffs do not depend on who was the owner and who was529

the searcher when they encountered each other. In particular, payoffs to Hawks530

in all Hawk-Hawk pairs are equal as are those in Hawk-Dove pairs. That is531

πHH = πHsHo
= πHoHs

, πDD = πDsDo
= πDoDs

, πHD = πHsDo
= πHoDs

, and532

πDH = πDsHo = πDoHs in (39). Fitnesses (40) then simplify to533

ΠH =
2nHsHo

πHH

τHH
+ (nHsDo

+ nHoDs
)πHD

τHD
+ nHo

πHo
+ nHs

πHs

H
,

ΠD =
2nDsDo

πDD

τDD
+ (nDsHo + nDoHs)πDH

τHD
+ nDoπDo + nDsπDs

D
.

(42)

However, population dynamics (41) are too complex for mathematical anal-534

ysis even when we assume fast distributional dynamics. We thus restrict our535

attention to the case where τDD and τHD tend to 0 as in Example 3 for the536

remainder of this section.537

Example 3 continued. We first derive population dynamics for Hawks and538

Doves when ν tends to infinity by assuming that distributional dynamics track539

the unique equilibrium of the simplified model (35) instantaneously. Substitut-540

ing distributional equilibria (36), (37), and (38) to (42), we obtain541

dH

dt
= πHo

H

dD

dt
= πDo

D

(43)
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when H +D ≤ K,542

dH

dt
= H((D +H −K)λπHD + πHo

)

dD

dt
= (K −H)(2(D +H −K)λπDD + πDo) + (D +H −K)(HλπDH + πDs)

(44)
when H +D > K and H ≤ K, and543

dH

dt
=

(−2πHH+(DλπHD+πHo+πHs )τHH)
√

1+λτHH(2H+(H−2K)2λτHH)

2λτ2
HH

−

−2πHH(1+HλτHH)+τHH(DλπHD+πHo+πHs+(H−2K)λ(DλπHD+πHo−πHs )τHH)

2λτ2
HH

dD

dt
= D

(
πDs

+
πDH

(
−1+(2K−H)λτHH+

√
1+λτHH(2H+(H−2K)2λτHH)

)
2τHH

)
(45)

when H > K.544

To analyze models (43)–(45), we will assume that owners obtain positive545

payoffs (πHo
> 0, πDo

> 0) and searching individuals obtain negative payoffs546

(πHs
< 0 and πDs

< 0). There is then no non-zero equilibrium for (43) in region547

H + D ≤ K because both Hawks and Doves increase exponentially and so all548

trajectories with initial positive population sizes for Hawks and Doves leave this549

region. If, in addition, Hawks gain payoff in their Hawk-Dove interacting pairs550

(πHD ≥ 0), equation (44) shows that Hawks are always increasing in the region551

where H +D > K and H < K, and so these trajectories must enter the region552

where H > K. Furthermore, if πDH ≤ 0,9 Appendix E shows that equation (45)553

has a unique globally asymptotically stable equilibrium. Altogether, this implies554

that the system of equations (43), (44), (45) has a globally asymptotically stable555

equilibrium given by556

(H,D) =

(
2Kλ(2π2

HH − πHH(πHo + 3πHs)τHH + 2πHoπHsτ
2
HH) + πHs(2πHH − (πHo + πHs)τHH)

2λ πHs
τHH(πHo

τHH − 2πHH)
+

(2πHH − (πHo
+ πHs

)τHH)
√

(2KλπHH + πHs
)2 − 4KλπHo

πHs
τHH

2λ πHs
τHH(πHo

τHH − 2πHH)
, 0

)
(46)

provided that 2πHH 6= πHo
τHH , and557

(H,D) =

(
K

(
πHs

λKπHo
τHH − πHs

− πHo

πHs

+ 2

)
, 0

)
.

9We will assume that πHD ≥ 0 and πDH ≤ 0 from now on. These conditions are satisfied
by both parametrizations of the Hawk-Dove payoff matrices given by (12) and (23) (see also
(47) and (28)) that have been used throughout the article.
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Figure 6: The dependence of the equilibrium of distributional-population dynamics (41) on
ν (ν > 0.2) when interaction times between Hawks (solid line) and Doves (dashed line) and
between Doves are very short (i.e., τHD = τDD = 0.0001). Left (respectively, right) panel is for
the Hawk-Dove game with payoff matrix (47) (respectively, (28)). Other parameters: λ = 1,
τHH = 1, V = 1, C = 4, K = 10, βHo = βDo = 0.2, µHo = µDo = 0.1, βHs = βDs = 0,
µHs = µDs = 0.1.

if 2πHH = πHoτHH .558

Figure 6 shows the population equilibrium based on simulations of the dy-559

namics (41) applied to the simplified model of Example 3 without assuming fast560

distributional dynamics. Panel A uses the classic Hawk-Dove payoff matrix561 (
V − C 2V

0 V

)
=

(
V 2V
0 V

)
−
(
C 0
0 0

)
(47)

(see also (12)) whereas panel B uses (28). The simulations suggest that there562

is a unique equilibrium for each set of parameters used in this figure. When563

distributional dynamics are on a similar time scale as population dynamics, we564

see that there are significant differences in the equilibrium for the two payoff565

matrices. For classic payoffs, we observe that both Hawks and Doves coexist at566

the equilibrium (panel A) for all νs. For the other payoff matrix (28) (panel B),567

we observe that the range of νs for which Doves coexist with Hawks is much568

smaller. As ν tends to infinity, we see in Figure 6, that the total numbers of569

Hawks and the total numbers of Doves tends to the equilibrium given by (46).570

5. Discussion571

Motivated by genetics, where players are alleles, the classical theory of two-572

strategy, two-player symmetric evolutionary games assumes that all individuals573

get payoffs only when paired, pairing is random and instantaneous, and the574

number of pairs is given by the Hardy–Weinberg distribution. With an individ-575

ual’s fitness equated to its expected payoff, the population growth rate (which576

is assumed to be proportional to the mean fitness of the population) is then577

frequency dependent but density independent. For the classical Hawk-Dove578

game, population growth is exponential as in equation (15). On the other hand,579

growth in natural populations is rarely exponential. Density dependent growth580
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is universal. This calls into question the degree to which results of two-player581

matrix games may be extended to make predictions about natural populations.582

The above assumptions on pairs make sense when considering for example583

mating between sexes, but fitness is also gained/lost when individuals are sin-584

gles. For example, fitness may increase when an individual forages through an585

increase in its survival probability, or an increase in egg production. In this586

article, we develop a new theoretical approach that relaxes these assumptions:587

(i) individuals do not pair instantaneously so that there are singles in the popu-588

lation, (ii) individuals gain/lose fitness not only when paired, but also as singles,589

and (iii) duration of encounters between individuals depends on their strategies.590

We find that including singles can regulate population growth which allows the591

study of both frequency and density of strategies.592

Our approach builds on that developed by Křivan and Cressman (2017) who593

assumed that individuals pair instantaneously, but interactions between differ-594

ent strategies take different time. As a result, the rate (per unit of time) that595

individuals are paired with each other depends on the strategies of the players.596

This idea that interaction rates might be strategy-dependent was incorporated597

into evolutionary game dynamics by Taylor and Nowak (2006). In their analysis598

of the evolutionary stability of strategy dynamics, the fitness of a strategy is599

given in units of payoff per interaction (Argasinski and Broom, 2018), and the600

interaction rates refer to the intensity with which certain strategies will assort601

with other strategies. This mirrors the classical theory in which the number of602

interactions determines overall fitness. Our models include the length of time a603

game is played, so our approach differs fundamentally from Taylor and Nowak604

(2006) and is more closely related to that of Argasinski and Broom (2018) where605

the number of games that are played in a period of time is taken into account10.606

This approach allows one to study the fitness of a strategy when fitness includes607

more than game payoffs, e.g., singles payoff. In Section 2, we see that when608

singles payoff does not depend on strategy, and interaction times are equal,609

then the Nash equilibrium of the game is unchanged from classical predictions.610

Under these assumptions, including singles is equivalent to adding background611

fitness (Cressman, 1992). However, if singles payoffs depend on strategy, then612

under the aforementioned assumptions, we see (Figure 2, panels C and E) that613

these payoffs contribute more to average fitness because the proportion of sin-614

gles tends to 1 (respectively, 0) when the total population size, N , tends to zero615

(respectively, infinity).616

In Sections 2 and 3, where payoffs to singles and pairs are density inde-617

pendent, we show that non-instantaneous pair formation can induce density618

dependence in the population growth where the population growth rate is still619

given by the average fitness in the population.11 The existence of a coexistence620

10These approaches are equivalent when all interactions take the same amount of time and
fitness is accrued only through the game.

11Other approaches (e.g., Cressman (1992); Argasinski and Broom (2013)) to get con-
vergence to non-zero population numbers typically assume some explicit density dependent
mechanisms in individual payoff/fitness.

29



equilibrium (i.e., an interior equilibrium where both strategies have positive den-621

sity) relies on a balance between the positive payoff of singles and the negative622

average payoff from the game (or vice versa). Moreover, the stability of an inte-623

rior equilibrium for the Hawk-Dove model depends on the parametrization of its624

payoff matrix, as seen in Figure 3 of Section 2, where distributional dynamics625

act on a fast time-scale compared to population dynamics. For instance, an626

interior population equilibrium may exist for the Hawk-Dove model with classic627

payoff matrix (12) when the payoffs to singles are negative. However, this equi-628

librium is never stable (Example 1).12 On the other hand, when the payoffs to629

interacting pairs are all decreased by the same amount as in payoff matrix (23)630

of Example 2,13 a stable interior equilibrium often emerges if payoffs to singles631

are positive. Thus, the eco-evolutionary dynamics depend on where fitness is632

accrued, as remarked in Argasinski and Broom (2013, 2018, In press) (see also633

McNamara, 2013).634

The population dynamics (16) of Section 2 serve to frame our thinking635

around relating ecological parameters to V and C from the Hawk-Dove pay-636

off matrix. When these model equations have a stable interior equilibrium (in637

Example 2), it can be shown using (24) that the proportion of Hawks at equi-638

librium will increase with increases in V and decrease with increases in C. This639

is consistent with the classical Hawk-Dove game at the interior ESS where the640

proportion of Hawks equals V
C . On the other hand, in the classical game, Hawks641

and Doves coexist if and only if the cost when two Hawks fight is higher than642

their expected gain (i.e., V < C) whereas, in Example 2, we show that coex-643

istence may also occur when V > C due to singles receiving payoff. The same644

result (i.e., coexistence when V > C) was shown by Křivan and Cressman (2017)645

at fixed population size. Specifically, when pairs form instantaneously and in-646

teractions between two Hawks take long enough compared to other interactions,647

they showed that non-aggressiveness can evolve even when V > C. Similarly,648

in the repeated Prisoner’s Dilemma game, cooperation evolves when individuals649

can control how many rounds to continue an interaction (i.e., they can opt-out;650

Zhang et al., 2016). These models are the limit cases of the model investigated651

in Section 2 when the mean time between encounters tends to zero and the652

number of singles tends to zero too. Once again, we see that including singles653

and/or including interaction times can influence the evolutionary predictions.654

Although the parameters V and C from the Hawk-Dove game are not well-655

defined ecological parameters, we show in Section 3 that it is possible to de-656

compose the payoffs from the Hawk-Dove game into payoffs that increase fit-657

ness and payoffs that decrease fitness. This allows us to examine population–658

distributional dynamics when relaxing the assumption that distributional dy-659

namics are fast compared to population dynamics. In particular, non-aggressiveness660

12The intuitive reason for this is that the negative payoffs to singles locally stabilizes the
extinction equilibrium whereas the positive payoffs from interacting pairs at the distributional
equilibrium drives the population to infinity once its size is large enough.

13This does not change the evolutionary outcome (i.e., ESS) of the classic Hawk-Dove game
(Hofbauer and Sigmund, 1998).
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can evolve when the distributional and population dynamics are on similar time661

scales. This result does not depend on the amount of time that individuals662

are paired but only on the relative time scales of the two dynamics. This is663

illustrated in Figure 4 where we see that coexistence depends on the speed of664

distributional dynamics relative to population dynamics.665

Our final model (Section 4) includes an explicit density-dependent mech-666

anism in the Hawk-Dove game through competition over a fixed number of667

breeding sites. With the usual assumption that a Hawk gains the resource (i.e.,668

the site) when interacting with a Dove, Hawks always win at the equilibrium of669

the distributional dynamics in the sense that Doves can only own breeding sites670

when there is an insufficient number of Hawks to occupy all sites (Figure 5).671

Not surprisingly, Doves are then driven to extinction when population sizes also672

evolve and the distributional dynamics are fast (i.e., ν is large). Coexistence673

of Hawks and Doves now requires that the combined population and distribu-674

tional dynamics operate on a similar time scale (Figure 6). In particular, as675

ν increases, Doves go extinct. Interestingly, this effect of increasing ν in the676

density dependent model of Section 4 is opposite to the coexistence outcome677

for large ν in Section 3 (Figure 4) where the model has no a priori density678

dependence.679

In sum, we have shown that including singles can induce density dependence680

into the game’s population dynamics. This allows one to study not only the681

frequency but also the density of strategies. We have been able to study how682

singles and the relative time scales of the distributional and population dynamics683

affect the evolutionary predictions of the classical game. Although we have684

assumed here density independent payoffs to both singles and pairs, it will be685

interesting to examine in future work how our predictions may be affected by686

payoffs that can change with the environmental condition.687
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Appendix A. Uniqueness of distributional equilibrium of (5)695

Fix H and D and define qH ≡ nH

H (and qD ≡ nD

D ) as the proportion of single696

Hawks (Doves) in the Hawk (Dove) population. Then, at an equilibrium of (5),697

qH =
1

1 + λτHHHqH + λτHDDqD

qD =
1

1 + λτHDHqH + λτDDDqD

(A.1)

since, for example,

qH (1 + λτHHHqH + λτHDDqD) =
nH
H

(
1 + λτHHH

nH
H

+ λτHDD
nD
D

)
=

1

H
(nH + 2nHH + nHD) = 1

by (6).698

By Lemma 2 in Garay et al. (2017), there is a unique solution of (A.1) with699

qH and qD between 0 and 1 (in fact, both qH and qD will be strictly between 0700

and 1) for each fixed H and D. The equilibrium solution of (5) is then701

nH = HqH

nD = DqD

nHH =
1

2
λτHHn

2
H

nHD = λτHDnHnD

nDD =
1

2
λτDDn

2
D

which, from (A.1), will satisfy H = nH + 2nHH + nHD and D = nD + nHD +702

2nDD. This will be the only equilibrium solution of (5) for a given H and D.703

Appendix B. Stability of equilibria for model (18)704

Because eigenvalues of linearized model (18) at extinction equilibrium (nH , nD) =705

(0, 0) are πH , and πD, this equilibrium is locally stable when πH < 0 and πD < 0.706

Eigenvalues of linearized model (18) at equilibrium (19) are (πHπHH)/(2πHτHH−707

πHH), and (πDHπH−πDπHH)/(πHτHD−πHH). The boundary equilibrium ex-708

ists (i.e., the Hawk only equilibrium is positive) and is locally stable if and only709

if πHH < 0, πH > 0, and πDHπH < πDπHH .14710

Similarly, eigenvalues of linearized model (18) at equilibrium (20) are πDπDD/(2πDτDD−711

πDD), and (πDDπH − πDπHD)/(πDD − πDτHD). This equilibrium exists (i.e.,712

the Dove equilibrium is positive) and locally stable when πDD < 0, πD > 0, and713

πDπHD < πDDπH .714

14We ignore degenerate cases with eigenvalue 0.
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Stability analysis of the interior equilibrium (21) leads to complex expres-715

sions. Instead, we analyze its stability for the Hawk-Dove parametrizations in716

Examples 1 and 2.717

First we consider the parametrization of the Hawk-Dove model given by
(12). Using Mathematica (Appendix F), we calculated trace

tr(J) =
V (V − C)

A

(
V
(
πD

2(−4τDD + 9τHD − 4τHH) + 2πDπH(τDD − 3τHD + τHH)+

πH
2τHD + V (πD − πH)

)
− C(πD(πD(τHD − 4τDD) + 2πHτDD) + V (πD − πH))

)
and determinant718

det J =
πDV

2(C − V )2(πH − 2πD)

A

of the Jacobian matrix evaluated at the interior equilibrium (22) where

A =(C − V )
(
V (C − V )(V − 2πDτDD)− τHD

(
2πD

2τDD(V − C) + V (πD(C + V )− πHV )
))

+

2τHHV (2πD − πH)((V − C)(V − 2πDτDD) + τHDV (2πD − πH)).

Using the Reduce command of Mathematica (Appendix F) under the as-719

sumptions that equilibrium (22) is interior and parameters V, C, τHH , τHD, τDD,720

λ are all positive, we found that tr(J) < 0 and det J > 0 (i.e., the equilibrium721

is locally asymptotically stable) if and only if15722

0 < C < V <
CπD

2

(πH − 3πD)2
,

0 < τHH <
τHD

(
V (πH − 3πD)2 − CπD2

)
+ (V − C)(2πDτDD(πH − 2πD) + V (πD − πH))

2πDV (2πD − πH)
,

τHD >
(V − C)(2πDτDD(πH − 2πD) + V (πD − πH))

CπD2 − V (πH − 3πD)2
.

In particular, these conditions imply that the interior equilibrium cannot be723

stable for the case where C > V.724

Second we consider the parametrization of the Hawk-Dove model given by
(23). From (24), there is an interior equilibrium if and only if πD > 0 and
V πH < CπD. Using Mathematica, we calculated trace

tr(J) =− CπDV (2CπDτDD + V (πDτHD − 2πHτDD + V ))

B

and determinant725

det J =
πDV

3(CπD − πHV )

B

15Here, we ignore the degenerate cases where 3πD = πH or CπD
2 = V (πH − 3πD)2.
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of the Jacobian matrix evaluated at the interior equilibrium (24) where

B =2C2πD
2τDDτHD + πDV

(
−4CπHτDDτHD + CV (2τDD + τHD) + V 2(τHD + 2τHH)−

4πHτDDτHHV ) + 2πD
2τHHV (2CτDD + τHDV ) + V 2(V − 2πHτDD)(V − πHτHD).

Using the Reduce command of Mathematica (Appendix F) under the as-726

sumptions that equilibrium (24) is interior and parameters V,C, τHH , τHD, τDD, λ727

are all positive, we found that tr(J) < 0 and det J > 0 (i.e., the equilibrium728

is locally asymptotically stable) whenever it exists. Note that these conditions729

can hold both when V > C as well as when C < V.730

Appendix C. Unique equilibrium solution to distributional dynam-731

ics (31)732

We want to show that, given H and D, there exists a unique distributional733

equilibrium of system (31), for which the number of occupied sites is at most734

K.735

Equation (33) shows that the system either converges to a state where there736

are no searchers (nHs + nDs = 0) or to the set of states where there are no737

free sites (F = 0).16 We show that at the distributional equilibrium there are738

no searchers if and only if H + D ≤ K. If there are no searchers, there are739

no pairs and so all individuals are owners (i.e., nHo
= H and nDo

= D) and,740

consequently, the total population size cannot be larger than the number of741

sites, i.e., H + D ≤ K. Conversely, suppose that the total number of individ-742

uals satisfies H + D ≤ K. If there were some searchers at the distributional743

equilibrium, there would be no free sites (i.e., all sites would be occupied) and744

so H +D = K. As we assumed there were some searchers, the total population745

would be larger than K, a contradiction. Thus, all individuals are owners if746

and only if H +D ≤ K and in this case, nHo
= H, and nDo

= D is the unique747

equilibrium.748

Now we assume that H + D > K. Thus, there must be searchers at the749

equilibrium and (33) implies that F = 0, i.e., all sites are occupied (i.e., K =750

nHo
+ nDo

+ nHsHo
+ nHsDo

+ nDsDo
+ nHoDs

). Then, by adding the first and751

fifth equations of (31), an equilibrium of (31) must satisfy nHs(F + nDo) = 0.752

Also, if nHs > 0, then F = nDo = 0 and so all sites are occupied by Hawks and753

H > K. When H > K then nHs
> 0, thus, nHs

= 0 if and only if H ≤ K.754

First we assume that H ≤ K. Then all Hawks occupy sites as owners or in
HoDs pairs (i.e., H = nHo

+ nHoDs
) and all other K − H sites are occupied

by Doves as owners or in DsDo pairs. As there are no Hawks searching, we
have nHsHo = nHsDo = 0. Under these assumptions, equations for equilibrium

16This equation is also important in that it guarantees that model (31) is ecologically well-
defined. That is, all state variables (i.e., the number of singles and pairs) as well as the number
of free sites must stay non-negative when initially non-negative.
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of model (31) are

K =nHo
+ nDo

+ nDsDo
+ nHoDs

= H + nDo
(1 + λτDDnDs

) (C.1a)

H =nHo
(1 + λτHDnDs

) (C.1b)

D =nDs
+ nDo

+ 2nDsDo
+ nDsHo

=nDo
+ nDs

+ 2λτDDnDs
nDo

+ λτHDnDs
nHo

. (C.1c)

From (C.1a) and (C.1b), solve for nDo
and nHo

in terms of nDs
. Then system755

(C.1) can be re-written as a cubic equation for unknown nDs
756

n3Ds
λ2τDDτHD+λn2Ds

(λτDDτHD(2K−D−H)+τDD+τHD)+nDs(−Dλ(τDD+τHD)−
757

2HλτDD + λK(2τDD + τHD) + 1)−D −H +K = 0. (C.2)

Since this cubic has positive leading coefficient and negative constant term, there758

is exactly one nonnegative root if the coefficient of nDs is negative whenever the759

coefficient of n2Ds
is negative by Descartes’ rule of signs. To see this, suppose760

that761

λτDDτHD(2K −D −H) + τDD + τHD < 0.

That is762

2KλτDDτHD + τDD + τHD < λDτDDτHD + λHτDDτHD.

Then763

2KλτDD + 1 < λDτDD + λHτDD.

Since D > K,764

2KλτDD+λKτHD+1 < λDτDD+λHτDD+λDτHD < λD(τDD + τHD)+2HλτDD.

Thus, the coefficient of nDs ,765

−λD(τDD + τHD)− 2λHτDD + λK(2τDD + τHD) + 1,

is negative. Thus, the cubic (C.2) has exactly one positive root for nDs
. We see766

from (C.1a) that K − H = nDo
(1 + λτDDnDs

). Since H ≤ K, it follows that767

nDo
≥ 0 and so we have a solution with nHo

, nDsDo
and nHoDs

all nonnegative.768

Second, if H > K, then nHs > 0 and all K sites are occupied by Hawks
(since F = nDo = 0) either as owners or in HoHs and HoDs pairs. As there are
no Dove owners, we have the following three equations

K = nHo + nHsHo + nHoDs = nHo + λτHHnHsnHo + λτHDnDsnHo (C.3a)

H = nHo + nHs + 2λτHHnHsnHo + λτHDnDsnHo (C.3b)

D = nDs + nDsHo = nDs + λτHDnDsnHo . (C.3c)

System (C.3) can be re-written as a cubic equation for unknown nHo

λ2τHDτHHn
3
Ho

+ λn2Ho
(λτHHτHD(H +D − 2K) + (τHD + τHH))+ (C.4)
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(1 + λ(τHD(D −K) + τHH(H − 2K)))nHo −K. (C.5)

Again, suppose the coefficient of n2Ho
is negative. That is,769

λτHHτHD(H +D − 2K) + (τHD + τHH) < 0.

Then H +D < 2K and770

λHτHD + λDτHD + 1 < 2λKτHD.

Thus771

λτHD(H −K) + λDτHD + 1 < λKτHD.

Since H > K,772

λDτHD + 1 < λKτHD

and773

1 + λDτHD + λHτHH < λKτHD + 2λKτHH

since H < 2K. That is, the coefficient of nHo
is negative and so the cubic (C.5)774

has exactly one positive root for nHo by Descartes’ rule of signs. It follows775

from (C.3c) that nDs > 0. Moreover, from (C.3a) and (C.3b), we see that776

K = H − nHs
(1 + λτHHnHo

). Since H ≥ K, we have nHs
, nHsHo

, nHoDs
are all777

nonnegative.778

Appendix D. Global stability of the unique distributional equilib-779

rium of (35) for Example 3780

To prove global asymptotic stability, we first show that trajectories of (35)781

converge to an equilibrium point. Since there is a unique equilibrium point in782

each of the three regions in the main text, the equilibrium is globally asymp-783

totically stable if it is locally asymptotically stable (we show this local stability784

second).785

From (33), either F converges to 0 or nHs + nDs converges to 0 for a fixed786

trajectory of (35).787

Case 1 (nHs
+ nDs

converges to 0). By the last equation of (35), nHsHo
con-788

verges to 0. Thus nHo
= H − 2nHoHs

− nHs
converges to H and nDo

=789

D−nDs converges to D. That is, H+D ≤ K and the trajectory converges790

to equilibrium (36).791

Case 2 (nHs
+ nDs

does not converge to 0). Since F converges to 0, H +792

D ≥ K with equality if and only if nHs
= 0 and nDs

= 0. Thus, H +D >793

K.794

From (35),795

d(nHs
+ nHsHo

)

dt
= −λnHs

(F + nDo
). (D.1)

Thus either nHs + nHsHo converges to 0 or nHs(F + nDo) converges to 0.796
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Case 2(i) (nHs + nHsHo converges to 0). Then nHo converges toH (and797

so H ≤ K) and nHo + nDo converges to K (and so nDo converges to798

K −H). The trajectory converges to equilibrium (37).799

Case 2(ii) (nHs
+ nHsHo

does not converge to 0). From (D.1), nHs
+800

nHsHo is decreasing and so converges to C > 0. Also, nHo +nHsHo =801

H − (nHs + nHsHo) is increasing to H − C > 0. Then nDo =802

K − F − (nHo
+ nHsHo

) converges to K − (H − C) since F con-803

verges to 0. We claim that nDo
converges to 0 (i.e., K = H − C).804

Otherwise, nHs
converges to 0 (since nHs

nDo
converges to 0) and805

nHsHo converges to C > 0. But
dnHsHo

dt
= −nHsHo

τHH
+ λnHs

nHo
< 0806

when nHs
= 0 and nHsHo

= C > 0 and so nHsHo
cannot converge807

to C. Thus, nDo converges to 0 and nDs converges to D. Also,808

nHs + nHsHo converges to K and so H > K. Furthermore, for large809

t,810

dnHsHo

dt
= −nHsHo

τHH
+λnHsnHo ≈ −

nHsHo

τHH
+λ(C−nHsHo)(H−C−nHsHo).

(D.2)

The approximation gets better as t increases along the trajectory.811

Thus, the dynamics on the (omega) limit set of this trajectory for (35)812

is described by the one-dimensional differential equation for nHsHo
.813

Since trajectories are bounded, nHsHo(t) must converge to an equi-814

librium value for the given trajectory. That is, all components of the815

trajectory converge to the equilibrium given by (38).816

We now show that the unique equilibrium is locally asymptotically stable.817

As the number of Doves that jointly occupy sites tends to 0,17 all Doves are818

singles (D = nDs + nDo), and Hawks are either singles or in Hawk-Hawk pairs819

(H = nHs
+ nHo

+ 2nHsHo
). Substituting nHsHo

= (H − nHs
− nHo

)/2 and820

nDo
= D − nDs

into (35) leads to simplified distributional dynamics821

dnHs

dt
= −1

2
λnHs

(2K + nHo
+ nHs

−H) +
H − nHo − nHs

2τHH
dnHo

dt
=
H − nHo − nHs + nHsλτHH(2K −H − 3nHo + nHs)

2τHH
dnDs

dt
=

1

2
λnDs

(H − 2K − 2nDs
+ nHo

− 3nHs
) + λD(nDs

+ nHs
).

(D.3)

Finally, as shown below, the equilibrium points (36), (37), and (38) are locally822

asymptotically stable.823

Using Mathematica (Appendix F), we calculated eigenvalues of the Jacobian
matrix of (35) evaluated at equilibria (36–38). The eigenvalues at equilibrium

17For example, from (31),
dnHsDo

dt
≤ −nHsDo

τHD
+ λnHsnDo < 0 if nHsDo > 0 and τHD is

small enough.
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(36) are

λ1 = λ(H +D −K),

λ2 = −
√

4HλτHH + (λKτHH − 1)2 + λKτHH + 1

2τHH
,

λ3 =

√
4HλτHH + (λKτHH − 1)2 − λKτHH − 1

2τHH
.

These eigenvalues are real and they are all negative when H +D < K.824

The eigenvalues at equilibrium (37) are

λ1 = λ(K −H −D),

λ2 = −
√

4HλτHH + (λKτHH − 1)2 + λKτHH + 1

2τHH
,

λ3 =

√
4HλτHH + (λKτHH − 1)2 − λKτHH − 1

2τHH
.

These eigenvalues are real and they are all negative when H + D > K and825

H < K.826

The eigenvalues at equilibrium (38) are

λ1 =
1− 2DλτHH + λτHH(2K −H)−

√
λτHH (λτHH(2K −H)2 + 2H) + 1

2τHH

λ2 = −
√
λτHH (λτHH(2K −H)2 + 2H) + 1

τHH

λ3 =
1 + λτHH(2K −H)−

√
λτHH (λτHH(2K −H)2 + 2H) + 1

2τHH
.

All three eigenvalues are negative when H > K.827

Thus, in all three cases, the unique distributional equilibrium of (D.3) is828

locally asymptotically stable.829

Appendix E. Unique equilibrium solution of (45)830

To find equilibria of (45), notice that dD/dt < 0 if D > 0 under our assump-831

tions that πDs < 0 and πDH ≤ 0 since832

−1 + (2K −H)λτHH +
√

1 + λτHH(2H + (H − 2K)2λτHH) > 0

when H > K. Thus, any equilibrium of (45) satisfies D = 0.833

Substituting D = 0 into the right hand-side of the equation for Hawks in
(45), an equilibrium (H, 0) satisfies

−2πHH(1 +HλτHH) + τHH(πHo
+ πHs

+ (H − 2K)λ(πHo
− πHs

)τHH)

−2πHH + (πHo
+ πHs

)τHH
=
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√
1 + λτHH(2H + (H − 2K)2λτHH).

(E.1)

We note that every solution H of the above equation must satisfy834

−2πHH(1 +HλτHH) + τHH(πHo
+ πHs

+ (H − 2K)λ(πHo
− πHs

)τHH)

−2πHH + (πHo + πHs)τHH
≥ 0.

(E.2)
Solving (E.1) by squaring both sides leads to two expressions

H± =
2Kλ(2π2

HH − πHH(πHo
+ 3πHs

)τHH + 2πHo
πHs

τ2HH) + πHs
(2πHH − (πHo

+ πHs
)τHH)

2λ πHs
τHH(πHo

τHH − 2πHH)
±

(2πHH − (πHo
+ πHs

)τHH)
√

(2KλπHH + πHs
)2 − 4KλπHo

πHs
τHH

2λ πHs
τHH(πHo

τHH − 2πHH)
.

(E.3)

Using Mathematica (with assumptions K > 0, λ > 0, τHH > 0, πHs
< 0,835

πHo > 0, πDs < 0, πDo > 0, see Appendix F) we show that condition (E.2)836

evaluated at H− cannot hold when H− > K and so (H,D) = (H−, 0) is not837

an equilibrium of (45). H+ is the only solution that satisfies both conditions838

(provided we assume 2πHH 6= πHo
τHH).839

Moreover, ifD = 0 in the right-hand side of (45), then dH/dt is positive when840

H = K and tends to minus infinity as the number of Hawks increases to infinity841

(because πHs < 0). Thus, the equilibrium (H+, 0) is globally asymptotically842

stable for Example 3.843

Appendix F. Mathematica notebook844

This appendix contains Mathematica notebook with symbolic calculations845

used in the text.846
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