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Abstract

Two most influential models of evolutionary game theory are the Hawk-Dove
and Prisoner’s dilemma models. The Hawk-Dove model explains evolution of
aggressiveness, predicting individuals should be aggressive when the cost of
fighting is lower than its benefit. As the cost of aggressiveness increases and
outweighs benefits, aggressiveness in the population should decrease. Similarly,
the Prisoner’s dilemma models evolution of cooperation. It predicts that indi-
viduals should never cooperate despite cooperation leading to a higher collective
fitness than defection. The question is then what are the conditions under which
cooperation evolves? These classic matrix games, which are based on pair-wise
interactions between two opponents with player payoffs given in matrix form,
do not consider the effect that conflict duration has on payoffs. However, in-
teractions between different strategies often take different amounts of time. In
this article, we develop a new approach to an old idea that opportunity costs
lost while engaged in an interaction affect individual fitness. When applied to
the Hawk-Dove and Prisoner’s dilemma, our theory that incorporates general
interaction times leads to qualitatively different predictions. In particular, not
all individuals will behave as Hawks when fighting cost is lower than benefit,
and cooperation will evolve in the Prisoner’s dilemma.
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1. Introduction

Most classic evolutionary games (e.g., the Hawk-Dove game (Maynard Smith,
1974) or the Prisoner’s Dilemma (Poundstone, 1992)) assume an infinite pop-
ulation where individuals play pairwise games. The outcome of these games
is described by a payoff matrix that allows to calculate the Nash equilibrium
(NE), or an Evolutionarily Stable Strategy (ESS). The standard assumptions
for these games neglect two important components. First, they neglect the op-
portunity cost of time lost while an individual is engaged in an interaction with
its opponent. For example, in the case of the Hawk-Dove game this is the du-
ration of the fight, in the case of the Prisoner’s dilemma this is the time two
individuals cooperate. One of the earliest articles developing evolutionary game
theory (Maynard Smith and Price, 1973) does consider opportunity cost in a
Hawk-Dove type game. There, additional payoffs are added to individuals who
are engaged in shorter interactions. As we will see and as pointed out in the
Discussion, their approach is different than ours.

Second, if we assume that the population is finite, time of the interaction
changes the number of individuals that are available to play the game. Thus, to
develop more realistic models of evolutionary game theory, one needs to consider
changes in numbers of interacting pairs as a function of duration of interactions.
So, we need to consider those individuals that are currently engaged in an
interaction and those that are free to form new pairs to play the game. This
introduces a complex feedback where duration of interactions influences the
numbers of interacting pairs which, in turn, influences the game’s NE or ESS.

In this article, we extend the matrix game theory by considering explicitly
duration of conflicts between opponents. Similarly to the payoff matrix, we de-
fine the interaction time matrix that describes the duration of a conflict between
any two elementary strategies. Animal fitness for matrix games is defined as the
mean payoff an individual gets per interaction. Once duration of interactions
is considered, this leads to two possible fitness definitions. First, we will define
fitness as mean payoff per time. Second, we define fitness as the mean payoff
per mean duration of the interaction. This latter concept of fitness is similar to
the one that is used in optimal foraging theory (Charnov, 1976; Stephens and
Krebs, 1986). We develop the theory of time-constrained evolutionary games
based on symmetric two-player games (i. e. matrix games) with two pure strate-
gies and illustrate our results by applying them to the Hawk-Dove game and
the Prisoner’s dilemma.

The Hawk-Dove game models the evolution of aggressiveness. Animals are
known to solve their conflicts in complex ways that may or may not include
various display behaviors before the real fight (Clutton-Brock and Albon, 1979;
Sinervo and Lively, 1996). For example, Clutton-Brock and Albon (1979) ob-
served the course of contests between male red deer. Out of 50 cases, only 14
ended in a fight that can be potentially lethal to one or both opponents. Two
types of display behavior were observed: Roar contest and parallel walk. In to-
tal, no display behavior was observed in 10 cases that resulted in 1 fight. Roar
contest only that lead to one stag withdrawal was observed in 16 cases, parallel
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walk only was observed in 7 cases (out of which 5 resulted in a fight), and a
roar contest followed by the parallel walk was observed in 17 cases (out of which
8 resulted in a fight). This shows that there is a variability among individuals
with respect to their aggressiveness. There are aggressive individuals that fight
immediately without display, as well as individuals that are aggressive but they
do display before fighting. Therefore, we will consider the interactions between
two Hawks that can be longer (in the case of display), or shorter (without any
display) than are the other interactions (i. e., between two Doves, or between a
Hawk and a Dove).

We also consider the repeated Prisoner’s dilemma where the expected num-
ber of rounds that two individuals interact depends on their strategy choices.
For instance, if we assume that individuals can opt out of an interaction that
is not beneficial, interactions between two cooperators will last longer (see the
opting out game developed by Zhang et al., 2016). We will thus focus on dura-
tion of the interaction between two cooperators while we assume that all other
interactions take the same amount of time. In particular, we ask here how long
the interactions between two cooperators need to last for cooperation to evolve
in this model?

We show that explicit consideration of interaction times in the above two
games leads to qualitatively new predictions for their evolutionary outcomes. In
particular, our approach leads to a different view on the evolution of aggressive-
ness and cooperation than provided by the classic Hawk-Dove and Prisoner’s
Dilemma matrix games respectively.

2. Two-strategy game with symmetric interaction times

Consider a symmetric matrix game with two pure strategies e1 and e2 and
payoffs described by a payoff matrix

(

e1 e2

e1 π11 π12

e2 π21 π22

)

. (1)

That is, πij is the expected payoff obtained by ei in a pair-wise interaction with
ej.

Contrary to standard game models, we assume that all interactions take
some time. These times are given by the interaction time matrix

(

e1 e2

e1 τ11 τ12
e2 τ21 τ22

)

. (2)

In what follows, we assume that interaction times are positive and the inter-
action time matrix is symmetric, i. e., τ12 = τ21. The payoff matrix (1) then
provides the payoffs per interaction with each interaction taking time specified
in (2).

3



To “solve” the game given by matrices (1) and (2), we need to describe
the process of players’ pairing as well as how individual fitness is related to
payoff received. In this article, we assume that all singles immediately and
randomly pair, so all individuals are paired. The numbers of pairs are denoted
as n11, n12, and n22 where the subindices denote strategies of the two paired
individuals. In particular, n12 is the number of pairs where one (irrespective
if it is the first or the second individual) individual plays strategy e1 and the
other individual plays strategy e2. The overall (fixed) number of individuals is
then N = 2(n11 + n12 + n22).

A pair nij splits up following a Poisson process with parameter τij , i. e.,
in a unit of time, the number of pairs that disband is nij/τij . So, per unit
of time there will be 2n11/τ11 + n12/τ12 individuals playing strategy e1 and
2n22/τ22 + n12/τ12 individuals playing strategy e2 that will immediately form
new pairs. The total number of individuals forming new pairs is 2(n11/τ11 +
n12/τ12 +n22/τ22). Since we assume that singles instantaneously and randomly
pair, the proportion of newly formed n11 pairs among all newly formed pairs is

(

2n11/τ11 + n12/τ12
2(n11/τ11 + n12/τ12 + n22/τ22)

)2

.

To obtain the number of newly formed n11 pairs we multiply this proportion
by the number of all newly formed pairs n11/τ11 + n12/τ12 + n22/τ22. Similar
considerations for n12 and n22 pairs lead to the following pair dynamics

dn11

dt
= −n11

τ11
+

(

2n11

τ11
+ n12

τ12

)2

4
(

n11

τ11
+ n12

τ12
+ n22

τ22

)

dn12

dt
= −n12

τ12
+

2
(

2n11

τ11
+ n12

τ12

)(

n12

τ12
+ 2n22

τ22

)

4
(

n11

τ11
+ n12

τ12
+ n22

τ22

)

dn22

dt
= −n22

τ22
+

(

n12

τ12
+ 2n22

τ22

)2

4
(

n11

τ11
+ n12

τ12
+ n22

τ22

) .

(3)
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We observe that at the equilibrium

n11

τ11
=

(

2n11

τ11
+ n12

τ12

)2

4
(

n11

τ11
+ n12

τ12
+ n22

τ22

)

n12

τ12
=

2
(

2n11

τ11
+ n12

τ12

)(

n12

τ12
+ 2n22

τ22

)

4
(

n11

τ11
+ n12

τ12
+ n22

τ22

)

n22

τ22
=

(

n12

τ12
+ 2n22

τ22

)2

4
(

n11

τ11
+ n12

τ12
+ n22

τ22

) ,

(4)

n11

τ11
, n12

τ12
, n22

τ22
are in Hardy-Weinberg proportions, i. e.,

n11

τ11

n22

τ22
=

1

4

(

n12

τ12

)2

.

We remark that because 2(n11 + n12 + n22) = N , equations (4) are dependent
and to calculate the equilibrium we need to know the number of e1 (or e2)
strategists in the population. Let n1 = n12 + 2n11 and n2 = n12 + 2n22 be
numbers of e1 and e2, respectively, strategists in the population (n1 +n2 = N).
Assuming that τ212 6= τ11τ22, equation (4) has two solutions for nij in terms of
n1 for 0 ≤ n1 ≤ N. However, one solution is never feasible in the sense that
some coordinates are negative. The solution that has all coordinates positive is

n11 =
n1(τ2

12−τ11τ22)−τ2
12

N

2
+τ12

√

n1(n1−N)(τ2
12

−τ11τ22)+(N

2 )
2
τ2
12

2(τ2
12

−τ11τ22)
,

n12 =
τ2
12

N

2
−τ12

√

n1(n1−N)(τ2
12

−τ11τ22)+(N

2 )
2
τ2
12

τ2
12

−τ11 τ22
,

n22 = N
2 − n11 − n12.

(5)

When τ212 = τ11τ22, equation (4) has the unique solution

n11 =
n2
1

2N
, n12 =

n1n2

N
, n22 =

n2
2

2N

satisfying the classic Hardy-Weinberg law

p11 = p21, p12 = 2p1p2, p22 = p22

where pi = ni/N are proportions of the two alleles/strategies and pij = 2nij/N
are genotype/phenotype proportions. In particular, if all interaction times are
the same (i. e., τij = τ for all i, j = 1, 2 which corresponds to the implicit
assumptions underlying the classic matrix model), the equilibrium is given by
random pair formation of all individuals.
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e1 e2

p1 p2

n12

2n11+n12

π12 π21

τ11 τ12

Focal Individual

e1e1 e1e2 e1e2 e2e2

2n22

2n22+n12

n12

2n22+n12

2n11

2n11+n12

π22

τ12 τ22
π11

τ11

π12

τ12

π22

τ22

Payoff

Time

Payoff/Time

π11

π21

τ12

Figure 1: The decision tree for a two strategy game with interaction times. The focal individual
plays strategy ei with probability pi (p1 + p2 = 1). The second level shows the probability
that the focal individual pairs with an individual playing strategy ej . The last three lines
define payoff obtained from the interaction after the pair disbands, duration of the pairing,
and the payoff per time.

3. Payoffs, fitness and evolutionary outcome

In what follows, we consider two methods to define individual fitness in terms
of expected payoff. Both methods assume that payoffs are given out only when
a pair disbands. The first approach assumes that fitnesses are calculated as the
expected payoff per unit of interaction time while the second approach assumes
that fitnesses are calculated as the expected payoff per expected interaction
time.

3.1. Fitness is calculated as expected payoff per unit of time

This fitness is calculated as the expected payoff per unit of interaction time
an individual of a given phenotype obtains. For example, let us consider an
individual playing strategy e1 (Figure 1 with p1 = 1). The probability that
this individual is paired with another individual playing the same strategy is
2n11/(2n11+n12) and with an individual playing strategy e2 is n12/(2n11+n12).
When paired with an individual playing strategy e1, the focal individual receives
payoff π11/τ11 per unit of time. Similarly, when paired with an individual
playing strategy e2, the focal individual gets payoff π12/τ12 per unit of time.
Then fitness Πi of an individual playing strategy ei (i = 1, 2) is calculated as
the average payoff per unit of time which leads to

Π1 =
2n11

2n11 + n12

π11

τ11
+

n12

2n11 + n12

π12

τ12
,

Π2 =
2n22

2n22 + n12

π22

τ22
+

n12

2n22 + n12

π21

τ12
.

(6)
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The corresponding time-constrained matrix game is then the two-strategy game
with payoffs given by these two fitness functions evaluated at the equilibrium (5).
Notice that, unlike the classic matrix games, these fitnesses depend nonlinearly
on the proportions of the two pure strategies through the number of pairs.

First, we look for pure strategy solutions to this time-constrained game.
For example, suppose all individuals play strategy e2. Then n11 = n12 = 0
and Π2 = π22

τ22
. We ask when strategy e1 can invade? Strategy e1 can invade

provided its invasion fitness is higher than is the fitness of strategy e2 when
alone. As the number of n11 pairs tends to 0 much faster (convergence is of
order n2

1) than n12 (of order n1) when n1 tends to 0, we obtain invasion fitness
Π1 = π12

τ12
.2 The monomorphic population at e2 will be stable if π22

τ22
> π12

τ12
. In

game-theoretic terms, e2 is a strict NE as we will see in Section 4. Conversely,
if π22

τ22
< π12

τ12
, then e2 is not a solution since it is not a NE.

Second, we seek a mixed equilibrium consisting of phenotypes e1 and e2 in
a polymorphic population. (The monomorphic case is discussed in Section 4.)
In the polymorphic case, where ni individuals play strategy ei (i = 1, 2, n1 +
n2 = N), the equilibrium must satisfy Π1 = Π2 so that neither phenotype can
increase its payoff by switching its strategy. Such an equilibrium corresponds to
a mixed strategy NE. Together with (4) the population-distributional equilibria
corresponding to a mixed NE are

p1± =
n1±

N
= 1

2B

(

± (π11τ22 − π22τ11)
√
A+ π2

22τ
2
11+

τ22
(

2π2
12τ11 + 2π12π21τ11 − 3π11π12τ12 − π11π21τ12 + π2

11τ22
)

−π22 (τ12 (3π12τ11 + π21 τ11 − 4π11τ12) + 2π11τ11τ22)
)

(7)

where

A = (π22τ11 − π11τ22)
2 + (π12 − π21)

2 τ212

+4(π11π22τ
2
12 + π12π21τ11τ22) − 2(π12 + π21)τ12(π22τ11 + π11 τ22)

and
B = A− (π12 − π21)

2(τ212 − τ11τ22).

We can analyze stability of the two equilibria p1± . There are four possible
cases classified according to the (in)stability of the pure strategies.

Case 1. Strategy e1 is stable and e2 is unstable (π12

τ12
> π22

τ22
, π11

τ11
> π21

τ12
). Then

either there is no mixed equilibrium, i. e., both p1+ and p1− are outside
the interval [0, 1] (Figure 2A), or both p1+ and p1− are in the interval [0, 1]
and then the smaller one is stable (Figure 2B).

Case 2. Strategies e1 and e2 are unstable (π12

τ12
> π22

τ22
, π11

τ11
< π21

τ12
). In this case,

exactly one of p1+ and p1− is in the interval [0, 1] and it is stable (Figure
2C).

2That is, if there are no e1 individuals (n1 = 0 and 2n11+n12 = 0), then n12/(2n11+n12)
and 2n11/(2n11 + n12) are taken as 1 and 0 respectively in Figure 1 and in (6).
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Case 3. Strategies e1 and e2 are stable (π12

τ12
< π22

τ22
, π11

τ11
> π21

τ12
). In this case,

one of p1+ and p1− is in the interval [0, 1] and it is unstable (Figure 2D).
There are two stable pure strategy equilibria.

Case 4. Strategy e1 is unstable and e2 is stable (π12

τ12
< π22

τ22
, π11

τ11
< π21

τ12
). Then

either there is no mixed equilibrium (in the interval [0, 1]; Figure 2E), or
both p1+ and p1− are in the interval [0, 1] and then the larger one is stable
(Figure 2F).

We illustrate these general concepts for two important special examples now.

3.2. Hawk–Dove game

Here we apply the above result to the Hawk-Dove game (e1 = H , e2 = D)
with the payoff matrix

(

H D

H V − C 2V
D 0 V

)

(8)

where the value of the resource is 2V , the individual cost of fighting is C, and
the interaction time matrix is

(

H D

H τ11 τ
D τ τ

)

. (9)

This model assumes that all interactions except those between two Hawks take
the same time τ . The interaction τ11 between two Hawks can be either longer,
or shorter that τ . A larger τ11 models Hawks that display (for the common
time τ) before they fight. A smaller τ11 means that Hawks do not display
before fighting. Both these situations have been observed and reported in the
literature (e. g., Clutton-Brock and Albon, 1979).

We will consider two cases that depend on the parameters C and V .

Case A (V > C). Here, the cost of fight is low compared to the value of
the resource. In this case, the classical Hawk-Dove model with all interactions
times equal predicts that all individuals in the population will be Hawks. Since
Doves cannot invade the Hawk only equilibrium because their invasion fitness
(π21

τ12
= 0) is lower than is the fitness of Hawks when alone (π11

τ11
= V −C

τ11
> 0),

the Hawk equilibrium continues to be an equilibrium of our model. Contrary
to the classic case we show now there is a mixed equilibrium when τ11 is high
enough. As π12

τ12
= 2V

τ
> V

τ
= π22

τ22
we are in Case 1 and from (7) we get that for

τ11 > τ

(

3− C

V
+ 2

√

1− C

V

)

there are two equilibria

p1± =
Cτ + V (τ + τ11)±

√

(Cτ + V (τ11 − τ))2 − 4V 2(τ11 − τ)τ

2(Cτ + V (τ11 − τ))
(10)
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that are between 0 and 1. These equilibria are shown in Figure 3A. The arrows
show directions in which fitness increases. Thus, we observe bi-stability where
the all Hawk equilibrium is always locally stable, and provided the interaction
time τ11 is long enough, the interior equilibrium p1− is also locally stable. We
observe that the region of local stability for the all Hawk equilibrium decreases
as the interaction time between two Hawks increases.

Case B (C > V ). Now assume that the cost of fighting is high compared to
the value of the resource. Since π11

τ11
= V −C

τ
< 0 and π21

τ12
= 0, Doves can invade

the Hawk only equilibrium and so e1 = H is not a NE. In fact, this shows that
we are in Case 2 (Figure 2C), that there is only one NE and that it is a mixed
stable equilibrium. From (7) we get that the equilibrium between 0 and 1 is
p1− from (10). Dependence of this equilibrium on interaction time between two
Hawks is shown in Figure 3B.

Figure 3B also shows that the equilibrium frequency of Hawks is at its max-
imum value of V/C when we are in the classic case where all interaction times
are the same (i. e. p1(τ11) as a function of τ11 has a maximum at τ11 = τ). In
fact, this equilibrium frequency first increases from

p1−(0) =
C + V −

√
C2 − 2CV + 5V 2

2(C − V )

when τ11 = 0 to p1−(τ) = V/C when τ11 = τ . When τ11 is short, Hawk-Hawk
pairs will disband fast and these Hawks will quickly pair with another Hawk,
which decreases their fitness, or another Dove, which increases their fitness.
As can be shown, the balance between these two effects leads to most Hawks
involved in Hawk-Dove contests when τ11 is short as the frequency of Hawk-
Hawk contests, p11, is close to 0. When τ11 = τ , the frequency of Hawks p1 in
the population is V/C, i. e., we recover the standard result of the Hawk-Dove
model. As the interaction time increases further on, the proportion of Hawks
in the population decreases because Hawks are losing too much time in their
fights. For large τ11, p1− tends to 0 as seen in Figure 3B.

3.2.1. Repeated games (Prisoner’s dilemma)

Interaction times also play an important role in repeated two-player games
where it is typically assumed that there is a fixed probability ρ that there will be
the next round of the game. This probability ρ is not under the players’ control.
That is, the expected number of rounds is 1/(1−ρ).Assume that each player uses
the same single-round pure strategy ei for the entire interaction with its current
partner, that the expected number of rounds of the interaction between ei and
ej is τij , and that payoffs from each round are cummulative (i. e., the expected
payoff per interaction for strategy ei against ej is τijπij where πij is the payoff
in the single-shot game). With random pair formation among free individuals
between rounds, the corresponding discrete-time process for the numbers nij

of pairs eiej at round t has the same equilibrium (4) as the continuous-time
process (3) of Section 2. The solution to the time-constrained game is then
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given by applying the general theory developed above to the adjusted payoff
per interaction matrix with interaction time matrix (2).

Consider the repeated Prisoner’s dilemma game (PD) where payoffs of co-
operators (C) and defectors (D) for a single round are given by the simplified
version of the PD game (Pacheco et al., 2006); namely,

(

C D

C b− c −c
D b 0

)

(11)

where b is the benefit the cooperator provides a defector at a cost c to himself.
Since it is assumed that b > c > 0, any player prefers to play against C rather
than against D. Thus, if each player can decide whether to continue his inter-
action to the next round, he should play only one round against D and as many
as possible (i. e. continue until the interaction ends after an expected number
of rounds 1/(1− ρ)) against C. That is, τ12 = τ22 = 1 and τ11 = 1/(1− ρ) > 1.
This models what is known as the opting out game (Zhang et al., 2016).

In fact, we will consider a more general model with symmetric interaction
time matrix (2) (with e1 = C and e2 = D) and corresponding payoff per inter-
action matrix

(

C D

C (b − c)τ11 −cτ12
D bτ12 0

)

. (12)

The payoffs per unit of time Πi to strategy ei are now given by

Π1 =
2n11

2n11 + n12
(b− c)− n12

2n11 + n12
c,

Π2 =
n12

2n22 + n12
b

(13)

where nij as functions of the number of cooperators n1 are from (5).
The monomorphic population e2 with all individuals being defectors is al-

ways stable as cooperators cannot invade (π22

τ22
= 0 > −c = π12

τ12
). On the other

hand, a population of all cooperators is unstable since π11

τ11
= b − c < b = π21

τ12
.

These stability results match the classic one-shot PD game. However, as we are
in Case 4 of Section 3, there is the possibility of two interior equilibria

p1± =
1

2

(

1±

√

1 +
4 b c τ212

(b − c)2(τ212 − τ11τ22)

)

where cooperators survive with defectors. Both p1− and p1+ exist and are
between 0 and 1 for

τ11 >
(b + c)2τ212
(b − c)2τ22

. (14)

Furthermore, in this case, equilibrium p1+ is stable (Figure 2F).
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Thus, if the time (i. e., the number of rounds) two cooperators continue
to interact is large enough, stable coexistence of cooperators and defectors is
possible (Figure 4A). In particular, if interaction times between two defectors
and a defector–cooperator pair last for the same time τ , the cooperation evolves
provided

τ11
τ

>
(b+ c)2

(b− c)2
.

This result, which cannot occur in the classic repeated PD game, was also found
by Zhang et al. (2016) and related there to the results of game experiments when
players were allowed to opt out.

On the other hand, if defectors stay together a shorter time than is the
common time the other interactions last (i. e., τ11 = τ12 = τ21 > τ22) inequality
(14) does not hold and there is no interior equilibrium. In this case, defection
is the only ESS of the game.

3.3. Fitness is calculated as expected payoff per expected time

This fitness is calculated as the average payoff an individual of a given pheno-
type obtains per expected time of the interaction. For example, let us consider
an individual playing strategy e1. From the decision tree in Figure 1, the aver-
age payoff this individual gets is 2n11

2n11+n12
π11 +

n12

2n11+n12
π12. The average time

of an interaction is 2n11

2n11+n12
τ11 +

n12

2n11+n12
τ12. To obtain an individual fitness

we divide the average payoff by the average time, which yields

Π1 =
2n11π11 + n12π12

2n11τ11 + n12τ12
and Π2 =

2n22π22 + n12π21

2n22τ22 + n12τ12
. (15)

Once again, strategy ei will be a strict NE provided πii/τii > πji/τji (i, j = 1, 2,
i 6= j). That is, (in)stability of the pure strategies are given by the four cases
of Section 3.1. The interior population-distributional equilibrium can be an-
alytically calculated using e. g., Solution function of Mathematica 11 which
provides up to two solutions p1 in [0, 1]. Qualitatively, their stability is again
given by Figure 2 with the same four cases as in Section 3.1. These expres-
sions are too complex for analysis but they simplify for the Hawk-Dove and the
Prisoner’s dilemma games.

3.3.1. Hawk–Dove game

The analogue of the interior equilibria (10) for the Hawk-Dove game when
fitness is given by (15) are

p1± =
±
√
F (Cτ + V τ11) +

(

2CV τ3 + C(C − V )τ2τ11 + (2C − V )V ττ211 + V 2τ311
)

2τ11
(

C2τ2 + 2CV τ(τ11 − τ) + V 2τ11(τ11 − τ)
) ,

(16)
where

F = 4V 2τ4 + (C − 3V )(C + V )τ2τ211 + 2(C − V )V ττ311 + V 2τ411.
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Qualitatively, this follows the two cases where fitness function is given as the
payoff per interaction time of Section 3.2. For C < V (Case A), Doves cannot
invade the all Hawk population, so that all Hawk is a stable NE. Moreover,
provided interaction time between two Hawks is long enough, there are again
two interior equilibria with the smaller one being stable (Figure 3C).

For C > V (Case B), solution p1+ is outside the interval [0, 1] and the only
stable solution is p1− . Figure 3D shows the dependence of p1− on the fighting
time τ11. We observe that as τ11 tends to 0, p1− tends to (V + C)/(2C) which
is a higher equilibrium frequency of Hawks than the standard model (i. e. when
all interaction times are equal). The equilibrium frequency of Hawks is now
a decreasing function for all τ11 > 0. In particular, in contrast to Case B of
Section 3.1.1, it can be shown that the frequency of Hawk-Hawk pairs no longer
approaches 0 as τ11 decreases. Also, as the interaction time between two Hawks
increases beyond τ11 = τ , the proportion of Hawks in the population decreases
much faster when compared to Case B of Section 3.1.1 (Figure 3, panel D
compared to panel B).

3.3.2. Repeated Prisoner’s dilemma

For payoffs (12), the formula for p1± when interaction times are arbitrary
is more complex under fitnesses (15) than under (13) and so is omitted here.
However, it can be shown that p1± are both between 0 and 1 if and only if

τ11 >
(b+ c)τ212
(b− c)τ22

.

When applied to the special case corresponding to the opting out game (i.e.,
τ12 = τ22 = τ , the two interior equilibria exist when

τ11
τ

>
b+ c

b− c

and are given by

p1± = A± (cτ11 − b(τ + τ11))
√
τ + τ11

√

(b − c)2τ211 − (b + c)2τ2

2
√
τ11 − τ

(

−2bcτ11(τ + τ11) + b2(τ + τ11)2 + c2(−τ2 + ττ11 + τ211)
)

where

A =

(

c(τ − τ11) + b(τ + τ11)
)(

b(τ + τ11)− c(2τ + τ11)
)

2
(

b2(τ + τ11)2 − 2bcτ11(τ + τ11) + c2(ττ11 + τ211 − τ2)
) .

As we are in Case 4 of Section 3 and it can be proved that 0 < p1+ < p1− < 1,
p1+ and p1− are unstable and stable respectively (Figure 2F).

Qualitatively, the effect of interaction time in the opting out game is similar
whether fitness is calculated as expected payoff per unit time (Figure 4A) or as
expected payoff per expected time (Figure 4B), in that sufficiently long interac-
tions τ11 between two cooperators lead to the stable coexistence of cooperation
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and defection. On the other hand, for the latter fitness calculation, the onset of
stable coexistence occurs for smaller values of τ11 with a correspondingly larger
basin of attraction that suggests it is easier for cooperative behavior to evolve
in this scenario.

So far we have considered a polymorphic population consisting of two phe-
notypes. In the next section we consider a monomorphic population where
individuals play mixed strategies.

4. Monomorphic population

Assume all individuals in the population are playing a mixed strategy (p∗1, p
∗
2).

That is, on average, with probability p∗1 each individual plays e1 and with prob-
ability p∗2 plays e2. This means that there will be ni = p∗iN individuals playing
strategy ei. With instantaneous random pair formation, the number of pairs nij

at time t will again satisfy the dynamics (3) whose equilibrium is given by (5).
Substituting these equilibrium values into the decision tree of Figure 1, we can
then calculate the fitness Π(p∗

1
,p∗

2
)(p1, p2) of a focal individual using mixed strat-

egy (p1, p2) when the monomorphic population plays strategy (p∗1, p
∗
2). Similar

to the polymorphic case of Section 3, this leads to two different fitness functions.

4.1. Fitness is calculated as expected payoff per time

From the Payoff/Time given in the last line of Figure 1, Π(p∗
1
,p∗

2
)(p1, p2) is

linear in the focal individual mixed strategy (p1, p2). That is,

Π(p∗
1
,p∗

2
)(p1, p2) = p1Π1 + p2Π2 (17)

where Π1 and Π2 are given by (6) evaluated at (p∗1, p
∗
2). An interior mixed

strategy (p∗1, p
∗
2) is a NE (i. e. Π(p∗

1
,p∗

2
)(p1, p2) ≤ Π(p∗

1
,p∗

2
)(p

∗
1, p

∗
2) for all (p1, p2))

if and only if Π1 = Π2 (see Appendix A). In particular, interior NE correspond
to circles (either empty or solid) with 0 < p1 < 1 in Figure 2 from the pure
strategy model of Sections 2 and 3.

Also shown in Appendix A is that (p∗1, p
∗
2) is a local ESS (Hofbauer and

Sigmund, 1998) if and only if (Π1 −Π2)(p
∗
1 − p1) > 0 for all (p1, p2) sufficiently

close but not equal to (p∗1, p
∗
2) where Π1 and Π2 are given by (6) evaluated at

(p1, p2). Furthermore, a pure strategy is a local ESS if and only if it is a strict
NE.3 Thus, (p∗1, p

∗
2) is a local ESS if and only if it corresponds to a solid circle

in Figure 2.
In fact, local ESSs correspond to the locally asymptotically stable equilibria

for standard evolutionary game dynamics that model the evolution of monomor-
phic populations. For instance, this is clear for the canonical equation of the
adaptive dynamics (Hofbauer and Sigmund, 1998)

dp1
dt

= σ
dΠ(p∗

1
,p∗

2
)(p1, p2)

dp1

∣

∣

∣

∣

p1=p∗
1

= σ(Π1 −Π2), (18)

3Here we ignore the non generic case where Π1 = Π2 at the pure strategy.
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where σ > 0 is a proportionality constant that describes the speed of adaptation.
When σ ≪ 1 (σ ≫ 1), adaptation operates on a much slower (faster) time scale
than pair dynamics.

The local ESSs also correspond to the locally asymptotically stable equi-
libria for standard evolutionary game dynamics that model the evolution of
polymorphic populations such as the replicator dynamics (Taylor and Jonker,
1978)

dp1
dt

= σp1(1− p1)(Π1 −Π2) (19)

where each individual is a pure strategist as in Sections 2 and 3.

4.2. Fitness is calculated as expected payoff per expected time

From the Payoff and Time lines given in Figure 1, the average payoff the
focal individual gets is

E = p1

(

2n11π11 + n12π12

2n11 + n12

)

+ p2

(

n12π21 + 2n22π22

n12 + 2n22

)

and the expected time is

T = p1

(

2n11τ11 + n12τ12
2n11 + n12

)

+ p2

(

n12τ12 + 2n22τ22
n12 + 2n22

)

.

Fitness of the focal individual playing mixed strategy (p1, p2) in a monomorphic
population playing strategy (p∗1, p

∗
2) is then defined as the average payoff per the

average time

Π(p∗
1
,p∗

2
)(p1, p2) =

E

T
(20)

where all pairs nij are calculated at (p∗1, p
∗
2). This fitness function is no longer

equal to p1Π1 + p2Π2, i. e., is not linear in the focal individual strategy.
Once again, from Appendix A, strategy (p∗1, p

∗
2) is an interior NE if and

only if Π1 = Π2 where Π’s are given by (15) and the local ESSs correspond to
the solid circles in Figure 2.

5. Discussion

We developed a new approach to the theory of two-player symmetric evolu-
tionary games with two strategies that explicitly considers duration of interac-
tions between players. When applied to the Hawk-Dove and Prisoner’s dilemma
games, this theory makes new evolutionary predictions. In particular, it shows
that in the Hawk-Dove game non-aggressiveness can evolve even when the cost
of fighting is low provided interactions between two Hawks take long enough
time. Similarly, for the Prisoner’s dilemma, when interaction time between two
cooperators is long enough, cooperation can evolve. These novel predictions will
change our way of thinking about evolution of aggressiveness and cooperation.
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The theory developed in this article is based on symmetric two-player games
(i. e., matrix games) with two pure strategies with symmetric interaction times,
i. e., interaction time of a couple where the first individual plays strategy 1 and
the second individual plays strategy 2 is the same as is the interaction time for
a couple where first individual plays strategy 2 and the second strategy 1. In
this article, we assume that pairing between individuals is random and instan-
taneous, so all individuals are paired. This assumption simplifies bookkeeping
and leads to analytic results (most of calculations were done in Mathematica
11). Fitness is gained upon pair disbanding. For classic matrix games, fitness is
defined as the average payoff an individual receives in an infinite population of
players. There are two complications that must be dealt with once interaction
times are explicitly considered. First, one needs to define fitness anew. In this
article, we consider two fitness functions, one assuming that fitness is measured
instantaneously (i. e., per unit of time), the other, motivated by the optimal
foraging theory (Charnov, 1976; Stephens and Krebs, 1986; Křivan, 1996), as-
sumes that fitness is measured as the average payoff an individual obtains from
a random interaction divided by the average time spent in a random interaction.
Second, as interaction times are considered explicitly, one needs to keep track
of the number of all couples. In this article, we describe these dynamics by
differential equations assuming that pair disbanding is described by a Poisson
process. In principle, this means that pairing is asynchronous in time.

In the classical Hawk-Dove model (Maynard Smith and Price, 1973), the
prominent example to model and explain evolution of aggressiveness, fights are
assumed to be time consuming, but this is not captured by the model, where all
interactions take the same time. However, there are many documented examples
where interactions between two individuals take different times that depend on
the individuals’ phenotypes. In particular, Clutton-Brock and Albon (1979,
see also (Maynard Smith, 1974)) provide an example of contests between male
red deer. In that contest, some individuals do display while some others do
not which changes the time individuals interact. Similarly, Sinervo and Lively
(1996) observe three phenotypes of side-blotched lizard with different territorial
behaviors. While orange-throated males are aggressive and often fight without
any display, blue-throated males spend a lot of time challenging and displaying,
before a possible fight. It is thus clear that these phenotypes spend different
times in their interactions, which has an effect on their fitness. Indeed, in this
article, we show that varying the time two Hawks interact crucially influences
the evolutionary outcome for the Hawk-Dove model. In particular, Figure 3
shows that when cost of fighting is smaller than the reward of winning a fight,
and the fighting time is long enough, there are two locally stable equilibria.
The first equilibrium at which all individuals play Hawk strategy corresponds
to the classic model with all interaction times equal. However, the other, mixed
equilibrium, corresponds to the case where both Hawks and Doves coexist in
the population. As the time of fight increases, the region of attractivity of this
interior equilibrium increases so it is more likely to occur. This result provides
a new explanation why non-aggressive behavior occurs among individuals even
when the cost of fighting is small.
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As mentioned in the Introduction, Maynard Smith and Price (1973) also
incorporate opportunity cost into a Hawk-Dove type game. Specifically, in their
computer simulations of multi-round interactions between pairs of individuals,
these individuals receive a payoff from the interaction as well as an additional
payoff that decreases as the number of rounds increase. Thus, in contrast to our
model, the opportunity cost in their model is independent of the strategy that
the individual uses in future interactions. Moreover, in our terminology, their
fitness is payoff per interaction and so does not take account of the interaction
time. Despite these differences with our approach, it is noteworthy that they also
find that the population does not consist entirely of Hawks when the probability
of serious injury in a fight is low.

In the case of the repeated Prisoner’s dilemma, we show that, provided co-
operators stay together for enough rounds of the game while the other possible
pairs disband quickly, cooperation does evolve (Figure 4). These assumptions
are quite realistic, especially if players can choose whether to continue the game
to the next round with the same opponent, since it is always better to play
against a cooperator than a defector in the Prisoner’s dilemma game. Our
model thus provides a different mechanism than others (Nowak, 2006) that lead
to the evolution of cooperation. On the other hand, our mechanism is similar
to models based on direct reciprocity that require the probability of next en-
counter between two cooperators is higher than the cost to benefit ratio. This
probability condition is often satisfied through non random pair formation pro-
cesses in a well-mixed population (Taylor and Nowak, 2006) or in a structured
population where individuals interact with neighbors in a graph (Pacheco et al.,
2006). In our model with random pair formation, provided the interaction time
between two cooperators is long enough when compared to common interaction
times between other pairs, cooperation evolves. We also analyzed the case where
all interactions except those between defectors take the same time. These two
situations are substantially different, because while the first case assumes that
both individuals must be willing to pair, the second approach assumes that a
pair will continue their interaction unless both want to disband. The evolu-
tionary outcomes are substantially different as well. While in the first case we
showed that high enough cooperation times lead to cooperative behavior in the
population, in the second case this is not so.
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Figure 2: Stability analysis of population-distributional equilibria (7) for two-strategy matrix
games with interaction times. Solid circles at the endpoints (i. e., at p1 = 0 or 1) are strict
NE and so ESS whereas empty circles are unstable. Interior circles are NE that are either
stable and local ESS (solid) or unstable NE (empty). The four cases in Section 3 correspond
to panels A and B (Case 1), panel C (Case 2), panel D (Case 3) and panels E and F (Case 4).
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Figure 3: Equilibrium frequencies of Hawks for the Hawk-Dove game as a function of the
expected Hawk-Hawk interaction time τ11 when fitnesses are given by (6) (Panels A,B) and
by (15) (Panels C,D). The left panels assume a relatively low cost (V > C, V = 2, C = 1),
while the right panels assume a relatively high cost (C > V , V = 1, C = 2). The solid
(respectively, dashed) curve shows the stable (respectively, unstable) NE of this game. Other
parameters: τ12 = τ22 = τ = 1.
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Figure 4: Equilibrium frequencies of cooperation for the repeated Prisoner’s dilemma game
with opting out when fitnesses are given by (6) (Panel A) and by (15) (Panel B) as a function
of the expected number of rounds τ11 played by a cooperative pair. The solid (respectively,
dashed) curve shows the stable (respectively, unstable) NE of this game. Other parameters:
b = 2, c = 1, τ12 = τ22 = τ = 1.
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Appendix A. NE of the monomorphic population

Here we prove that strategy (p∗1, p
∗
2) is a NE for fitness function (17) iff

Π1 = Π2, where Π’s are given by (6) and are evaluated at (p∗1, p
∗
2). An interior

mixed strategy (p∗1, p
∗
2) is a NE if and only if Π(p∗

1
,p∗

2
)(p1, p2) ≤ Π(p∗

1
,p∗

2
)(p

∗
1, p

∗
2)

for all (p1, p2) which is equivalent to (p1 − p∗1)(Π1 −Π2) ≤ 0 for all 0 ≤ p1 ≤ 1.
This leads to the result given in the main text. The NE (p∗1, p

∗
2) is a local ESS

if and only if Π(p1,p2)(p1, p2) < Π(p∗
1
,p∗

2
)(p1, p2) for all (p1, p2) sufficiently close

but not equal to (p∗1, p
∗
2) if and only if (p1 − p∗1)(Π1 −Π2) < 0 for all 0 ≤ p1 ≤ 1

that are close to p∗1 where Πi are evaluated at (p1, p2). It follows that an interior
NE (p∗1, p

∗
2) is a local ESS iff Π1 > Π2 when p1 < p∗1 is close to p∗1. We see this

is true at those NE with 0 < p1 < 1 that correspond to solid circles in Figure 2.
Here we prove that strategy (p∗1, p

∗
2) is a NE for fitness function (20) iff

Π1 = Π2, where Π’s are evaluated at (p∗1, p
∗
2). To prove this we rewrite (20) as

Π(p∗
1
,p∗

2
)(p1, p2) =

p1A
∗ + p2B

∗

p1C∗ + p2D∗
(A.1)

where A∗ to D∗ are evaluated at (p∗1, p
∗
2). Then

Π(p∗
1
,p∗

2
)(p1, p2) =

p1A
∗ + p2B

∗

p1C∗ + p2D∗
≤ p∗1A

∗ + p∗2B
∗

p∗1C
∗ + p∗2D

∗
= Π(p∗

1
,p∗

2
)(p

∗

1, p
∗

2)

iff

(p1 − p∗1)

(

A∗

C∗
− B∗

D∗

)

≤ 0 (A.2)

for every (p1, p2). This means that A∗

C∗ = B∗

D∗ and Π1 = Π2.
Now we prove that (p∗1, p

∗
2) is a local ESS. We need to show that

Π(p1,p2)(p1, p2) =
p1A+ p2B

p1C + p2D
<

p∗1A+ p∗2B

p∗1C + p∗2D
= Π(p1,p2)(p

∗

1, p
∗

2)

where A to D are now evaluated at (p1, p2). This inequality is equivalent to
strict inequality in (A.2) with A∗ to D∗ replaced by A to D. It follows that a
NE (p∗1, p

∗
2) is a local ESS iff Π1 > Π2 evaluated at (p1, p2) for all p1 < p∗1 close

to p∗1. We see this is true at those NE with 0 < p1 < 1 that correspond to solid
circles in Figure 2.
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