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Abstract

We present a comprehensive study of the list update problem with locality of reference. More specif-

ically, we present a combined theoretical and experimental study in which the theoretically proven and

experimentally observed performance guarantees of algorithms match or nearly match.

In the first part of the paper we introduce a new model of locality of reference that closely captures

the concept of runs, representing sequences of requests to the same item. Using this model we develop

refined theoretical analyses of popular list update algorithms. The second part of the paper is devoted to an

extensive experimental study in which we have tested the algorithms on traces from benchmark libraries.

It shows that the theoretical and experimental bounds differ by just a few percent.

Our new theoretical bounds are substantially lower than those provided by standard competitive anal-

ysis. Another result is that the well-known Move-To-Front strategy exhibits the best performance. Its

refined competitive ratio tends to 1 as the degree of locality in a request sequence increases. This confirms

that Move-To-Front is the method of choice in practice.

1 Introduction

The list update problem is one of the most extensively studied online problems, with a tremendous body of

literature published over the past 40 years. The problem has been investigated with respect to both average-

case and worst-case competitive analysis. We refer the reader to [1, 4, 5, 6, 12, 18, 27, 30, 32, 35, 36, 38, 41]

for a selection of some key results.

The list update problem consists in maintaining a set of items as an unsorted linear list. More specifically,

a linear linked list of items is given. A list update algorithm is presented with a sequence of requests that must

be served in their order of occurrence. Each request specifies an item in the list. In order to serve a request,

a list update algorithm must access the requested item, i.e. it has to start at the front of the list and search

linearly through the items until the desired item is found. Accessing the i-th item in the list incurs a cost of

i. Immediately after an access, the requested item may be moved at no extra cost to any position closer to the

front of the list. These exchanges are called free exchanges. All other exchanges of two consecutive items in

the list cost 1 and are called paid exchanges. The goal is to serve the request sequence so that the total cost is

as small as possible. We emphasize that this is the standard cost model, see also [38]. Of particular interest

are online algorithms that serve each request without knowledge of any future requests.

While early work on the list update problem evaluated online algorithms assuming that requests are gen-

erated according to probability distributions, research over the past 20 years has focused on competitive anal-

ysis [38]. Here an online algorithm is compared to an optimal offline algorithm. Given a request sequence σ,
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let A(σ) denote the cost incurred by online algorithm A in serving σ, and let OPT (σ) denote the optimum

offline cost. Algorithm A is called c-competitive if there exists a constant α such that A(σ) ≤ c ·OPT (σ)+α
holds for all σ and all size lists.

In 1985 Sleator and Tarjan proved that the Move-To-Front algorithm is 2-competitive [38]. This elegant

strategy simply moves an item to the front of the list whenever it is requested. Since then, algorithms with

an improved competitiveness have been developed. While the competitive ratios are of course constant, there

is a substantial gap between the theoretical bounds and the performance ratios of the algorithms observed

in practice. Moreover, Move-To-Front often outperforms other strategies, see e.g. [10, 12]. The reason is

that competitive analysis considers arbitrary request sequences, whereas sequences arising in practice have a

special structure: They exhibit locality of reference, meaning that at any point in time only a small set of items

is referenced.

There has been considerable research interest in studying the paging problem with locality of reference [3,

7, 14, 20, 25, 26, 31, 33] because, in paging, the gap between the theoretical and experimental performance

values is even super-constant. However, hardly any work has been presented for the classical list update

problem. In fact, references [10, 29] point out that locality is an essential aspect in the list update problem and

that a good model is required to properly evaluate the performance of algorithms.

Previous results: We focus on the results that have been developed in the framework of competitive

analysis. As mentioned above Sleator and Tarjan [38] showed that Move-To-Front is 2-competitive. This is the

best factor deterministic online algorithms can achieve [32]. Bachrach and El-Yaniv [9] devised deterministic

MRI and PRI families of algorithms. These families attain competitive ratios of 2 and 3, respectively. We next

turn to randomized algorithms. The first randomized strategy was presented by Irani [30]. Her Split algorithm

is 1.9375-competitive. Reingold et al. [35] presented an elegant BIT algorithm that is 1.75-competitive. This

factor is substantially below the deterministic bound of 2. The BIT algorithm can be generalized to a family of

Counter strategies [35]. A Timestamp family of algorithms was developed in [1]. It achieves a competitiveness

equal to the Golden Ratio Φ ≈ 1.62. The best randomized algorithm currently known is COMB which is 1.6-

competitive [4]. Interestingly, COMB is a combination of BIT and a (deterministic) element of the Timestamp

family. The factor of 1.6 is close to best lower bound of 1.50084 developed by Ambühl et al. [6] on the

performance of randomized list update algorithms.

Experimental studies for the list update problem have been presented by Rivest [36], Bentley and Mc-

Geoch [12] and Bachrach et al. [10]. They analyzed popular algorithms on request sequences generated by

probability distributions and Markov sources, on sequences derived from text and Pascal files as well as on

sequences extracted from the Calgary Corpus [17]. The results are not unanimous. A conclusion is that the

ranking of algorithms depends on the degree of locality in the input.

The only prior work addressing list update with locality of reference was a paper by Angelopoulos et

al. [8]. They adapted a locality model [3] introduced for the paging problem and proved that Move-To-Front

is superior to other algorithms.

Our contribution: We present a comprehensive study of the list update problem with locality of reference.

The goal is to provide a refined analysis of the problem in which theoretical and empirical results match or

nearly match. To this end our study integrates theoretical and experimental work.

First, in Section 2, we introduce a new model of locality of reference that is based on the natural concept

of runs. A run is a sequence of requests to the same item. We define a number of parameters that characterize

request sequences in terms of the occurrence of long runs. Using these parameters we will be able to accu-

rately estimate the performance of list update algorithms. We also define a model of so-called λ-locality that

characterizes classes of input sequences with respect to their degree of locality. Loosely speaking, the more

long runs there are, the higher the locality. As we shall see, our new concepts properly capture locality of

reference in the list update problem, both from a theoretical and practical point of view.

In Section 3 we present refined theoretical analyses of list update algorithms. We concentrate on the most
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popular strategies that have received the most attention recently, namely Move-To-Front, BIT and COMB. In

order to be able to analyze COMB, we have also evaluated a member of the Timestamp family. Of course, we

have also investigated an optimal offline strategy. For each algorithm we have analyzed the total service cost

incurred on a request sequence, where cost is expressed in terms of our new locality parameters. Interestingly,

for Move-To-Front our cost analysis is exact, i.e. our locality model is powerful enough to exactly quantify

Move-To-Front’s service cost on any request sequence. Furthermore, for each online algorithm, we have

evaluated its performance relative to that of an optimal offline algorithm. Here Move-To-Front achieves an

excellent performance ratio and responds well to locality of reference: The competitiveness even tends down

to 1 as the degree of locality increases. This does not hold true for the other online algorithms.

In Section 4, we present a comprehensive experimental study in which we have evaluated our list update

algorithms on real-world traces from benchmark libraries. Obviously, the list update problem is a solution

to the classic dictionary problem. In this context, in practice, requests are memory accesses. Secondly, list

update has interesting applications in data compression, see e.g. [13, 16]. For instance, the open source data

compression program bzip2 relies on Move-To-Front encoding in combination with a preceding Burrows

Wheeler transformation. Therefore, in our experiments we consider as input (a) memory access strings (47

traces) and (b) sequences arising in data compression routines (44 traces). In our tests we first analyze the

traces with respect to their locality characteristics. It shows that the parameters introduced in Section 2 are

indeed sensible.

Next, in the experiments, for each algorithm and each input sequence, we have computed the total service

cost. Furthermore, for each online algorithm and each input, we have determined the experimentally observed

competitiveness, which is the total service cost of the algorithm divided by the total cost incurred by an optimal

offline strategy. Since the offline version of the list update problem is NP-hard, we have approximated the

optimum service cost by that of the pairwise optimum, see Section 4 for details. In general, our theoretically

proven and experimentally observed bounds are very close and differ by just a few percent. As for the total

service cost, Move-To-Front exhibits an error of 0 because our theoretical bound is exact. For the other

three online algorithms BIT , Timestamp and COMB, the average relative error between the theoretical and

experimentally observed values is 3–4% on the memory access traces and 7–9% on the data compression

sequences. As far as performance ratios relative to the optimum are concerned, the average relative errors

between our theoretical bounds and the experimentally observed competitive ratios are a bit higher. Move-

To-Front exhibits average relative errors of 0.3% on the memory traces and of 0.7% on the data compression

sequences. The other three strategies incur average errors of 3–4% on the memory traces and of 8–10% on

the data compression sequences.

In our study, the theoretical and experimental performance ratios of the algorithms are much lower than

the corresponding standard competitive ratios. In particular, Move-To-Front shows the best performance with

ratios in the range of 1.2–1.3. This confirms that Move-To-Front is the method of choice in practice.

We finally remark that our study does not address the algorithms Transpose and Frequency Count as they

to not achieve constant competitive ratios [38].

Subsequent work: After the conference publication of our paper, list update with locality of reference

has been studied in [19, 22, 21]. Dorrigiv et al. [19] propose a locality model based on Denning’s working sets

and analyze the performance of algorithms using a certain non-locality parameter. They show that Move-To-

Front is an optimal strategy with respect to this parameter. Moreover, the analysis separates Move-To-Front

from other strategies. However, no experimental study is conducted, comparing the theoretical bounds to

those observed in practice. Dorrigiv and López-Ortiz [22, 21] study list update algorithms under probability

distributions that exhibit locality of reference. They analyze the expected service cost of various algorithms

and show that Move-To-Front is the best strategy in this framework. A study of list update algorithms in data

compression was presented by Dorrigiv et al. [23, 24].
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2 A new model for locality of reference

Informally speaking, a request sequence exhibits locality of reference if, at any time, it references only a small

set of items. If an item is requested, it is likely to be requested again soon. This description suggests the

concept of runs, where a run is a subsequence of requests to the same item. In the best case, when there is

a high degree of locality, an item is requested many times in a row before a different element is referenced.

Unfortunately, real-world request sequences may contain only few of these pure long runs. However, long

runs may occur if we focus on small item sets and, in particular, on item pairs: If, at any time, item x is more

relevant than y, then this relation is likely to hold also in the near future and we encounter several requests

to x before the next reference to y arises. Thus long runs occur if we project request sequences to smaller

item sets or item pairs. A request sequence exhibits a high degree of locality if a substantial portion of the

requests belongs to long runs. In the following we introduce a formal model of locality of reference based on

this generalized notion of runs.

Let L be the set of items in the list to be maintained. Consider a fixed request sequence σ. For any

two items x, y ∈ L with x 6= y, let σxy be the request sequence that is derived from σ when deleting all

requests that are neither to x nor to y, i.e. only the requests to x and y survive. Any maximal subsequence of

consecutive requests to the same item in σxy is called a run. Let r(σxy) be the number of runs in σxy. A run is

short if it consists of one request only. A run consisting of at least two requests is long. Let s(σxy) and l(σxy)
denote the number of short and long runs, respectively, in σxy. Then s(σxy) + l(σxy) = r(σxy).

On long runs online algorithms typically perform well, relative to an optimal offline algorithm. In order to

properly evaluate our algorithms, we need some further definitions. A long run ρ is called a prefixed long run

if it is preceded by one or more short runs; otherwise ρ is called an independent long run. Again let lp(σxy)
and li(σxy) be the number of prefixed and independent long runs, respectively. We have lp(σxy) + li(σxy) =
l(σxy).

Consider two long runs ρ′ and ρ such that ρ′ occurs earlier than ρ in σxy. Run ρ′ immediately precedes ρ
if the last request of ρ′ is followed by the first request of ρ in σxy or if ρ′ and ρ are separated by short runs

only. A long run ρ which is not equal to the first long run in σxy represents a long run change if ρ and the

immediately preceding long run ρ′ reference different items. The first long run ρ in σxy represents a long

run change if ρ and the first request of σxy reference the same item (imagining that σxy was preceded by a

long run to just the other item of {x, y}). Let lc(σxy) be the number of long run changes in σxy. We have

lc(σxy) ≤ l(σxy). Furthermore, li(σxy) ≤ lc(σxy) because each independent long run, except for possibly

the first one, is immediately preceded by another long run, which references a different item. The number

of long run changes will be particularly important in lower bounding the cost incurred by an optimal offline

algorithm. Hence, it will allow us to derive good upper bounds on the relative performance ratios of online

strategies. Table 1 summarizes the various parameters for a projected sequence σxy.

As an example, consider σxy = xxyyyxyxyxxxxyxxx. The sequence consists of nine runs, five of them

are short and the remaining four are long. That is r(σxy) = 9, s(σxy) = 5 and l(σxy) = 4. The runs xxxx
and xxx are prefixed long runs so that lp(σxy) = 2 and li(σxy) = 2. All long runs, except for the last one,

represent a long run change, i.e. lc(σxy) = 3. On the other hand, if σxy started with a short run to x, then the

following long run yyy would not be a long run change.

So far we have defined a number of values for a particular request sequence σxy. We now sum these values

over all pairs of items x and y. For any pair x, y ∈ L with x 6= y and for any value v ∈ {r, s, l, li, lp, lc},

let v(σ) =
∑

{x,y}⊆L,x 6=y v(σxy). For instance, r(σ) is the total number of runs in σ, while s(σ) and l(σ)
represent the total number of short and long runs, respectively, in σ. In the experiments (Section 4) it shows

that all of the parameters are sensible. Typically, 60% of the runs are long runs. Most of them are independent

long runs. Moreover, the value lc is quite expressive. The ratio lc/l is usually 5% to 10% higher than li/l.
All the definitions presented so far refer to a given request sequence σ and, using these definitions, we

will be able to accurately evaluate the performance of list update algorithms on such a σ. Next, we introduce
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Parameter Count

r(σxy) runs

s(σxy) short runs

l(σxy) long runs

lp(σxy) prefixed long runs

li(σxy) independent long runs

lc(σxy) long run changes

Table 1: The parameters of the locality model, for any σxy. For a request sequence σ, the parameters are

summed over all pairs x 6= y.

a model of locality of reference that applies to classes of request sequences which may be generated by a

particular application. Intuitively, request sequences exhibit a high degree of locality if there are many long

runs. However, in order to obtain meaningful results we have to work with a refined definition. Again, the

number of long run changes is crucial. We say that a class Σ of request sequences exhibits λ-locality, for some

0 ≤ λ ≤ 1, if for any σ ∈ Σ inequality lc(σ)/r(σ) ≥ λ holds, i.e. the number of long run changes represents

at least a fraction of λ among all the runs. Note that, for a given request sequence, lc(σ) accounts for all the

independent long runs and, depending on the input, for a smaller or larger fraction of the prefixed long runs.

If a request sequence consists of long runs only, we have λ = 1.

An alternative, perhaps more intuitive definition would be to set λ as l(σ)/r(σ). However with this

definition we would not be able to derive good bounds because the analysis of an optimal offline algorithm

OPT crucially depends on lc(σ). A reader may wonder why our locality model does not incorporate the

length of long runs. This parameter is irrelevant for algorithms performance because after the second request

of a long run competitive algorithms have moved the referenced item ahead of the other item in the list and no

further cost is incurred on the run. We finally remark that our new locality model, based on runs, is different

from models introduced for paging, see again [3, 7, 14, 20, 33]. The latter usually model working sets and, in

particular, working set sizes over certain time intervals.

3 Analyzing online and offline algorithms

In this section we present refined theoretical analyses of list update algorithms. We first revisit a general

analysis framework based on item pairs. Then we lower bound the cost of an optimal offline algorithm. This

estimate will be crucial to evaluate the performance of online algorithms.

3.1 Basic cost analysis

We show that the cost incurred by any online or offline list update algorithm A on a request sequence σ can be

evaluated by considering pairs of items. This reduction is not new, but the reduction shown here incorporates

for the first time paid exchanges that an algorithm may perform.

Let m = |σ| be the length of σ and σ(t) be the request posed at time t, 1 ≤ t ≤ m. The cost incurred by

A in accessing σ(t) is 1 plus the number of items that precede item σ(t) in the list at time t. Additionally, A
may perform paid exchanges. For any item x ∈ L and any time t, define Ax(t, σ) = 1 if x precedes item σ(t)
in the list at time t; otherwise Ax(t, σ) = 0. We note that Ax(t, σ) = 0 for any t with σ(t) = x. Furthermore,

let Ap(t, σ) denote the number of paid exchanges performed by A at time t. Using these definitions, the cost
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incurred by any online or offline list update algorithm A can be expressed as

A(σ) =

m∑

t=1

(
∑

x∈L

Ax(t, σ) +Ap(t, σ)) +m

=
∑

x∈L

m∑

t=1

Ax(t, σ) +
m∑

t=1

Ap(t, σ) +m

=
∑

x∈L

∑

y∈L

∑

t:σ(t)=y

Ax(t, σ) +

m∑

t=1

Ap(t, σ) +m

=
∑

{x,y}⊆L
x 6=y

∑

t:
σ(t)∈{x,y}

(Ax(t, σ) +Ay(t, σ)) +

m∑

t=1

Ap(t, σ) +m.

Let Ap,xy(σ) be the total number of paid exchanges performed by A to change the relative order of x and y in

the list while serving σ. Then

A(σ) =
∑

{x,y}⊆L
x 6=y

(
∑

t:
σ(t)∈{x,y}

(Ax(t, σ) +Ay(t, σ)) +Ap,xy(σ)) +m.

Furthermore, let Axy(σ) =
∑

t:σ(t)∈{x,y}(Ax(t, σ) + Ay(t, σ)) + Ap,xy(σ). This term intuitively represents

the cost incurred by items x and y on requests that are to either x or y, plus the number of paid exchanges

involving both x and y. We remark that, for any t with σ(t) ∈ {x, y}, the sum Ax(t, σ) + Ay(t, σ) is either

0 or 1 depending on whether or not the requested item precedes the other item of the pair {x, y}. With the

abbreviation Axy(σ) we obtain

A(σ) =
∑

{x,y}⊆L
x 6=y

Axy(σ) + |σ|. (1)

Suppose that algorithm A serves σxy on the two-item list that consists of x and y only and let A(σxy)
be the incurred cost in the partial cost model. In this model the cost of serving a request is equal to the

number of items that precede the requested item in the current list, i.e. a request to the first item in the list

costs 0 and a request to the second item in the list costs 1. All online algorithms proposed in the literature

for list update have the property that Axy(σ) = A(σxy), for any x, y ∈ L with x 6= y. We will verify this

property when studying online algorithms in the following sections. As for an optimal offline strategy OPT ,

inequality OPTxy(σ) ≥ OPT (σxy) holds. Again we will verify this property in the sequel. Therefore, it

will be convenient to study A(σxy) instead of analyzing the (online or offline) cost Axy(σ).
For the analysis of A(σxy) we will often partition σxy into phases such that each phase ends with a long

run; the last phase ends with the last request of σxy if the last run happens to be short. Let pxy denote the

number of phases in this partition and let π(i) be the ith phase, 1 ≤ i ≤ pxy. If π(i) starts with a request to x,

then the phase has one of the following two structures, depending on whether the last request of the phase is

to x or y.

(a) (xy)kxl k ≥ 0, l ≥ 1 (b) (xy)kyl k ≥ 1, l ≥ 0

If π(i) starts with a request to y, the structures are symmetric. If the phase ends with a long run, we have

k ≥ 0, l ≥ 2 in case (a) and k ≥ 1, l ≥ 1 in case (b).

Based on this phase partitioning, we introduce some definitions regarding the beginning and end of σxy
and A’s list configuration. Let fb(σxy) be equal to 1 if the item first requested in σxy precedes the other item

of {x, y} in the initial list; otherwise let fb(σxy) = 0. Moreover, let f ′
b(σxy) be equal to 1 if fb(σxy) = 1 and

σxy starts with a short run followed by a long run; otherwise f ′
b(σxy) = 0. Finally, let fe(σxy) be equal to 1 if
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the last phase consists of a single request and the referenced item is stored after the other item of {x, y} in the

current list when A processes σxy on the two-item list and reaches the beginning of the last phase; otherwise

fe(σxy) = 0. Table 2 summarizes these additional parameters.

As an example, let σxy = xyyyxxy and assume that A is the Move-To-Front algorithm. Suppose that in

the initial list x is stored before y. In this case fb(σxy) = 1 and f ′
b(σxy) = 1. Moreover, fe(σxy) = 1 because

immediately before Move-To-Front serves the last run, x is stored before y in the current list.

Indicator Value

fb(σxy) 1 if item requested first is in front

f ′
b(σxy) 1 if additionally σxy starts with short run followed by long run

fe(σxy) 1 if σxy ends with short run and item is in the back

Table 2: Summary of the additional parameters for σxy. Again they are to be summed over all pairs x 6= y.

Again we sum these definitions over item pairs. For any x, y ∈ L with x 6= y and for any value

v ∈ {fb, f
′
b, fe}, let v(σ) =

∑
{x,y}⊆L,x 6=y v(σxy). We remark that values v(σ), with v ∈ {fb, f

′
b, fe}, will be

needed to properly evaluate the cost of our investigated algorithms. However, when determining the perfor-

mance of online algorithms relative to the optimal offline strategy, many of the terms will cancel. Furthermore,

we observe that values v(σ) with v ∈ {r, s, l, lc, lp, li} may grow arbitrarily large as the length of σ increases,

whereas the other values v(σ) with v ∈ {fb, f
′
b, fe} are bounded by |L|(|L| − 1)/2.

3.2 The cost of an optimal offline algorithm

We lower bound the cost incurred by an optimal offline algorithm OPT on a request sequence σ.

Lemma 1 The cost incurred by OPT is at least OPT (σ) ≥ 1
2 (r(σ) + lc(σ) + fe(σ))− fb(σ) + |σ|.

Proof. We first argue that OPTxy(σ) ≥ OPT (σxy) holds for any fixed pair of items x, y ∈ L with x 6= y, cf.

also [30]. Suppose that we serve σxy on the two-item list consisting of x and y by mimicking OPT ’s behavior

when servicing σ on the entire list of all items in L. More specifically, we change the relative order of x and

y in the two-item list, using free or paid exchanges, whenever OPT does so in the entire list. This service

schedule incurs a cost of OPTxy(σ) in the partial cost model, and the latter value cannot be smaller than the

optimal cost OPT (σxy) of serving σxy on the two-item list. Hence we find OPTxy(σ) ≥ OPT (σxy).
Using (1) we find OPT (σ) ≥

∑
{x,y}⊆L,x 6=y OPT (σxy) + |σ|. In the following we consider a fixed pair

of items x, y ∈ L with x 6= y and will prove

OPT (σxy) ≥
1

2
(r(σxy) + lc(σxy) + fe(σxy))− fb(σxy). (2)

Summing (2) over all pairs of items and taking into account that OPT (σ) ≥
∑

{x,y}⊆L,x 6=y OPT (σxy)+ |σ|,
we derive the lemma. An optimal offline algorithm for serving σxy on a two-item list consisting of x and y
is easy to state: On the first request of each long run move the requested item to the front of the list. On any

other request, do not change the position of the referenced item. No paid exchanges are used.

We will show that, essentially, OPT (σxy) ≥
1
2(r(σxy)+lc(σxy)). However, in order to establish a correct

and accurate lower bound, we have to consider the list configuration at the beginning and end of σxy, which

is captured by fb(σxy) and fe(σxy), see again Table 2.

In order to analyze OPT (σxy) we partition σxy into phases as described in Section 3.1. We analyze an

arbitrary phase π(i), 1 ≤ i ≤ pxy, and assume w.l.o.g. that the phase starts with a request to item x. Recall

that π(i) has one of the following two structures: (a) (xy)kxl with k ≥ 0, l ≥ 1 or (b) (xy)kyl with

k ≥ 1, l ≥ 0.
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If σxy consists of a single request to item, say x, then (2) is easy to see. We have r(σxy) = 1 and

lc(σxy) = 0. If x is stored in front of y in the initial list, then the cost incurred by OPT is 0. Since

fb(σxy) = 1 and fe(σxy) = 0, the right hand side of (2) is in fact smaller than 0. On the other hand, if x is

stored after y in the initial list, then the cost incurred by OPT is 1. We have fb(σxy) = 0 and fe(σxy) = 1
such that the right hand side of (2) is also equal to 1. In the remainder of this analysis we assume that σxy
consists of more than one request.

For any i with 1 ≤ i ≤ pxy, let r(π(i)) be the number of runs in π(i). Furthermore, let lc(π(i)) = 1 if

phase i ends with a long run and this long run represents a long run change. Otherwise we set lc(π(i)) = 0.
A long run change occurs in phase i if and only if the phase has structure (a) with l ≥ 2: This holds because,

if i ≥ 2, phase i − 1 ended with a long run of requests to item y and only phase structure (a) ends with x.

If i = 1, then a long run ending phase 1 is the first long run in σxy and represents a long run change if the

referenced item is equal to the item first referenced in σxy. Finally, let OPT (π(i)) denote the cost incurred

by OPT when serving π(i), 1 ≤ i ≤ pxy. We note that if fe(σxy) = 1, then pxy > 1 because σxy consists of

more than one request and a last phase containing a single request cannot be equal to the first phase. We will

show that for any number i, 1 < i < pxy,

OPT (π(i)) ≥
1

2
(r(π(i)) + lc(π(i))) (3)

as well as

OPT (π(1)) ≥
1

2
(r(π(1)) + lc(π(1))) − fb(σxy) (4)

and, if pxy > 1,

OPT (π(pxy)) ≥
1

2
(r(π(pxy)) + lc(π(pxy)) + fe(σxy)). (5)

If σxy consists of only one phase, then the desired inequality (2) follows from (4), taking into account that

fe(σxy) = 0. If σxy consists of at least two phases, then we obtain (2) by summing (3), for all i = 2, . . . , pxy−
1, as well as (4) and (5).

We first analyze any phase that is not equal to the first phase and prove inequalities (3) and (5). Consider a

phase i with 1 < i ≤ pxy. Recall that the previous phase i−1 ended with a long run of requests to item y such

that x is stored at position two in the list when phase i starts. If fe(σxy) = 1, then π(pxy) consists of a single

request to x and (5) is easy to see: We have lc(π(pxy)) = 0. Furthermore OPT ’s cost is 1, which is equal

to 1
2(r(π(pxy)) + fe(σxy)). Therefore we may assume fe(σxy) = 0 when considering phase number pxy and

the proof inequalities (3) and (5) reduces to showing OPT (π(i)) ≥ 1
2(r(π(i)) + lc(π(i))).

If phase i has structure (a), then the cost incurred by OPT is equal to k + 1 because each request to x in

the phase prefix (xy)kx costs 1. If l ≥ 2, then OPT moves x to the front of the list on the first request of

the long run xl and no further cost is incurred. The number of runs in the phase is 2k + 1. If the phase ends

with a long run, we have a long run change, i.e. lc(π(i)) = 1. If the phase ends with a short run, i.e. l = 1,

then lc(π(i)) = 0. We obtain OPT (π(i)) = k + 1 = 1
2(2k + 1 + 1) ≥ 1

2(r(π(i)) + lc(π(i))). If phase i has

structure (b), then OPT pays a cost of k because each request to x costs 1. The number of runs in the phase

is 2k and OPT (π(i)) = k = 1
2 (2k) =

1
2(r(π(i))+ lc(π(i))) because no long run change occurred and hence

lc(π(i)) = 0.

We finally take care of the first phase. If x is stored after y in the initial list, then fb(σxy) = 0 and the

arguments presented in the last paragraph immediately carry over. Recall that lc(π(1)) = 1 if and only if the

phase has structure (a) with l ≥ 2. We obtain OPT (π(1)) ≥ 1
2(r(π(1))+lc(π(1))) =

1
2(r(π(1))+lc(π(1)))−

fb(σxy). If x is stored in front of y in the initial list, then fb(σxy) = 1. We have OPT (π(1)) = ⌊r(π(1))/2⌋
because runs alternate between items x and y. The latter expression is at least 1

2(r(π(1))+ lc(π(1)))−fb(σxy)
because fb(σxy) = 1. ✷
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3.3 Online algorithms

We first study deterministic online algorithms and then address randomized strategies. The most popular

online algorithm for list update is Move-To-Front.

Algorithm Move-To-Front (MTF): Move the requested item to the front of the list.

Lemma 2 The cost incurred by MTF is MTF (σ) = r(σ)− fb(σ) + |σ|.

Proof. We first argue that MTFxy(σ) = MTF (σxy) holds for any item pair x, y with x 6= y. When MTF
serves a request sequence, at any time item x precedes item y in the current list if and only if the last request

made to an item from {x, y} was to x rather than to y. This holds when MTF serves σ on the entire list

consisting of all the items in L as well as when MTF serves σxy on the two-item list consisting of x and

y only. Sequence σ consists of |σxy| requests to x and y. Thus, for any i with 1 ≤ i ≤ |σxy|, the ith
request made to an item from {x, y} in σ contributes 1 in MTFxy(σ) if and only if the ith request in σxy
incurs a cost of 1 in MTF (σxy). Note that MTF does not use paid exchanges. We conclude, as desired

MTFxy(σ) = MTF (σxy).
Hence, using (1), we find MTF (σ) =

∑
{x,y}⊆L,x 6=y MTF (σxy) + |σ|. Consider a fixed pair of items

x, y ∈ L with x 6= y. We prove MTF (σxy) = r(σxy) − fb(σxy). Summing this equation over all pairs of

items and using MTF (σ) =
∑

{x,y}⊆L,x 6=y MTF (σxy) + |σ|, we obtain the lemma. When MTF serves σxy
on the two-item list, on the first request of each run the referenced item is moved to the front of the list. Hence

on each run, except for possibly the first one, MTF incurs a cost of exactly 1. On the first run, the cost is 1

if the requested item is stored behind the other item of {x, y} in the initial list. The cost is 0 if the requested

item precedes the other item of {x, y} in the initial list and in this case fb(σxy) = 1. These arguments yield

the equation to be proven. ✷

For any request sequence σ, let α(σ) = (|σ| − fb(σ))/r(σ). Furthermore, let β(σ) = lc(σ)/r(σ) be the

fraction of the long run changes relative to the total number of runs. The following theorem gives a refined

bound on the performance ratio of MTF . It implies, in particular, that MTF is 2-competitive.

Theorem 1 For any request sequence σ, the cost incurred by MTF is at most
2+2α(σ)

1+2α(σ)+β(σ) times that payed

by OPT.

Proof. Applying Lemmas 1 and 2 we find that the ratio of the cost incurred by MTF to that payed by OPT
is upper bounded by

c =
r(σ)− fb(σ) + |σ|

1
2 (r(σ) + lc(σ) + fe(σ))− fb(σ) + |σ|

≤
r(σ)− fb(σ) + |σ|

1
2 (r(σ) + lc(σ)) − fb(σ) + |σ|

=
2 + 2(|σ| − fb(σ))/r(σ)

1 + lc(σ)/r(σ) + 2(|σ| − fb(σ))/r(σ)
=

2 + 2α(σ)

1 + 2α(σ) + β(σ)
.

✷

An immediate consequence of the above theorem is the following corollary. It implies that MTF can

achieve a competitiveness as low as 1 on request sequences that exhibit a high degree of locality, i.e. that

satisfy λ-locality with values of λ close to 1.

Corollary 1 On request sequences exhibiting λ-locality, MTF achieves a competitive ratio of at most 2
1+λ .
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A second important deterministic online strategy is Timestamp. The algorithm is used, in particular, to

construct the best randomized online strategy currently known.

Algorithm Timestamp (TS): Insert the requested item, say x, immediately in front of the first item in the list

that precedes x in the current list and was requested at most once since the last request to x. If there is no such

item or if x is requested for the first time, do not change the position of x.

Lemma 3 The cost incurred by TS is TS(σ) ≤ r(σ) + li(σ)− lp(σ) + f ′
b(σ) + |σ|.

Proof. Again, we first argue that TSxy(σ) = TS(σxy) for any item pair x, y with x 6= y. In the following

paragraph we will show that when TS serves a request sequence σ on the full list, the referenced item, say x,

never passes an item in the list that was requested at least twice since the last request to x. Thus the following

property holds: When TS serves the ith request to x or y in σ, the relative order of the two items in the

full list is the same as that in the two-item list consisting of x and y when TS serves the ith request in σxy,

1 ≤ i ≤ |σxy|. We conclude TSxy(σ) = TS(σxy).
It remains to show that when TS serves a request sequence σ on the full list, the referenced item, say

x, never passes an item in the list that was requested at least twice since the last request to x. We prove the

statement by induction on t. Consider an arbitrary request sequence σ. The statement holds at time t = 1
because the referenced item σ(1) is requested for the first time and TS does not change its position in the list.

Suppose that the desired statement holds up to time t − 1, and let x = σ(t) be the item referenced at time

t. If x is requested for the first time, then again the position of x in the list does not change. Otherwise let

y be the first item in the current list that precedes x and was requested at most once since the last request to

x. (In case no such y exists, the position of x remains unchanged.) Let z be any item that was requested at

least twice since the last request to x. The last three requests made to either y or z are of the following form:

(a) z . . . z . . . y; (b) z . . . y . . . z or (c) y . . . z . . . z. In each case z precedes y in the current list after the above

subsequence of requests. In case (a) this follows from induction hypothesis. In cases (b) and (c) this holds

because on requests to z this item passes all items that were referenced at most once since the last request to

z. We conclude that when x is inserted in front of y, item z is not passed.

Thus, using (1), we obtain

TS(σ) =
∑

{x,y}⊆L
x 6=y

TS(σxy) + |σ|. (6)

We consider a fixed pair of items x, y ∈ L with x 6= y and will prove

TS(σxy) ≤ s(σxy) + 2li(σxy) + f ′
b(σxy). (7)

As r(σxy) = s(σxy)+ l(σxy) = s(σxy)+ lp(σxy)+ li(σxy) we find TS(σxy) ≤ r(σxy)+ li(σxy)− lp(σxy)+
f ′
b(σxy). Summing the latter inequality over all pairs of items, taking into account (6), we obtain the lemma.

For the analysis of TS(σxy) we partition σxy again into phases as described in Section 3.1. We consider

an arbitrary phase π(i), 1 ≤ i ≤ pxy, and assume w.l.o.g. that the phase starts with a request to item x. Recall

that phase π(i) has one of the following two structures.

(a) (xy)kxl k ≥ 0, l ≥ 1 (b) (xy)kyl k ≥ 1, l ≥ 0

The independent long runs in σxy are exactly the phases of structure (a) with k = 0 and l ≥ 2. When TS
serves σxy on the two-item list, on the second request of each long run the algorithm moves the referenced

item to the front of the list if it is not already there. Hence on each long run TS pays a cost of at most 2. This

proves that on all independent long runs, i.e. on all phases of structure (a) with k = 0 and l ≥ 2, TS’s total

cost is upper bounded by 2li(σxy). In the following we prove that on all other phases, TS incurs a cost of at
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most s(π(i)), where s(π(i)) denotes the number of short runs in π(i). In the first phase the cost is by 1 larger

if f ′
b(σxy) = 1.

Consider an arbitrary phase π(i) and suppose first that i > 1. At the beginning of the phase item x is

stored behind y in the list because the last two requests were made to y. Thus TS incurs a cost of 1 on the first

request of the phase. If the phase consists of only one request, we are done because in this case the number

of short runs is also 1. Therefore assume that the phase consists of at least two requests. When serving the

first request of π(i), TS leaves x’s position in the list unchanged because y was requested at least twice since

the last reference to x. Hence the second request of the phase, which is to y, does not incur cost and we have

identified a short run that does not incur cost. We will use this fact in the next paragraph. If the phase is

composed of short runs only, we are done because each further short run can incur a cost of at most 1; in fact

the cost is exactly 1.

If the phase ends with a long run, then in phase structure (a) we have k ≥ 1 because k = 0 would imply

that we deal with an independent long run, which was already analyzed above. Hence, on the first request

of the long run xl TS moves x to the front of the list so that the run incurs a cost of only 1. Recall that the

second short run of the phase does not incur any cost. Hence the cost paid by TS in π(i) is exactly equal to

the number s(π(i)) of short runs. If the phase ends with a long run and has structure (b), then the suffix yl

does not incur cost: This holds true if k = 1 because, as argued above, x is not moved in front of y on the first

request of the phase. If k > 1, then on the last request of (xy)k TS moves y in front of x in the list because x
was referenced at most once since the last request to x. Hence TS pays a cost of 2k − 1 in the phase, which

is equal to the number of short runs.

We finally study the first phase π(1). The arguments presented in the previous paragraph immediately

carry over if x is stored behind y in the initial list because on the first request to x algorithm TS does not

change the position of x in the list and a second request of the phase, which is to y, does not incur cost.

Therefore assume that x is stored in front of y in the initial list. In this case the first run of the phase does not

incur cost, and we have again identified a run not causing any cost. If the phase is composed of short runs

only, we are done because the service cost of TS in π(1) is upper bounded by s(π(1)). Therefore suppose

that the phase ends with a long run. This implies that the phase consists of at least two runs because a single

long run would represent an independent long run, whose cost was studied before. If the phase is composed

of two runs, then its structure is xyl
′
, for some l′ ≥ 2. TS pays a cost of 2 in the phase because on the first

request to y it does not change the position of y in the list as the item is referenced for the first time. On the

second request to y, the item is moved to the front of the list and incurs no further cost in the phase. This cost

of 2 is equal to the number of short runs plus f ′
b(σxy).

If the phase is composed of at least three runs, the item referenced in the final long run ρ was requested

at least once before and hence moves to the front of the list after the first request of ρ, if not already there,

because the other item of the pair was requested only once in between. Thus the final long run incurs a cost of

at most 1. Recalling that the first run of π(1) does not generate cost, we conclude that TS’s total cost in π(1)
is bounded by the number of short runs of the phase. ✷

We observe that TS is better than MTF if the number of prefixed long runs is larger than the number of

independent long runs plus f ′
b(σ).

Recall that α(σ) = (|σ| − fb(σ))/r(σ) and β(σ) = lc(σ)/r(σ). Furthermore, let α′(σ) = (fb(σ) +
f ′
b(σ))/r(σ) and γ(σ) = (li(σ)− lp(σ))/r(σ).

Theorem 2 For any request sequence σ, the cost incurred by TS is at most
2+2α(σ)+2α′(σ)+2γ(σ)

1+2α(σ)+β(σ) times that

payed by OPT.

Proof. Applying Lemmas 1 and 3 we find that the ratio of the cost incurred by TS to that payed by OPT is
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upper bounded by

c =
r(σ) + li(σ)− lp(σ) + f ′

b(σ) + |σ|
1
2(r(σ) + lc(σ) + fe(σ)) − fb(σ) + |σ|

≤
r(σ) + li(σ) − lp(σ) + f ′

b(σ) + |σ|
1
2 (r(σ) + lc(σ)) − fb(σ) + |σ|

≤
r(σ) + li(σ)− lp(σ) + fb(σ) + f ′

b(σ) + |σ| − fb(σ)
1
2(r(σ) + lc(σ)) + |σ| − fb(σ)

=
2 + 2(li(σ)− lp(σ))/r(σ) + 2(fb(σ) + f ′

b(σ))/r(σ) + 2(|σ| − fb(σ))/r(σ)

1 + lc(σ)/r(σ) + 2(|σ| − fb(σ))/r(σ)

=
2 + 2α(σ) + 2α′(σ) + 2γ(σ)

1 + 2α(σ) + β(σ)
.

✷

We have li(σ) ≤ lc(σ) and f ′
b(σ) ≤ fb(σ) ≤ |L|(|L| − 1)/2. Therefore, γ(σ) ≤ β(σ) and α′(σ) is upper

bounded by a constant that is independent of σ. Hence the above theorem also yields that TS is 2-competitive.

On the other hand, lp(σ) can be 0 and li(σ) can be as high as lc(σ). In this case γ(σ) = β(σ). Thus our refined

analysis does not yield an improved competitive ratio for TS on request sequences satisfying λ-locality.

We next turn to randomized algorithms and consider the popular Bit strategy.

Algorithm BIT: Maintain a bit b(x) for each item x ∈ L. These bits are initialized independently and

uniformly at random to a value in {0, 1}. On a request, complement the bit of the referenced item. If the bit

value changes to 1, move the item to the front of the list.

For the proof of Lemma 4 below we need the following claim.

Claim 1 Assume that BIT serves σxy on a list consisting of x and y only.

(1) Suppose that x is stored after y in the two-item list and that x is requested. Then the expected cost of

the following request is equal to 1/2.

(2) Suppose that BIT has just served a subsequence xyx of requests. If the next request is to y, then BIT ’s

expected cost on that request is equal to 3/4. If the next request is to x, the expected cost is equal to

1/4.

Analogous statements hold if the roles of x and y are interchanged.

Proof. Consider any item x. After BIT has served i requests to x, the bit b(x) has value (b0(x) + i) mod 2,

where b0(x) is the initial bit value. Thus, whenever BIT serves a request to x, the value of b(x) is equally

likely to be 0 or 1. This was also shown in [35].

To verify part (1) of the claim we simply observe that when serving the request to x, with probability 1/2
BIT moves x to the front of the list. Thus, after the request, x precedes y in the list with probability exactly

1/2. To verify part (2) we remark that after the service of the subsequence xyx, item x precedes y in the list

if and only if (a) x is moved to the front of the list on the second request to x or if (b) x is not moved to the

front of the list on the second request to x (such that it was moved to the front on the first request to x) and y
is not moved to the front on its reference in xyx. Event (a) occurs with probability 1/2 while (b) occurs with

probability 1/4. ✷

Lemma 4 The expected cost incurred by BIT is BIT (σ) ≤ 3
4r(σ) +

1
4 l(σ) +

1
2 li(σ) +

1
4fe(σ) + |σ|.

Proof. The question whether or not BIT moves a requested item, say x, to the front of the list only depends

on the initial bit value b0(x) and the number of requests to x processed so far. On the ith request to x, the item
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is moved to the front of the list if (b0(x) + i) mod 2 = 1. Thus when BIT serves the ith request to either x
or y in σ, item x precedes y in the full list if and only if x precedes y in the two-item list when BIT serves

the ith request in σxy, 1 ≤ i ≤ |σxy|. Hence BIT xy(σ) = BIT (σxy), for any pair x, y ∈ L with x 6= y, and

we obtain

BIT (σ) =
∑

{x,y}⊆L
x 6=y

BIT (σxy) + |σ|. (8)

Fix an item pair x, y ∈ L with x 6= y. We will prove that the expected cost incurred by BIT is

BIT (σxy) ≤
3

4
r(σxy) +

1

4
l(σxy) +

1

2
li(σxy) +

1

4
fe(σxy). (9)

We obtain the lemma by summing the last inequality over all item pairs, taking into account (8).

We evaluate BIT (σxy) by partitioning, as usual, σxy into phases as described in Section 3.1. Consider an

arbitrary phase π(i), 1 ≤ i ≤ pxy, and assume w.l.o.g. that the phase starts with a request to item x. Phase

π(i) has one of the following two structures.

(a) (xy)kxl k ≥ 0, l ≥ 1 (b) (xy)kyl k ≥ 1, l ≥ 0

If σxy consists of a single request to item, say x, we can easily verify (9): If x is stored in front of y in the

initial list, then the cost incurred by BIT is 0 and the right hand side of (9) is lower bounded by 0. On the

other hand, if x is stored after y in the initial list, then the cost incurred by BIT is 1. The right hand side of

(9) is also equal to 1 because r(σxy) = 1 and fe(σxy) = 1 while the other terms are 0.

In the remainder of this proof we assume that σxy consists of more than one request and analyze the

various phases. For any i with 1 ≤ i ≤ pxy, let r(π(i)) be the number of runs in π(i). Furthermore, let l(π(i))
be equal to 1 if the phase contains a long run; otherwise l(π(i)) = 0. Finally, we set li(π(i)) equal to 1 if the

phase consists of an independent long run; otherwise li(π(i)) = 0. Let BIT (π(i)) denote the expected cost

incurred by BIT in the phase. Note that if fe(σxy) = 1, then pxy > 1 because the request sequence consists

of more than one request and the first phase cannot consist of a single request. We will show that for any phase

number i satisfying 1 ≤ i < pxy,

BIT (π(i)) ≤
3

4
r(π(i)) +

1

4
l(π(i)) +

1

2
li(π(i)) (10)

and for index pxy,

BIT (π(pxy)) ≤
3

4
r(π(pxy)) +

1

4
l(π(pxy)) +

1

2
li(π(pxy)) +

1

4
fe(σxy). (11)

If σxy consists of only one phase, then the desired inequality (9) follows from (11). If σxy consists of at least

two phases, we derive (9) by summing (10), for all i = 1, . . . , pxy − 1, and (11).

If i = pxy and fe(σxy) = 1, then (11) follows easily: Phase π(pxy) consists of a single request to an item,

say x. The cost incurred by BIT is 1, and this is equal to 3
4r(π(pxy)) +

1
4fe(σxy). Inequality (11) follows

because l(π(pxy)) = li(π(pxy)) = 0. Therefore, when analyzing the last phase indexed i = pxy, we may

assume fe(σxy) = 0 and proving (10) and (11) reduced to showing

BIT (π(i)) ≤
3

4
r(π(i)) +

1

4
l(π(i)) +

1

2
li(π(i)) (12)

for any i with 1 ≤ i ≤ pxy. We first analyze a phase π(i), where either (a) i ≥ 2 or (b) i = 1 and fb(σxy) = 0
hold. Then we study the remaining case that i = 1 and fb(σxy) = 1.

So consider a phase π(i), where either i ≥ 2 or i = 1 combined with fb(σxy) = 0 hold. We first argue

that when π(i) starts, x is stored behind y in the list. This obviously holds if i = 1 because fb(σxy) = 0
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indicates that the item first requested in σxy and hence in the first phase is stored after the other item in the

initial list. If i ≥ 2, then phase π(i) is preceded by a long run of requests to y. After the service of the second

request of this long run, y definitely precedes x in the list. Hence the first request of π(i) incurs a cost of 1 and

using Claim 1, part (1) we obtain that the second request of the phase costs 1/2. If the phase has structure (a)

with k = 0, the total cost of the phase is 3/2, which is equal to 3
4r(π(i)) +

1
4 l(π(i)) +

1
2 li(π(i)) because

r(π(i)) = l(π(i)) = li(π(i)) = 1 as π(i) represents an independent long run. Inequality (12) holds.

Therefore we may assume k ≥ 1 in both structure (a) and (b), which implies li(π(i)) = 0. Again, the

first two requests xy in the phase cause a total cost of 3/2. Using Claim 1, part (2) we find that BIT pays an

expected cost of 3/4 for the service of any further short run in the phase. If the phase consists of only short

runs, then BIT ’s expected cost is 3
4r(π(i)) and (12) holds because l(π(i)) = 0. So suppose that π(i) ends with

a long run. If the phase has structure (a), then Claim 1, part (2) implies that the first two requests of the suffix

xl incur a cost of 3/4+1/4. On the second request of this long run x is moved to the front of the list, if x is not

already there, and the run incurs no further cost. Thus BIT (π(i)) = 3
2k + 1 = 3

4r(π(i)) +
1
4 l(π(i)) because

l(π(i)) = 1. Inequality (12) holds. If the phase has structure (b), then Claim 1, part (2) with the roles of x and y
interchanged implies that the first request of yl incurs an expected cost of 1/4. As y is moved to the front of the

list, if not already there, the run incurs no further cost. We obtain BIT (π(i)) = 3
2k+

1
4 = 3

4r(π(i))+
1
4 l(π(i))

because, again, l(π(i)) = 1.

We finally have to study the first phase π(1) if fb(σxy) = 1, i.e. the item first requested in π(1) precedes

the other item of the pair in the initial list. In this case the first request of the phase incurs a cost of 0. If

π(1) consists of a single long run, then BIT ’s total cost in the phase is 0. Inequality (12) holds because

the right-hand side is lower bounded by 0. So assume that π(1) consists of at least two runs, which implies

li(π(1)) = 0. In this case the second request of the phase, which is to y, incurs a cost of 1. If the phase

consists of exactly two runs, then π(1) = xyl where l ≥ 1, and using Claim 1, part (1) we obtain that BIT ’s

expected cost is at most 3/2, which in turn is upper bounded by 3
4r(π(1)) +

1
4 l(π(1)) because r(π(1)) = 2

and l(π(1)) = 1. We finally focus on the case that π(1) is composed of at least three runs. In this case we

can simply consider a truncated phase π′(1) derived from π(1) by removing the first request. In this truncated

phase a final long run is still preceded by a short run and the item first requested in π′(1) precedes the other

item of the pair when the phase starts. Applying all the arguments of the previous paragraph we obtain (12),

taking into account that the original phase π(1) contains even one run more than π′(1). ✷

Again, α(σ) = (|σ|−fb(σ))/r(σ) and β(σ) = lc(σ)/r(σ). Define δ(σ) = (12 l(σ)+li(σ)+2fb(σ))/r(σ).

Theorem 3 For any request sequence σ, the expected cost incurred by BIT is at most
1.5+2α(σ)+δ(σ)
1+2α(σ)+β(σ) times

that payed by OPT.

Proof. Applying Lemmas 1 and 4 we find that the ratio of the expected cost incurred by BIT to that payed

by OPT is upper bounded by

c =
3
4r(σ) +

1
4 l(σ) +

1
2 li(σ) +

1
4fe(σ) + |σ|

1
2(r(σ) + lc(σ) + fe(σ)) − fb(σ) + |σ|

≤
3
4r(σ) +

1
4 l(σ) +

1
2 li(σ) + |σ|

1
2(r(σ) + lc(σ))− fb(σ) + |σ|

≤
1.5r(σ) + 1

2 l(σ) + li(σ) + 2fb(σ) + 2(|σ| − fb(σ))

r(σ) + lc(σ) + 2(|σ| − fb(σ))

=
1.5 + (12 l(σ) + li(σ) + 2fb(σ))/r(σ) + 2(|σ| − fb(σ))/r(σ)

1 + lc(σ)/r(σ) + 2(|σ| − fb(σ))/r(σ)

=
1.5 + 2α(σ) + δ(σ)

1 + 2α(σ) + β(σ)
.
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✷

It is not hard to show that the above theorem also implies that BIT is 1.75-competitive. Taking into

account that l(σ) ≤ r(σ) and li(σ) ≤ lc(σ), we obtain the following corollary, which yields that BIT attains

a competitiveness of 1.5 on request sequences with a high degree of locality, i.e. with values of λ close to 1.

Corollary 2 On request sequences exhibiting λ-locality, BIT achieves a competitive ratio of min{1.75, 2+λ
1+λ}.

We finally turn to COMB, the list update algorithm achieving the smallest competitive ratio currently

known.

Algorithm Combination (COMB): With probability 4/5 serve the request sequence using BIT , and with

probability 1/5 serve the sequence using TS.

Lemma 5 The expected cost incurred by COMB is COMB(σ) ≤ 1
5(4r(σ)+4li(σ)+fe(σ)+f ′

b(σ))+ |σ|.

Proof. By the definition of COMB, on any request sequence, the algorithm’s expected cost is 4
5BIT (σ) +

1
5TS(σ) such that, using Lemmas 3 and 4, we obtain

COMB(σ) ≤
1

5
(3r(σ) + l(σ) + 2li(σ) + fe(σ)) +

1

5
(r(σ) + li(σ) − lp(σ) + f ′

b(σ)) + |σ|

=
1

5
(4r(σ) + l(σ) + 3li(σ)− lp(σ) + fe(σ) + f ′

b(σ)) + |σ|

=
1

5
(4r(σ) + 4li(σ) + fe(σ) + f ′

b(σ)) + |σ|.

The last line follows because l(σ) = li(σ) + lp(σ). ✷

Let ζ(σ) = (li(σ) +
5
4fb(σ) +

1
4f

′
b(σ))/r(σ).

Theorem 4 For any request sequence σ, the expected cost incurred by COMB is at most
1.6+2α(σ)+1.6ζ(σ)

1+2α(σ)+β(σ)
times that payed by OPT.

Proof. Using Lemmas 1 and 4 we obtain that the ratio of the expected cost of COMB to that of OPT is

upper bounded by

c =
1
5(4r(σ) + 4li(σ) + fe(σ) + f ′

b(σ)) + |σ|
1
2(r(σ) + lc(σ) + fe(σ)) − fb(σ) + |σ|

≤
1
5(4r(σ) + 4li(σ) + f ′

b(σ)) + |σ|
1
2(r(σ) + lc(σ))− fb(σ) + |σ|

≤
1.6r(σ) + 1.6li(σ) + 0.4f ′

b(σ) + 2|σ|

r(σ) + lc(σ) − 2fb(σ) + 2|σ|

=
1.6 + 1.6(li(σ) +

5
4fb(σ) +

1
4f

′
b(σ))/r(σ) + 2(|σ| − fb(σ))/r(σxy)

1 + lc(σ)/r(σ) + 2(|σ| − fb(σ))/r(σxy)

=
1.6 + 2α(σ) + 1.6ζ(σ)

1 + 2α(σ) + β(σ)
.

✷

We have li(σ) ≤ lc(σ) and f ′
b(σ) ≤ fb(σ) ≤ |L|(|L| − 1)/2. Hence the above theorem also implies

that COMB is 1.6-competitive. Since li(σ) can be as high as lc(σ), Theorem 4 does not give an improved

competitive ratio for COMB on request sequences satisfying λ-locality.

15



4 Experimental study

In this section we report on the results of our experimental study in which we have implemented the algorithms

analyzed in Section 3. The main purpose of our study is to compare the experimentally observed performance

of the algorithms to the bounds stated in Theorems 1–4 as well as Corollaries 1 and 2. In order to get

meaningful results we have tested the algorithms on real-world request sequences from benchmark libraries.

Clearly, self-organizing linear lists represent a solution to the classic dictionary problem, where we have

to maintain a set of elements so as to efficiently perform search and possible update operations. When a

dictionary is maintained by a computer/CPU, requests are actually memory accesses. A second important

application of self-organizing linear lists is data compression, where we wish to store a file using few bits. A

first, general finding is that the experimental results are consistent for both data sets. In fact, the results are

even slightly more positive for the memory access traces.

Since data compression has gained considerable popularity and importance, as far as the application of

list update algorithms is concerned, we report on the corresponding results first and then present the results

for the memory access strings.

4.1 Data compression

Bentley et al. [13] showed that self-organizing linear lists can be used to build locally adaptive data com-

pression schemes. The approach was further developed and studied in [2, 16, 28]. The best compression

results are achieved when the scheme is combined with the famous Burrows-Wheeler transformation [16],

yielding compression rates that are comparable or even better than that of Lempel-Ziv based schemes. In fact

the common open source data compression program bzip2 consists of a Burrows-Wheeler transformation

followed by Move-To-Front and Huffman encodings. We briefly describe the basic data compression scheme

by Bentley et al. [13] and the Burrow-Wheeler transformation [16].

Data compression schemes: In data compression we are given a string S that shall be compressed, i.e.

that shall be represented using fewer bits. The string S consists of symbols, where each symbol is element

of an alphabet X = {x1, . . . , xn}. The idea of data compression schemes using linear lists is to convert the

string S of symbols into a string I of integers. An encoder maintains a linear list of symbols contained in X
and reads the symbols in the string S. Whenever the symbol xi has to be compressed, the encoder looks up the

current position of xi in the linear list, outputs this position and updates the list using a list update algorithm.

Here one can use MTF or any other list update strategy. If symbols to be compressed are moved closer to

the front of the list, then frequently occurring symbols can be encoded with small integers. Clearly, when

the string I is actually stored or transmitted, each integer in the string should be coded again using a variable

length prefix code.

The refined compression scheme by Burrows and Wheeler first applies a transformation to the string S.

The purpose of this transformation is to group together instances of a symbol xi occurring in S so that the

resulting string S′ exhibits a high degree of locality of reference. Of course the transformation is reversible

so that, given S′, the original string can be recovered. We refer the reader to [16] for details on the Burrows-

Wheeler transformation and its efficient implementation. The transformed string S′ is then encoded using the

algorithm by Bentley et al. [13] as described in the previous paragraph. Alphabet X, i.e. the set of entries in

the self-organizing linear list, is the ASCII alphabet with its 256 different characters. The initial list is given

by the initial numerical order of the ASCII characters. In the string S, each byte represents a symbol. For

large files to be compressed, the Burrows-Wheeler transformation is applied not to the entire file but rather to

blocks of uniform size; the block size may be chosen by a user.

Data sets and their locality characteristics: In our experiments we selected files available at the repos-

itory named Canterbury Corpus [17]. This collection was developed as an extension of the widely-used

Calgary Corpus and represents the standard benchmark library for evaluating data compression algorithms. It
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Figure 1: Average distribution of the runs into short runs and long runs and of the long runs into independent

and prefixed long runs. Furthermore, the average ratio of long run changes is given.

consists of different corpora such as the true Canterbury Corpus, the Large Corpus and the Calgary Corpus.

The corpora contain files of different types. In addition to text files such as books and papers there are source

code files, pictures, office documents, object files, and many more. A description of the corpora can be found

at [17].

In our tests we selected all the files from the Canterbury Corpus, the Large Corpus and the Calgary Corpus.

We applied the Burrows-Wheeler transformation to each of these files. We chose a block size of 9 · 105 bytes,

which is the default and also the maximum allowable block size in bzip2. If the file size exceeds the block

size, then, as described above, the file is split into several blocks of the chosen size. This was the case for

all the files of the Large Corpus. The sequences obtained from the Burrows-Wheeler transformation are the

request sequences on which the list update algorithms have to be evaluated. Recall that each byte of the

sequence forms a request. We remark that we actually do not compress files; instead we evaluate list update

algorithms on these realistic benchmark sequences.

Table 3 in Appendix A shows the characteristics of our (transformed) request sequences. A graphical

summary is depicted in Figure 1. The length of the request sequences differs vastly among the test instances.

There are short sequences consisting of only 3721 requests (grammar.lsp) and long sequences of up to

9 · 105 references, which occur when a file is split into several blocks. The third column of Table 3 shows how

many blocks were generated. Moreover, the number of different bytes (ASCII characters) requested differs

vastly. In text files typically about 80 to 90 different characters are requested. In object files such as obj1

and obj2 of the Calgary Corpus all the 256 ASCII characters are referenced.

For each of the request sequences we have computed the values r, s, l, lp, li, lc as introduced in Section 2.

We have also computed values fb, f
′
b, fe defined in Section 3.1 but, for brevity, do not show them. For better

reading, instead of giving the absolute values of r, s, l, lp, li, lc we show the interesting relations. Table 3

contains the exact values for each file while Figure 1 depicts the average values over all the files. First, it

shows that among all the runs of a request sequence, about 60% to 65% are long runs. The fraction can go

as high as 80% in the case of file trans in the Calgary Corpus. An exception is the file kennedy.xls in

which only 10%–15% of the runs are long, indicating that the Burrows-Wheeler transformation does not work

well on this file. Columns 7 and 8 of Table 3 and Figure 1 show the distribution of the prefixed and independent

long runs among all the long runs. Again, in most cases, the majority of the long runs are independent long

runs (fractions can go as high as 80%), indicating that long runs are usually followed by long runs. Finally, the

last column of Table 3 and Figure 1 show the number of long run changes relative to the number of long runs.

Here the interesting observation is that the ratio lc/l is typically 5% to 10% higher than li/l. This demonstrates

that the definition of lc was indeed sensible in Section 2 as it yields more expressive lower bounds on the cost

of OPT , compared to li. A final remark is that, for files split into several blocks, all the numbers for the

various blocks are consistent, i.e. the characteristics do not change within the file.

Performance results: We have executed the online algorithms analyzed in Section 3 on all the request

sequences described above and recorded their cost. As for the randomized strategies BIT and COMB,

they were executed 16 times on each sequence and, for any sequence, the average cost was taken. Since the
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Figure 2: Relative errors of the upper bounds on the service costs given by Lemmas 1–5 when compared to

the actual costs observed.

offline version of the list update problem is NP-hard [5] and the best known offline algorithm takes O(2nn!m)
time [34], where n = |L| and m = |σ|, computing the true optimum offline cost is impossible for our request

sequences. Therefore, we computed the pairwise optimum, which is equal to
∑

{x,y}⊆L,x 6=y OPT (σxy)+ |σ|.
This expression is usually used as approximation of the optimum offline cost, even in standard competitive

analysis, see e.g. [1]. To evaluate the pairwise optimum, for each request sequence σ and each pair x, y of

ASCII characters we derived the projected sequence σxy and computed OPT (σxy). The latter cost is easy to

determine because an optimal offline algorithm for sequences on two-item lists is simple to state, cf. proof of

Lemma 1. In the following figures and tables, OPT always refers to the pairwise optimum.

Table 4 in Appendix A and Figure 2 above represent the costs incurred by the algorithms on all the

sequences. For each algorithm we compare the costs observed in the experiments to those implied by the

theoretical bounds of Lemmas 1–5. For any A ∈ {MTF ,TS,BIT ,COMB,OPT}, the columns headed

A∗ in Table 4 record the experimentally observed cost. Using values r, s, l, li, lp, lc, fb, f
′
b, fe for the various

request sequences, Lemmas 1–5 yield theoretical bounds. Instead of reporting these bounds, we give the

relative errors. The relative error, for a given strategy A and request sequence σ, is the absolute value of

the difference between the experimental and theoretical costs, divided by the experimental value. Figure 2

depicts the relative errors using box plots, which is a standard method to display numerical data. For each

algorithm, the bold line within the box represents the median data point. The box includes 50% of the data

points, where 25% is located above and 25% below the median. The upper (respectively lower) whisker is the

maximum (respectively minimum) data point that can be found within a distance of 1.5 of the inter-quartile

range. All other points are outliers. It shows that all the errors are very small, indicating that the bounds

developed in Lemmas 1–5 very well approximate the experimentally observed cost. As for OPT , or the

pairwise optimum, the average relative error is below 0.5%. The incurred error for MTF is 0 because the

bound given in Lemma 2 is exact. For the other three online strategies, the average relative errors are between
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Figure 3: Average upper bounds cA on the performance ratios as implied by Theorems 1–4 compared to the

average experimentally observed competitiveness c∗A.

7% and 8%; the medians are even below 2%. Observe that the errors cannot be 0 because Lemmas 3–5 give

upper bounds on the service cost of the respective algorithms.

For comparison with previous experimental studies [9, 10] Table 5 shows the average service cost incurred

by the algorithms on a single request. These average costs are all very small, typically in the range between

1.8 and 5, which confirms that the request sequences exhibit a high degree of locality and that the algorithms

respond well to this property. In files such as kennedy.xls, geo or obj1, which access the full ASCII

character set, the access cost is a bit higher.

Table 6 in Appendix A as well as Figures 3 and 4 contain the main results of our experimental study.

Table 6 presents, for each online algorithm and each of our request sequences, the experimentally observed

competitiveness and compares it to the theoretical bounds developed in Theorems 1–4. For each algorithm

A ∈ {MTF ,TS,BIT ,COMB}, expression c∗A refers to the experimentally observed competitiveness on

a given sequence, which is the actual cost incurred by A divided by the cost of the pairwise optimum; the

latter values are reported in Table 4. Expression cA refers to the theoretical bound. For each algorithm,

the average performance values, over all files, are depicted in dark color (exp3rimental bounds) and light

color (theoretical bounds) in Figure 3. Table 6 also shows the relative error between the experimental and

theoretical expressions; a graphical representation using box plots is given in Figure 4. A first, very positive

finding is that the experimentally observed and theoretical performance ratios are very close to each other.

Hence our locality model and theoretical analyses are indeed sensible. The best results are achieved for MTF .

Here the average relative error is below 0.7%. For almost all of the files, the actual error is substantially smaller

because four files in the Canterbury Corpus (fields.c, grammar.lsp, sum and xargs.l) contribute

very higher errors to the average value. For the other three online algorithms the average relative errors

are higher, ranging between 8% and 10%, but these values are still reasonable. Again, for many files we

have very small errors; high contributions in the average relative errors just come from the files fields.c,

grammar.lsp and xargs.l. Figure 4 illustrates that the median error values are even below 3%.

A second important result is that the experimentally observed competitiveness as well as the performance
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Figure 4: Relative errors of the upper bounds on the performance ratios as implied by Theorems 1–4 when

compared to the experimentally observed competitiveness.

ratios implied by Theorems 1–4 are much lower than the standard competitive ratios of the algorithms. Recall

that MTF and TS are 2-competitive while BIT and COMB achieve competitive ratios of 1.75 and 1.6,

respectively. In our experiments, MTF shows the best behavior with performance ratios between 1.2 and 1.3.

An exception is the file kennedy.xlswhere the transformed request sequences do not exhibit a substantial

degree of locality. The other three algorithms TS, BIT and COMB are slightly worse, with ratios that

are typically in the range between 1.3 and 1.6. There is no clear winner among these three algorithms. For

each strategy there are some sequences where this strategy outperforms the other two. We note that for a few

files such as fields.c, grammar.lsp or xargs.l, the theoretical bounds implied by Theorem 2–4 are

higher than the standard competitive ratios of the algorithms. This is no contradiction. On these relatively

short files, consisting of only a few thousands of requests, the initial, apparently unfortunate list ordering has

a high influence of the overall service cost. The terms fb(σ) and f ′
b(σ), which take into account such effects,

are ignored in classical competitive analysis that evaluates the performance of algorithms on long sequences.

Table 7 in Appendix A and Figure 5 report on the performance of MTF and BIT in terms of λ-locality.

As argued in Section 3.3, TS and COMB achieve no improved competitiveness and hence are not listed.

For algorithm A ∈ {MTF ,BIT}, expression cλA refers to the theoretical bounds implied by Corollaries 1

and 2. We compare this value to the experimentally observed competitiveness c∗A, reported in Table 6, and

compute relative errors. In order to get a reasonable set of numerical results, which can also be compared

to that of Table 6, we treat each sequence as being a representative member of a class of inputs. (Of course,

alternatively, one could also group sequences to form classes.) For both MTF and BIT the competitive

performance under λ-locality is higher than the theoretical bounds of Theorems 1 and 3. This is not surprising

because Corollaries 1 and 2 consider asymptotic algorithm performance, ignoring the request sequence length

|σ|, i.e. an additive 1 per request, in both the online and offline cost. However, since the average service

cost of the algorithms is small (cf. Table 5), the additive values of 1 make a difference in performance. For
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Figure 5: Average bounds on the performance ratios cλA for A ∈ {MTF ,BIT} as implied by Corollaries 1

and 2. For comparison, the corresponding average values of the experimentally observed ratios are represented

by the darker colored bars.
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Figure 6: Average distribution of the runs of the memory access traces into short runs and long runs and of

the long runs into independent and prefixed long runs. Furthermore, the average ratio of long run changes is

given.

MTF we have competitive values, in terms of λ-locality, that are typically between 1.2 and 1.5, which is still

considerably lower than the standard competitive ratio of 2. For BIT the values are usually above 1.6 and

often reach even 1.75.

4.2 Memory accesses

We now report on our experiments with memory accesses, thereby simulating dictionary operations. In these

request sequences, each request is an access to a memory page. The alphabet is the set of different pages ever

referenced in a given sequence. In contrast to the data compression experiments, where the list of 256 ASCII

characters was fixed, here our self-organizing lists grow dynamically. Whenever a page is referenced for the

first time, its address is inserted as new item into the list. This is simply done by appending the new item at

the end of the list and executing the chosen list update strategy assuming a search request was issued.

Data sets and their locality characteristics: We selected traces that were generated by SPEC (Standard

Performance Evaluation Corporation) which maintains widely-used benchmark collections for performance
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Figure 7: Relative errors of the upper bounds on the service costs on the memory access traces as implied by

Lemmas 1–5.

evaluation [40]. The traces were generated by execution of the SPEC CPU2000 benchmark suite that contains

a large variety of programs ranging from compilers, to word processors, to computer visualization programs,

to name just a few. The programs were executed on a Pentium II processor running Redhat Linux 6.0. The

resulting set of 47 memory access traces can be downloaded at the Bringham Young University Trace Distri-

bution Center [15]. Instead of working with the whole traces which partly contain several hundreds of millions

of requests, we considered the samples of the traces provided. These samples consist of the first section of the

traces up to nearly 10.5 million requests. More information about the traces can be found at [40].

Table 8 in Appendix B and Figure 6 show the characteristics of the traces. The alphabet size differs vastly

for the various traces and ranges from 251 (ammp) to 3151 (perl makerand). Interestingly, the locality

characteristics are very similar to those of the data compression traces. This confirms the known fact that

memory accesses do exhibit locality of reference. Among the runs of a sequence, typically about 60% are

long runs. Recall that the numbers were about 10% to 15% higher in the case of data compression. In our test

set only file mesa forms an exception with a fraction of 60% of short runs. Among the long runs, the majority

forms independent long runs (fractions can be as high as 75%). The ratio lc/l is typically 5% higher than

li/l. We recall that in data compression this increase as well as the proportion of independent long runs was a

bit higher. The reason is that the Burrows-Wheeler transformation generates sequences with a high degree of

locality.

Performance results: As usual we have executed all our algorithms on each of the traces. The random-

ized algorithms were again executed 16 times on each input and the average cost was recorded. Table 9 in

Appendix B and Figure 7 present the actual service costs of the algorithms and the relative errors incurred by

the corresponding theoretical bounds of Lemmas 1–5. The average error of OPT , or the pairwise optimum,

is less than 0.2%. As for MTF , the error is 0 because our theoretical bound is exact. For the other three algo-

rithms the average relative error is around 3%, and hence even lower than in the case of the data compression
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Figure 8: Average upper bounds cA on the performance ratios on the memory access traces, as implied by

Theorems 1–4, compared to the average experimentally observed competitiveness c∗A.

traces. The median error values are below 2%, cf. Figure 7. Table 10 depicts the average service cost per

request of the algorithms. We observe very small values between 2 and 3 uniformly over all the algorithms

and traces. Again these values are even slightly lower than those of the data compression traces.

The most important results are presented in Table 11 in Appendix B as well as in Figures 8 and 9 below,

which compare the experimentally observed competitiveness of the algorithms to the performance guarantees

of Theorems 1–4. The relative errors are also computed. These errors are surprisingly small and again even

lower than in the experiments with the data compression traces. For MTF we observe an average relative

error of 0.2%. For the other algorithms the average relative errors are between 3% and 4%; the media values

are below 2%. Furthermore, the performance ratios of the algorithms are very low. Algorithm MTF exhibits

theoretical and experimental performance ratios that are typically in the range between 1.2 and 1.25. Hence

these values are substantially smaller than MTF ’s competitiveness of 2. For the other three algorithms the

performance ratios are a bit higher, typically ranging between 1.25 and 1.4. There are two exceptions, namely

files mcf and perl makerand where the ratios are higher. In general, BIT appears to be slightly better

than TS and COMB but the difference is marginal. For all the latter three algorithms, too, the experimentally

observed and theoretical performance ratios are well below the competitive ratios of the strategies.

Finally Table 12 in Appendix B and Figure 10 below show the results for λ-locality. We assume again

that each trace is a representative sample from a given application. The table shows the competitiveness of the

algorithms, expressed in terms of λ, and the relative errors when the value is compared to the experimentally

observed competitiveness shown in Table 12. As in the case of the experiments with data compression traces,

MTF exhibits performance guarantees that are well below the competitive ratio of 2; for BIT the guarantees

are in the range 1.65–1.75 and hence not substantially below the standard competitiveness of 1.75. We remark

again that the performance ratios in Table 12 are higher than the bounds of Table 11 because Corollaries 1 and

2 ignore the request sequence length |σ|, i.e. an additive 1 per request, which makes a difference because the

average cost of the algorithms is very low. Since the average service cost on the memory traces is even lower

than on the data compression traces, the relative errors here are higher.
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Figure 9: Relative errors of the upper bounds on the performance ratios on the memory access traces, as

implied by Theorems 1–4.
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Figure 10: Average bounds on the performance ratios cλA for A ∈ {MTF ,BIT} for the memory access traces

as implied by Corollaries 1 and 2. For comparison, the corresponding average values of the experimentally

observed ratios are represented by the darker colored bars.
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Overall we observe the same qualitative results as in the tests with the data compression sequences. As

mentioned before the results for the memory access traces are even more positive, i.e. the average relative

errors between the theoretical an experimental bounds are smaller.

5 Conclusions

In this paper we have presented a new, powerful model of locality of reference that allows us analyze list update

algorithms. We have developed refined theoretical performance guarantees for popular online algorithms. A

main result is that Move-To-Front responds very well to locality of reference, which does not hold true for the

other strategies examined. We have complemented the theoretical investigations by an extensive experimental

study. It shows that the theoretically proven and experimentally observed performance guarantees match up

to very small relative errors. We conjecture that, with respect to the competitive ratios, the gap between the

theoretical and experimental bounds could be tightened even further if it were possible to derive better lower

bounds on the optimum offline cost. More generally, an interesting working direction is to apply our locality

model to other data structures problems. A natural candidate are splay trees [39]. A challenge is to analyze

the cost of the search tree operations in terms of locality parameters.
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[10] R. Bachrach, R. El-Yaniv and M. Reinstädtler. On the competitive theory and practice of online list

accessing algorithms. Algorithmica, 32:201–245, 2002.

[11] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of randomization in

on-line algorithms. Algorithmica, 11:2–14, 1994.

[12] J.L. Bentley and C.C. McGeoch. Amortized analyses of self-organizing sequential search heuristics.

Communication of the ACM, 28:404–411, 1985.

[13] J.L. Bentley, D.S. Sleator, R.E. Tarjan and V.K. Wei. A locally adaptive data compression scheme. Com-

munication of the ACM, 29:320–330, 1986.

25



[14] A. Borodin, S. Irani, P. Raghavan and B. Schieber. Competitive paging with locality of reference. Journal

of Computer and System Sciences, 50:244–258, 1995.

[15] BYU Trace Distribution Center, http://tds.cs.byu.edu/tds/index.jsp

[16] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algorithm. DEC SRC Research

Report 124, 1994.

[17] The Canterbury Corpus, http://corpus.canterbury.ac.nz/

[18] F.R.K. Chung, D.J. Hajela and P.D. Seymour. Self-organizing sequential search and Hilbert’s inequality.

Proc. 17th Annual Symposium on the Theory of Computing, 217–223, 1985.
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Appendix A

file size block diff. bytes s/r l/r lp/l li/l lc/l λ

The Canterbury Corpus

alice29.txt 152089 1 74 0.3840 0.6160 0.4328 0.5672 0.6327 0.3898

asyoulik.txt 125179 1 68 0.3959 0.6041 0.4447 0.5553 0.6267 0.3786

cp.html 24603 1 86 0.3032 0.6968 0.3196 0.6804 0.7280 0.5072

fields.c 11150 1 90 0.1801 0.8199 0.1546 0.8454 0.8671 0.7109

grammar.lsp 3721 1 76 0.2287 0.7713 0.1328 0.8672 0.8819 0.6802

kennedy.xls 1029744 1 256 0.8817 0.1183 0.6483 0.3517 0.6612 0.0782

2 236 0.8500 0.1500 0.6026 0.3974 0.5977 0.0896

lcet10.txt 426754 1 84 0.3963 0.6037 0.4607 0.5393 0.6069 0.3664

plrabn12.txt 481861 1 81 0.4336 0.5664 0.5108 0.4892 0.5695 0.3226

ptt5 513216 1 159 0.4434 0.5566 0.5505 0.4495 0.5237 0.2915

sum 38240 1 255 0.3820 0.6180 0.3934 0.6066 0.6740 0.4165

xargs.1 4227 1 74 0.2503 0.7497 0.1801 0.8199 0.8440 0.6328

The Large Corpus

E.coli 4638690 1 4 0.4930 0.5070 0.5196 0.4804 0.6250 0.3169

2 4 0.4972 0.5028 0.5224 0.4776 0.6245 0.3140

3 4 0.4973 0.5027 0.5259 0.4741 0.6206 0.3120

4 4 0.4946 0.5054 0.5209 0.4791 0.6250 0.3159

5 4 0.4904 0.5096 0.5172 0.4828 0.6271 0.3195

6 4 0.4970 0.5030 0.5184 0.4816 0.6312 0.3175

bible.txt 4047392 1 62 0.3971 0.6029 0.4608 0.5392 0.6102 0.3679

2 62 0.4002 0.5998 0.4665 0.5335 0.6054 0.3631

3 63 0.4217 0.5783 0.4968 0.5032 0.5815 0.3363

4 61 0.4046 0.5954 0.4707 0.5293 0.6027 0.3589

5 63 0.4142 0.5858 0.4797 0.5203 0.5965 0.3494

world192.txt 2473400 1 90 0.3830 0.6170 0.4409 0.5591 0.6270 0.3868

2 84 0.3793 0.6207 0.4331 0.5669 0.6341 0.3936

3 88 0.3650 0.6350 0.4151 0.5849 0.6474 0.4111

The Calgary Corpus

bib 111261 1 81 0.3402 0.6598 0.3675 0.6325 0.6891 0.4547

book1 768771 1 82 0.4391 0.5609 0.5271 0.4729 0.5533 0.3104

book2 610856 1 96 0.3835 0.6165 0.4395 0.5605 0.6250 0.3853

geo 102400 1 256 0.4829 0.5171 0.5446 0.4554 0.5741 0.2969

news 377109 1 98 0.3498 0.6502 0.3964 0.6036 0.6585 0.4282

obj1 21504 1 256 0.4049 0.5951 0.4339 0.5661 0.6453 0.3840

obj2 246814 1 256 0.3433 0.6567 0.3852 0.6148 0.6736 0.4424

paper1 53161 1 95 0.2966 0.7034 0.3035 0.6965 0.7405 0.5208

paper2 82199 1 91 0.3535 0.6465 0.3849 0.6151 0.6729 0.4351

paper3 46526 1 84 0.3323 0.6677 0.3504 0.6496 0.7042 0.4702

paper4 13286 1 80 0.2773 0.7227 0.2674 0.7326 0.7728 0.5585

paper5 11954 1 91 0.2690 0.7310 0.2569 0.7431 0.7811 0.5710

paper6 38105 1 93 0.2757 0.7243 0.2786 0.7214 0.7611 0.5512

pic 513216 1 159 0.4434 0.5566 0.5505 0.4495 0.5237 0.2915

progc 39611 1 92 0.2876 0.7124 0.3004 0.6996 0.7427 0.5291

progl 71646 1 87 0.2652 0.7348 0.2742 0.7258 0.7613 0.5594

progp 49379 1 89 0.2135 0.7865 0.2086 0.7914 0.8179 0.6433

trans 93695 1 99 0.1964 0.8036 0.1949 0.8051 0.8278 0.6652

Table 3: Characteristics of the files and the transformed request sequences. File size (in bytes), partitioning in

blocks, number of different bytes per block and statistics on the runs.
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file OPT ∗ fOPT MTF ∗ fMTF TS∗ fTS BIT ∗ fBIT COMB∗ fCOMB

The Canterbury Corpus

alice29.txt 392895 0.0013 502868 0 522306 0.0431 526456.9375 0.0319 524126.3125 0.0371

asyoulik.txt 362574 0.0002 474180 0 487663 0.0436 494001.6875 0.0317 492105.3125 0.0353

cp.html 104158 0.0031 133635 0 151906 0.1704 147630.9375 0.1289 147249.4375 0.1469

fields.c 42524 0.0075 49582 0 65868 0.4253 58897.1250 0.3563 60363.6875 0.3698

grammar.lsp 19391 0.0676 22572 0 30722 0.7153 27150.8125 0.6077 27910.2500 0.6287

kennedy.xls 12472268 0.0010 22354897 0 21597020 0.0012 18080322.1875 0.0004 18274572.2500 0.0285

939959 0.0047 1621774 0 1558178 0.0250 1340384.5000 0.0202 1356081.5625 0.0423

lcet10.txt 1027207 0.0003 1311293 0 1341239 0.0196 1361943.1875 0.0147 1355707.1250 0.0172

plrabn12.txt 1282558 0.0003 1698414 0 1671403 0.0150 1729810.9375 0.0108 1715711.5000 0.0130

ptt5 942890 0.0019 1180995 0 1131896 0.0224 1186887.9375 0.0155 1177437.5625 0.0155

sum 337864 0.0128 460760 0 505699 0.0771 498365.5625 0.0533 496601.2500 0.0650

xargs.1 23181 0.0463 28233 0 35967 0.5873 33074.9375 0.4722 33568.1875 0.5006

The Large Corpus

E.coli 1711786 < 10−4 2133228 0 2108144 0.0006 2131150.5625 0.0004 2125126.1250 0.0011

1727309 < 10−4 2159514 0 2130515 0.0006 2153816.5625 0.0004 2147982.0000 0.0010

1717674 < 10−4 2146793 0 2113718 0.0006 2139920.1250 0.0005 2133448.0625 0.0011

1719056 < 10−4 2145202 0 2118336 0.0006 2141468.1250 0.0005 2135649.0000 0.0011

1702239 < 10−4 2116237 0 2094276 0.0006 2116540.4375 0.0004 2111176.0625 0.0008

267290 < 10−4 334220 0 329993 0.0037 333196.8750 0.0030 332557.5625 0.0032

bible.txt 1690008 < 10−4 2059346 0 2105108 0.0091 2129224.1250 0.0065 2121837.0625 0.0082

1756850 < 10−4 2161595 0 2203033 0.0087 2233457.5625 0.0062 2224340.5000 0.0081

1837709 < 10−4 2308138 0 2303754 0.0085 2360623.0625 0.0060 2346456.5000 0.0077

1793291 < 10−4 2219158 0 2256058 0.0084 2289041.1250 0.0064 2280334.7500 0.0077

975056 0.0001 1233963 0 1243358 0.0157 1268445.0000 0.0113 1261998.3750 0.0133

world192.txt 2013201 0.0002 2510591 0 2616268 0.0103 2629476.6875 0.0075 2617647.7500 0.0116

2031383 0.0001 2528823 0 2652556 0.0096 2655963.0000 0.0072 2645196.6875 0.0115

1558549 0.0002 1933008 0 2057427 0.0129 2046894.1875 0.0098 2040235.3125 0.0148

The Calgary Corpus

bib 310092 0.0007 388932 0 427473 0.0587 418736.6250 0.0451 418474.8125 0.0529

book1 1998680 0.0003 2651634 0 2582324 0.0096 2689370.6875 0.0069 2662206.8750 0.0096

book2 1559892 0.0002 1986645 0 2076699 0.0138 2086792.3750 0.0103 2075630.1875 0.0155

geo 2499234 0.0020 3797973 0 3615473 0.0098 3785313.6250 0.0062 3780945.8125 0.0010

news 1396286 0.0002 1809619 0 1990178 0.0150 1960421.5625 0.0112 1950057.9375 0.0204

obj1 372864 0.0093 529522 0 554319 0.0739 560958.7500 0.0488 556354.1250 0.0600

obj2 2085629 0.0015 2796806 0 3172590 0.0106 3089426.6250 0.0085 3050721.6250 0.0272

paper1 182349 0.0019 226971 0 265066 0.1097 252272.8750 0.0867 252736.3125 0.1006

paper2 244978 0.0027 313512 0 337465 0.0813 334597.8750 0.0614 334155.4375 0.0687

paper3 157773 0.0024 201921 0 223426 0.1148 218574.8125 0.0877 218969.8750 0.0961

paper4 57123 0.0080 72257 0 84729 0.2888 80642.8750 0.2278 81351.9375 0.2421

paper5 61211 0.0107 77312 0 92995 0.2903 87205.7500 0.2359 87804.1875 0.2553

paper6 138675 0.0018 171298 0 204572 0.1417 192904.6250 0.1122 193633.4375 0.1277

pic 942890 0.0019 1180995 0 1131896 0.0224 1186887.9375 0.0155 1177437.5625 0.0155

progc 154882 0.0017 194241 0 228571 0.1238 217648.1250 0.0966 217821.8125 0.1124

progl 180236 0.0014 213958 0 252752 0.1057 238902.5625 0.0840 240581.9375 0.0935

progp 135749 0.0017 156964 0 199299 0.1364 181676.0000 0.1125 183934.0000 0.1253

trans 245167 0.0018 278104 0 361727 0.0850 325851.5625 0.0709 331187.3750 0.0799

Table 4: Actual service costs incurred by the algorithms. Comparison of the actual costs to the bounds of

Lemmas 1–5 yields the relative errors fA, for the various strategies A.
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file OPT ∗ MTF ∗ TS∗ BIT ∗ COMB∗

The Canterbury Corpus

alice29.txt 2.5833 3.3064 3.4342 3.4615 3.4462

asyoulik.txt 2.8964 3.7880 3.8957 3.9464 3.9312

cp.html 4.2335 5.4317 6.1743 6.0005 5.9850

fields.c 3.8138 4.4468 5.9074 5.2823 5.4138

grammar.lsp 5.2112 6.0661 8.2564 7.2966 7.5007

kennedy.xls 13.8581 24.8388 23.9967 20.0892 20.3051

7.2447 12.4998 12.0096 10.3310 10.4520

lcet10.txt 2.4070 3.0727 3.1429 3.1914 3.1768

plrabn12.txt 2.6617 3.5247 3.4686 3.5899 3.5606

ptt5 1.8372 2.3012 2.2055 2.3126 2.2942

sum 8.8354 12.0492 13.2243 13.0326 12.9864

xargs.1 5.4840 6.6792 8.5089 7.8247 7.9414

The Large Corpus

E.coli 1.9020 2.3703 2.3424 2.3679 2.3613

1.9192 2.3995 2.3672 2.3931 2.3866

1.9085 2.3853 2.3486 2.3777 2.3705

1.9101 2.3836 2.3537 2.3794 2.3729

1.8914 2.3514 2.3270 2.3517 2.3458

1.9272 2.4098 2.3794 2.4025 2.3978

bible.txt 1.8778 2.2882 2.3390 2.3658 2.3576

1.9521 2.4018 2.4478 2.4816 2.4715

2.0419 2.5646 2.5597 2.6229 2.6072

1.9925 2.4657 2.5067 2.5434 2.5337

2.1794 2.7581 2.7791 2.8352 2.8208

world192.txt 2.2369 2.7895 2.9070 2.9216 2.9085

2.2571 2.8098 2.9473 2.9511 2.9391

2.3144 2.8705 3.0553 3.0396 3.0298

The Calgary Corpus

bib 2.7871 3.4957 3.8421 3.7636 3.7612

book1 2.5998 3.4492 3.3590 3.4983 3.4629

book2 2.5536 3.2522 3.3997 3.4162 3.3979

geo 24.4066 37.0896 35.3074 36.9660 36.9233

news 3.7026 4.7987 5.2775 5.1986 5.1711

obj1 17.3393 24.6243 25.7775 26.0863 25.8721

obj2 8.4502 11.3316 12.8542 12.5172 12.3604

paper1 3.4301 4.2695 4.9861 4.7455 4.7542

paper2 2.9803 3.8141 4.1055 4.0706 4.0652

paper3 3.3911 4.3400 4.8022 4.6979 4.7064

paper4 4.2995 5.4386 6.3773 6.0698 6.1231

paper5 5.1205 6.4675 7.7794 7.2951 7.3452

paper6 3.6393 4.4954 5.3686 5.0624 5.0816

pic 1.8372 2.3012 2.2055 2.3126 2.2942

progc 3.9101 4.9037 5.7704 5.4946 5.4990

progl 2.5156 2.9863 3.5278 3.3345 3.3579

progp 2.7491 3.1788 4.0361 3.6792 3.7249

trans 2.6166 2.9682 3.8607 3.4778 3.5347

Table 5: Average service cost per request incurred by the algorithms.
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file cMTF c∗
MTF

fcMTF
cTS c∗

TS
fcTS

cBIT c∗
BIT

fcBIT
cCOMB c∗

COMB
fcCOMB

The Canterbury Corpus

alice29.txt 1.2820 1.2799 0.0016 1.3890 1.3294 0.0449 1.3847 1.3399 0.0334 1.3856 1.3340 0.0387

asyoulik.txt 1.3084 1.3078 0.0004 1.4043 1.3450 0.0441 1.4061 1.3625 0.0320 1.4058 1.3573 0.0357

cp.html 1.2908 1.2830 0.0061 1.7174 1.4584 0.1776 1.6084 1.4174 0.1347 1.6302 1.4137 0.1531

fields.c 1.1816 1.1660 0.0134 2.2373 1.5490 0.4444 1.9008 1.3850 0.3724 1.9681 1.4195 0.3864

grammar.lsp 1.2822 1.1640 0.1015 2.9935 1.5843 0.8894 2.4660 1.4002 0.7612 2.5715 1.4393 0.7866

kennedy.xls 1.7944 1.7924 0.0011 1.7357 1.7316 0.0023 1.4518 1.4496 0.0015 1.5086 1.4652 0.0296

1.7380 1.7254 0.0073 1.7116 1.6577 0.0325 1.4642 1.4260 0.0268 1.5137 1.4427 0.0492

lcet10.txt 1.2770 1.2766 0.0004 1.3317 1.3057 0.0199 1.3458 1.3259 0.0150 1.3430 1.3198 0.0176

plrabn12.txt 1.3248 1.3242 0.0004 1.3233 1.3032 0.0154 1.3638 1.3487 0.0112 1.3557 1.3377 0.0134

ptt5 1.2570 1.2525 0.0036 1.2317 1.2005 0.0261 1.2821 1.2588 0.0185 1.2720 1.2488 0.0186

sum 1.3918 1.3637 0.0206 1.6453 1.4968 0.0992 1.5818 1.4750 0.0724 1.5945 1.4698 0.0848

xargs.1 1.3009 1.2179 0.0681 2.6305 1.5516 0.6953 2.2343 1.4268 0.5659 2.3135 1.4481 0.5976

The Large Corpus

E.coli 1.2462 1.2462 < 10−4 1.2322 1.2315 0.0006 1.2455 1.2450 0.0004 1.2428 1.2415 0.0011

1.2502 1.2502 < 10−4 1.2341 1.2334 0.0006 1.2475 1.2469 0.0005 1.2448 1.2435 0.0010

1.2498 1.2498 < 10−4 1.2313 1.2306 0.0006 1.2464 1.2458 0.0005 1.2434 1.2421 0.0011

1.2479 1.2479 < 10−4 1.2330 1.2323 0.0006 1.2464 1.2457 0.0005 1.2437 1.2423 0.0011

1.2432 1.2432 < 10−4 1.2310 1.2303 0.0006 1.2438 1.2434 0.0004 1.2413 1.2402 0.0008

1.2504 1.2504 < 10−4 1.2391 1.2346 0.0037 1.2504 1.2466 0.0030 1.2481 1.2442 0.0032

bible.txt 1.2186 1.2185 0.0001 1.2571 1.2456 0.0092 1.2681 1.2599 0.0065 1.2659 1.2555 0.0083

1.2304 1.2304 < 10−4 1.2650 1.2540 0.0088 1.2793 1.2713 0.0063 1.2764 1.2661 0.0081

1.2561 1.2560 0.0001 1.2643 1.2536 0.0085 1.2923 1.2845 0.0061 1.2867 1.2768 0.0077

1.2375 1.2375 < 10−4 1.2687 1.2581 0.0084 1.2846 1.2764 0.0064 1.2814 1.2716 0.0077

1.2657 1.2655 0.0002 1.2954 1.2752 0.0159 1.3158 1.3009 0.0114 1.3117 1.2943 0.0135

world192.txt 1.2475 1.2471 0.0003 1.3134 1.2996 0.0107 1.3163 1.3061 0.0078 1.3158 1.3002 0.0119

1.2451 1.2449 0.0002 1.3186 1.3058 0.0098 1.3170 1.3075 0.0073 1.3173 1.3022 0.0116

1.2406 1.2403 0.0003 1.3375 1.3201 0.0132 1.3265 1.3133 0.0100 1.3287 1.3091 0.0150

The Calgary Corpus

bib 1.2556 1.2542 0.0011 1.4610 1.3785 0.0598 1.4126 1.3504 0.0461 1.4223 1.3495 0.0539

book1 1.3272 1.3267 0.0004 1.3049 1.2920 0.0100 1.3553 1.3456 0.0073 1.3453 1.3320 0.0100

book2 1.2741 1.2736 0.0004 1.3502 1.3313 0.0142 1.3520 1.3378 0.0107 1.3517 1.3306 0.0158

geo 1.5244 1.5197 0.0031 1.4653 1.4466 0.0129 1.5282 1.5146 0.0090 1.5156 1.5128 0.0018

news 1.2966 1.2960 0.0004 1.4473 1.4253 0.0154 1.4202 1.4040 0.0115 1.4256 1.3966 0.0208

obj1 1.4453 1.4201 0.0177 1.6248 1.4867 0.0929 1.6017 1.5045 0.0646 1.6063 1.4921 0.0766

obj2 1.3444 1.3410 0.0025 1.5412 1.5212 0.0132 1.4971 1.4813 0.0107 1.5059 1.4627 0.0295

paper1 1.2486 1.2447 0.0032 1.6182 1.4536 0.1132 1.5075 1.3835 0.0897 1.5297 1.3860 0.1037

paper2 1.2843 1.2798 0.0036 1.4948 1.3775 0.0852 1.4544 1.3658 0.0649 1.4625 1.3640 0.0722

paper3 1.2840 1.2798 0.0032 1.5838 1.4161 0.1184 1.5113 1.3854 0.0909 1.5258 1.3879 0.0994

paper4 1.2801 1.2649 0.0120 1.9345 1.4833 0.3042 1.7521 1.4117 0.2411 1.7886 1.4242 0.2559

paper5 1.2828 1.2630 0.0156 1.9910 1.5193 0.3105 1.7860 1.4247 0.2536 1.8270 1.4345 0.2736

paper6 1.2402 1.2352 0.0040 1.6909 1.4752 0.1462 1.5523 1.3911 0.1159 1.5800 1.3963 0.1316

pic 1.2570 1.2525 0.0036 1.2317 1.2005 0.0261 1.2821 1.2588 0.0185 1.2720 1.2488 0.0186

progc 1.2577 1.2541 0.0028 1.6632 1.4758 0.1270 1.5448 1.4053 0.0993 1.5685 1.4064 0.1153

progl 1.1912 1.1871 0.0035 1.5560 1.4023 0.1096 1.4408 1.3255 0.0870 1.4638 1.3348 0.0967

progp 1.1599 1.1563 0.0032 1.6736 1.4681 0.1400 1.4929 1.3383 0.1155 1.5290 1.3550 0.1285

trans 1.1370 1.1343 0.0024 1.6046 1.4754 0.0876 1.4264 1.3291 0.0732 1.4621 1.3509 0.0823

Table 6: Upper bounds cA on the performance ratios achieved by A ∈ {MTF ,TS,BIT ,COMB} as

implied by Theorems 1–4. The values are compared to the experimentally observed competitiveness c∗A,

which is the actual cost incurred by A to that of the pairwise optimum. The comparison yields a relative error

fcA .
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file λ cλ
MTF

f
cλ
MTF

cλ
BIT

f
cλ
BIT

The Canterbury Corpus

alice29.txt 0.3898 1.4391 0.1244 1.7195 0.2833

asyoulik.txt 0.3786 1.4508 0.1093 1.7254 0.2664

cp.html 0.5072 1.3270 0.0343 1.6635 0.1736

fields.c 0.7109 1.1689 0.0025 1.5845 0.1440

grammar.lsp 0.6802 1.1903 0.0226 1.5952 0.1393

kennedy.xls 0.0782 1.8549 0.0349 1.7500 0.2072

0.0896 1.8355 0.0638 1.7500 0.2272

lcet10.txt 0.3664 1.4637 0.1466 1.7319 0.3062

plrabn12.txt 0.3226 1.5122 0.1419 1.7500 0.2975

ptt5 0.2915 1.5486 0.2364 1.7500 0.3902

sum 0.4165 1.4120 0.0354 1.7060 0.1566

xargs.1 0.6328 1.2249 0.0057 1.6125 0.1301

The Large Corpus

E.coli 0.3169 1.5188 0.2187 1.7500 0.4056

0.3140 1.5220 0.2174 1.7500 0.4035

0.3120 1.5244 0.2197 1.7500 0.4047

0.3159 1.5199 0.2180 1.7500 0.4048

0.3195 1.5157 0.2192 1.7500 0.4074

0.3175 1.5180 0.2140 1.7500 0.4038

bible.txt 0.3679 1.4621 0.1998 1.7310 0.3740

0.3631 1.4672 0.1925 1.7336 0.3637

0.3363 1.4967 0.1916 1.7483 0.3611

0.3589 1.4718 0.1894 1.7359 0.3600

0.3494 1.4821 0.1711 1.7410 0.3383

world192.txt 0.3868 1.4421 0.1564 1.7211 0.3177

0.3936 1.4351 0.1528 1.7176 0.3137

0.4111 1.4173 0.1428 1.7087 0.3010

The Calgary Corpus

bib 0.4547 1.3749 0.0962 1.6874 0.2496

book1 0.3104 1.5263 0.1504 1.7500 0.3006

book2 0.3853 1.4438 0.1336 1.7219 0.2871

geo 0.2969 1.5422 0.0148 1.7500 0.1554

news 0.4282 1.4004 0.0805 1.7002 0.2109

obj1 0.3840 1.4451 0.0176 1.7225 0.1450

obj2 0.4424 1.3866 0.0340 1.6933 0.1431

paper1 0.5208 1.3151 0.0565 1.6575 0.1981

paper2 0.4351 1.3937 0.0890 1.6968 0.2423

paper3 0.4702 1.3604 0.0629 1.6802 0.2128

paper4 0.5585 1.2833 0.0145 1.6416 0.1628

paper5 0.5710 1.2731 0.0080 1.6366 0.1487

paper6 0.5512 1.2893 0.0437 1.6446 0.1823

pic 0.2915 1.5486 0.2364 1.7500 0.3902

progc 0.5291 1.3080 0.0429 1.6540 0.1770

progl 0.5594 1.2826 0.0804 1.6413 0.2382

progp 0.6433 1.2171 0.0526 1.6085 0.2019

trans 0.6652 1.2011 0.0588 1.6005 0.2042

Table 7: Competitive ratios cλMTF and cλBIT according to Corollaries 1 and 2. The values are compared to

c∗MTF and c∗BIT , respectively, yielding relative errors fcλ
MTF

and fcλ
BIT

.
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Appendix B

file seq. size diff. pages s/r l/r lp/l li/l lc/l λ

bzip2 g7 10481530 353 0.4871 0.5129 0.5017 0.4983 0.5584 0.2864

bzip2 g9 10481504 825 0.4715 0.5285 0.4760 0.5240 0.5819 0.3076

bzip2 p7 10481167 346 0.4790 0.5210 0.4866 0.5134 0.5742 0.2992

bzip2 p9 10481213 826 0.4641 0.5359 0.4628 0.5372 0.5957 0.3193

bzip2 s7 10481540 340 0.4819 0.5181 0.4935 0.5065 0.5675 0.2940

bzip2 s9 10481386 826 0.4663 0.5337 0.4677 0.5323 0.5903 0.3151

crafty 10481629 1007 0.3199 0.6801 0.2525 0.7475 0.7712 0.5245

eon cook 10481801 533 0.4976 0.5024 0.3749 0.6251 0.7495 0.3766

eon kajiya 10482257 397 0.5114 0.4886 0.3721 0.6279 0.7776 0.3800

eon rush 10482256 374 0.5067 0.4933 0.3766 0.6234 0.7678 0.3788

gap 10481513 901 0.4011 0.5989 0.3965 0.6035 0.6417 0.3843

gcc 166 10481586 706 0.3663 0.6337 0.3676 0.6324 0.6749 0.4277

gcc 200 10479248 542 0.3438 0.6562 0.3333 0.6667 0.7002 0.4595

gcc expr 10481541 778 0.3557 0.6443 0.3527 0.6473 0.6871 0.4427

gcc integ 10481491 716 0.3573 0.6427 0.3546 0.6454 0.6857 0.4407

gcc scilab 10481568 809 0.3510 0.6490 0.3357 0.6643 0.7018 0.4555

gzip graphic 10481443 576 0.4377 0.5623 0.4566 0.5434 0.5933 0.3336

gzip log 10481298 429 0.4871 0.5129 0.5680 0.4320 0.4607 0.2363

gzip program 10481317 509 0.4302 0.5698 0.4706 0.5294 0.5681 0.3237

gzip random 10480337 526 0.4320 0.5680 0.4565 0.5435 0.5927 0.3367

gzip source 10481850 482 0.4402 0.5598 0.4920 0.5080 0.5420 0.3034

mcf 10481598 3003 0.2487 0.7513 0.2436 0.7564 0.7713 0.5794

parser 10481694 1353 0.4209 0.5791 0.3811 0.6189 0.6634 0.3841

perl diffmail 10481359 996 0.3354 0.6646 0.3044 0.6956 0.7326 0.4869

perl makerand 10482174 3151 0.3296 0.6704 0.1901 0.8099 0.8142 0.5459

perl perfect 10481539 580 0.3172 0.6828 0.2808 0.7192 0.7553 0.5157

perl splitmail 10481588 702 0.3332 0.6668 0.3015 0.6985 0.7353 0.4903

twolf 10481015 469 0.3467 0.6533 0.3148 0.6852 0.7190 0.4697

vortex one 10481880 1589 0.3629 0.6371 0.2420 0.7580 0.7839 0.4994

vortex two 10481864 1647 0.3603 0.6397 0.2393 0.7607 0.7864 0.5031

vortex three 10481875 1642 0.3585 0.6415 0.2369 0.7631 0.7888 0.5060

vpr place 10481572 782 0.4098 0.5902 0.4591 0.5409 0.5624 0.3319

vpr route 10481581 605 0.4476 0.5524 0.4256 0.5744 0.6254 0.3455

ammp 10481899 251 0.4102 0.5898 0.4050 0.5950 0.6541 0.3858

applu 10482411 1394 0.3156 0.6844 0.2410 0.7590 0.7640 0.5229

apsi 10474135 517 0.3426 0.6574 0.2804 0.7196 0.7448 0.4896

art 10481866 1133 0.3962 0.6038 0.4240 0.5760 0.5997 0.3621

equake 10481760 747 0.5088 0.4912 0.5480 0.4520 0.5346 0.2626

facerec 10481552 527 0.4081 0.5919 0.4130 0.5870 0.6360 0.3765

fma3d 10479601 520 0.4946 0.5054 0.5527 0.4473 0.4821 0.2436

galgel 10481912 516 0.5967 0.4033 0.4931 0.5069 0.5618 0.2266

lucas 10481561 1570 0.4984 0.5016 0.4829 0.5171 0.5266 0.2641

mesa 10482000 1398 0.6044 0.3956 0.5280 0.4720 0.4774 0.1889

mgrid 10482496 1977 0.4200 0.5800 0.3325 0.6675 0.6741 0.3909

sixtrack 10481307 1668 0.4867 0.5133 0.4811 0.5189 0.5300 0.2720

swim 10481645 2098 0.3741 0.6259 0.4067 0.5933 0.6188 0.3872

wupwise 10481968 569 0.3581 0.6419 0.3062 0.6938 0.7229 0.4640

Table 8: Characteristics of the memory access traces. Length of the sequence, number of different pages

requested and statistics about the runs.
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file OPT ∗ fOPT MTF ∗ fMTF TS∗ fTS BIT ∗ fBIT COMB∗ fCOMB

bzip2 g7 19041305 0.0005 23808453 0 23750319 0.0045 23959189.9375 0.0003 23753803.9375 0.0075

bzip2 g9 19595974 0.0034 24482053 0 24708075 0.0217 24638102.3750 0.0197 24747882.5000 0.0161

bzip2 p7 19119813 0.0004 23800332 0 23948967 0.0044 23914290.3125 0.0056 23881583.7500 0.0070

bzip2 p9 19651460 0.0033 24441294 0 24859257 0.0221 24643607.8125 0.0221 24697333.6875 0.0216

bzip2 s7 19072205 0.0003 23779070 0 23830100 0.0043 23879476.6875 0.0042 23825573.8750 0.0061

bzip2 s9 19625107 0.0034 24447705 0 24800612 0.0218 24724719.9375 0.0175 24791288.1250 0.0163

crafty 27435162 0.0022 32797854 0 40157785 0.0220 36614133.6250 0.0182 36696794.4375 0.0364

eon cook 18340223 0.0014 21921452 0 23311621 0.0099 22278605.8750 0.0074 22444844.0000 0.0097

eon kajiya 17994231 0.0009 21377727 0 22718353 0.0055 21662773.6875 0.0035 21878515.6250 0.0037

eon rush 18055725 0.0008 21477451 0 22794425 0.0049 21731393.9375 0.0053 21956685.3125 0.0047

gap 23116558 0.0033 28791857 0 30930257 0.0211 30213037.6875 0.0164 30213024.0625 0.0222

gcc 166 26454187 0.0016 32890776 0 36572110 0.0112 35253853.1250 0.0100 35417589.0000 0.0131

gcc 200 26383889 0.0010 32290397 0 37023743 0.0066 35163962.5625 0.0054 35338105.2500 0.0113

gcc expr 26633066 0.0022 32902894 0 37085519 0.0131 35523302.3750 0.0113 35643474.0000 0.0171

gcc integ 26721936 0.0017 33055848 0 37202802 0.0112 35646241.1250 0.0102 35795867.1250 0.0150

gcc scilab 26224155 0.0019 32165133 0 36679428 0.0151 34901247.1875 0.0116 34971861.3125 0.0206

gzip graphic 20977689 0.0009 26272194 0 26938644 0.0109 26888501.5000 0.0090 26759993.5000 0.0146

gzip log 16265504 0.0004 19883978 0 19148234 0.0089 19761100.0000 0.0056 19500459.8750 0.0134

gzip program 20323992 0.0005 25396805 0 25800601 0.0092 26019709.0625 0.0061 25824171.1875 0.0127

gzip random 21990881 0.0005 27749992 0 28506825 0.0089 28555206.1875 0.0049 28307865.8125 0.0142

gzip source 19305104 0.0004 24065375 0 24093040 0.0091 24424265.2500 0.0082 24243553.8125 0.0131

mcf 47240992 0.0110 57523649 0 74415158 0.1072 67398608.1250 0.0904 66914378.2500 0.1249

parser 20951524 0.0073 25770547 0 27559490 0.0544 26735276.7500 0.0433 26805792.6250 0.0492

perl diffmail 26608785 0.0019 32269697 0 37719043 0.0236 35334990.3125 0.0203 35657725.0625 0.0254

perl makerand 22763892 0.0117 27474091 0 32428760 0.2896 29487743.8750 0.2409 30123287.3125 0.2495

perl perfect 28207213 0.0006 33898407 0 40845230 0.0073 37799755.3750 0.0050 38288086.5000 0.0086

perl splitmail 27771215 0.0011 33718801 0 39781745 0.0107 37130853.0625 0.0094 37484745.6875 0.0144

twolf 25405630 0.0007 30805751 0 35694923 0.0051 33581876.6250 0.0041 34062627.7500 0.0026

vortex one 27623852 0.0051 33569584 0 40733985 0.0549 36794640.1250 0.0465 37343411.5625 0.0550

vortex two 27735820 0.0050 33692025 0 40946422 0.0593 37016741.3750 0.0486 37500413.4375 0.0594

vortex three 27807823 0.0043 33764481 0 41092298 0.0596 37094391.6250 0.0497 37664598.8750 0.0582

vpr place 23362831 0.0010 29937974 0 30660466 0.0183 30914425.8125 0.0149 30650092.8125 0.0226

vpr route 20484025 0.0009 25410421 0 26525432 0.0123 26063059.5000 0.0091 26000790.5000 0.0158

ammp 21137925 < 10−4 25873293 0 27571783 0.0022 26974465.7500 0.0020 27132639.3750 0.0007

applu 17402848 0.0005 19857152 0 22578118 0.0853 21244261.1250 0.0686 21447265.0625 0.0753

apsi 20282849 0.0002 23680360 0 27411563 0.0094 25593928.0000 0.0091 25805319.8125 0.0151

art 19928722 0.0005 24635070 0 25379249 0.0498 25510315.3750 0.0343 25364097.3125 0.0423

equake 16962520 0.0010 20879076 0 20147541 0.0259 20590410.0000 0.0192 20445848.3750 0.0234

facerec 21395553 0.0008 26375120 0 27938951 0.0087 27440575.9375 0.0082 27505873.6875 0.0095

fma3d 17865239 0.0002 22430936 0 21664281 0.0121 22241428.3750 0.0088 22043067.6875 0.0133

galgel 17136944 0.0003 21405539 0 21347139 0.0121 20824361.2500 0.0094 20708296.8750 0.0207

lucas 16872346 0.0089 21045514 0 20465514 0.1053 20702051.8125 0.0794 20606735.4375 0.0870

mesa 18514269 0.0004 24643701 0 23352719 0.0830 23283006.1250 0.0629 23050166.8125 0.0784

mgrid 17736426 0.0002 21757472 0 22386216 0.1741 21980486.9375 0.1321 22129566.2500 0.1371

sixtrack 31058863 0.0046 43390757 0 43099241 0.0577 43264831.9375 0.0443 43256346.0625 0.0464

swim 27568308 0.0042 35908171 0 37284035 0.1117 37237966.3750 0.0918 37451208.6875 0.0898

wupwise 16766967 0.0007 19107193 0 21169868 0.0140 20246223.3750 0.0096 20232872.6250 0.0204

Table 9: Actual service costs incurred by the algorithms on the memory access traces. Comparison of the

actual costs to the bounds of Lemmas 1–5 yields the relative errors fA, for the various strategies A.
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file OPT ∗ MTF ∗ TS∗ BIT ∗ COMB∗

bzip2 g7 1.8167 2.2715 2.2659 2.2858 2.2663

bzip2 g9 1.8696 2.3357 2.3573 2.3506 2.3611

bzip2 p7 1.8242 2.2708 2.2850 2.2816 2.2785

bzip2 p9 1.8749 2.3319 2.3718 2.3512 2.3563

bzip2 s7 1.8196 2.2687 2.2735 2.2782 2.2731

bzip2 s9 1.8724 2.3325 2.3662 2.3589 2.3653

crafty 2.6175 3.1291 3.8313 3.4932 3.5011

eon cook 1.7497 2.0914 2.2240 2.1255 2.1413

eon kajiya 1.7166 2.0394 2.1673 2.0666 2.0872

eon rush 1.7225 2.0489 2.1746 2.0732 2.0947

gap 2.2055 2.7469 2.9509 2.8825 2.8825

gcc 166 2.5239 3.1380 3.4892 3.3634 3.3790

gcc 200 2.5177 3.0814 3.5331 3.3556 3.3722

gcc expr 2.5409 3.1391 3.5382 3.3891 3.4006

gcc integ 2.5494 3.1537 3.5494 3.4009 3.4152

gcc scilab 2.5019 3.0687 3.4994 3.3298 3.3365

gzip graphic 2.0014 2.5065 2.5701 2.5653 2.5531

gzip log 1.5519 1.8971 1.8269 1.8854 1.8605

gzip program 1.9391 2.4231 2.4616 2.4825 2.4638

gzip random 2.0983 2.6478 2.7200 2.7246 2.7010

gzip source 1.8418 2.2959 2.2985 2.3301 2.3129

mcf 4.5070 5.4881 7.0996 6.4302 6.3840

parser 1.9989 2.4586 2.6293 2.5507 2.5574

perl diffmail 2.5387 3.0788 3.5987 3.3712 3.4020

perl makerand 2.1717 2.6210 3.0937 2.8131 2.8738

perl perfect 2.6911 3.2341 3.8969 3.6063 3.6529

perl splitmail 2.6495 3.2170 3.7954 3.5425 3.5762

twolf 2.4240 2.9392 3.4057 3.2041 3.2499

vortex one 2.6354 3.2026 3.8861 3.5103 3.5627

vortex two 2.6461 3.2143 3.9064 3.5315 3.5776

vortex three 2.6529 3.2212 3.9203 3.5389 3.5933

vpr place 2.2289 2.8562 2.9252 2.9494 2.9242

vpr route 1.9543 2.4243 2.5307 2.4866 2.4806

ammp 2.0166 2.4684 2.6304 2.5734 2.5885

applu 1.6602 1.8943 2.1539 2.0267 2.046

apsi 1.9365 2.2608 2.6171 2.4435 2.4637

art 1.9013 2.3503 2.4213 2.4338 2.4198

equake 1.6183 1.9919 1.9222 1.9644 1.9506

facerec 2.0413 2.5163 2.6655 2.6180 2.6242

fma3d 1.7048 2.1404 2.0673 2.1224 2.1034

galgel 1.6349 2.0421 2.0366 1.9867 1.9756

lucas 1.6097 2.0079 1.9525 1.9751 1.9660

mesa 1.7663 2.3510 2.2279 2.2212 2.1990

mgrid 1.6920 2.0756 2.1356 2.0969 2.1111

sixtrack 2.9633 4.1398 4.1120 4.1278 4.1270

swim 2.6302 3.4258 3.5571 3.5527 3.5730

wupwise 1.5996 1.8229 2.0196 1.9315 1.9303

Table 10: Average service cost per request incurred by the algorithms on the memory access traces.
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file cMTF c∗MTF fcMTF
cTS c∗TS fcTS

cBIT c∗BIT fcBIT
cCOMB c∗COMB fcCOMB

bzip2 g7 1.2510 1.2504 0.0005 1.2535 1.2473 0.0050 1.2585 1.2583 0.0002 1.2575 1.2475 0.0080

bzip2 g9 1.2544 1.2493 0.0040 1.2935 1.2609 0.0259 1.2869 1.2573 0.0236 1.2882 1.2629 0.0201

bzip2 p7 1.2453 1.2448 0.0004 1.2586 1.2526 0.0048 1.2582 1.2508 0.0060 1.2583 1.2490 0.0074

bzip2 p9 1.2487 1.2437 0.0040 1.2980 1.2650 0.0261 1.2865 1.2540 0.0259 1.2888 1.2568 0.0255

bzip2 s7 1.2473 1.2468 0.0004 1.2553 1.2495 0.0047 1.2578 1.2521 0.0046 1.2573 1.2492 0.0065

bzip2 s9 1.2506 1.2457 0.0039 1.2963 1.2637 0.0258 1.2867 1.2599 0.0213 1.2886 1.2632 0.0201

crafty 1.1982 1.1955 0.0023 1.4994 1.4637 0.0244 1.3620 1.3346 0.0205 1.3895 1.3376 0.0388

eon cook 1.1971 1.1953 0.0016 1.2857 1.2711 0.0115 1.2255 1.2147 0.0089 1.2376 1.2238 0.0112

eon kajiya 1.1893 1.1880 0.0010 1.2708 1.2625 0.0065 1.2092 1.2039 0.0045 1.2215 1.2159 0.0047

eon rush 1.1905 1.1895 0.0008 1.2697 1.2624 0.0058 1.2110 1.2036 0.0062 1.2227 1.2161 0.0055

gap 1.2502 1.2455 0.0037 1.3714 1.3380 0.0250 1.3331 1.3070 0.0200 1.3408 1.3070 0.0259

gcc 166 1.2455 1.2433 0.0018 1.4004 1.3825 0.0130 1.3483 1.3326 0.0118 1.3587 1.3388 0.0149

gcc 200 1.2251 1.2239 0.0010 1.4139 1.4033 0.0076 1.3414 1.3328 0.0064 1.3559 1.3394 0.0123

gcc expr 1.2383 1.2354 0.0023 1.4140 1.3925 0.0155 1.3520 1.3338 0.0136 1.3644 1.3383 0.0195

gcc integ 1.2394 1.2370 0.0019 1.4105 1.3922 0.0131 1.3500 1.3340 0.0120 1.3621 1.3396 0.0168

gcc scilab 1.2290 1.2265 0.0020 1.4226 1.3987 0.0171 1.3490 1.3309 0.0136 1.3637 1.3336 0.0226

gzip graphic 1.2537 1.2524 0.0011 1.2996 1.2842 0.0120 1.2946 1.2818 0.0100 1.2956 1.2756 0.0156

gzip log 1.2230 1.2225 0.0004 1.1883 1.1772 0.0094 1.2222 1.2149 0.0060 1.2154 1.1989 0.0138

gzip program 1.2505 1.2496 0.0007 1.2821 1.2695 0.0100 1.2889 1.2802 0.0068 1.2876 1.2706 0.0133

gzip random 1.2627 1.2619 0.0007 1.3086 1.2963 0.0095 1.3057 1.2985 0.0055 1.3063 1.2873 0.0148

gzip source 1.2473 1.2466 0.0006 1.2601 1.2480 0.0096 1.2762 1.2652 0.0087 1.2729 1.2558 0.0136

mcf 1.2322 1.2177 0.0119 1.7648 1.5752 0.1204 1.5738 1.4267 0.1031 1.6120 1.4164 0.1381

parser 1.2401 1.2300 0.0082 1.3984 1.3154 0.0631 1.3418 1.2761 0.0515 1.3531 1.2794 0.0576

perl diffmail 1.2153 1.2127 0.0021 1.4540 1.4175 0.0257 1.3576 1.3279 0.0223 1.3769 1.3401 0.0275

perl makerand 1.2217 1.2069 0.0122 1.8596 1.4246 0.3054 1.6269 1.2954 0.2560 1.6735 1.3233 0.2646

perl perfect 1.2026 1.2018 0.0007 1.4597 1.4480 0.0080 1.3477 1.3401 0.0057 1.3701 1.3574 0.0093

perl splitmail 1.2158 1.2142 0.0013 1.4498 1.4325 0.0121 1.3513 1.3370 0.0107 1.3710 1.3498 0.0157

twolf 1.2134 1.2126 0.0007 1.4132 1.4050 0.0058 1.3281 1.3218 0.0048 1.3451 1.3408 0.0033

vortex one 1.2218 1.2152 0.0054 1.5640 1.4746 0.0607 1.4013 1.3320 0.0521 1.4339 1.3519 0.0607

vortex two 1.2212 1.2147 0.0053 1.5722 1.4763 0.0650 1.4068 1.3346 0.0541 1.4399 1.3521 0.0650

vortex three 1.2198 1.2142 0.0046 1.5730 1.4777 0.0645 1.4065 1.3340 0.0544 1.4398 1.3545 0.0630

vpr place 1.2829 1.2814 0.0011 1.3378 1.3124 0.0194 1.3444 1.3232 0.0160 1.3431 1.3119 0.0237

vpr route 1.2417 1.2405 0.0009 1.3121 1.2949 0.0133 1.2851 1.2724 0.0100 1.2905 1.2693 0.0167

ammp 1.2241 1.2240 < 10−4 1.3073 1.3044 0.0023 1.2788 1.2761 0.0021 1.2845 1.2836 0.0007

applu 1.1419 1.1410 0.0008 1.4092 1.2974 0.0862 1.3054 1.2207 0.0693 1.3261 1.2324 0.0760

apsi 1.1679 1.1675 0.0003 1.3646 1.3515 0.0097 1.2737 1.2619 0.0094 1.2919 1.2723 0.0154

art 1.2369 1.2362 0.0006 1.3377 1.2735 0.0504 1.3247 1.2801 0.0349 1.3273 1.2727 0.0429

equake 1.2323 1.2309 0.0012 1.2200 1.1878 0.0271 1.2386 1.2139 0.0204 1.2349 1.2054 0.0245

facerec 1.2338 1.2327 0.0009 1.3183 1.3058 0.0096 1.2941 1.2825 0.0090 1.2989 1.2856 0.0104

fma3d 1.2559 1.2556 0.0003 1.2277 1.2126 0.0124 1.2563 1.2450 0.0091 1.2506 1.2339 0.0135

galgel 1.2496 1.2491 0.0004 1.2612 1.2457 0.0125 1.2271 1.2152 0.0098 1.2339 1.2084 0.0211

lucas 1.2598 1.2473 0.0100 1.3541 1.2130 0.1163 1.3371 1.2270 0.0897 1.3405 1.2213 0.0976

mesa 1.3318 1.3311 0.0006 1.3668 1.2613 0.0836 1.3373 1.2576 0.0634 1.3432 1.2450 0.0789

mgrid 1.2272 1.2267 0.0004 1.4826 1.2622 0.1746 1.4035 1.2393 0.1325 1.4193 1.2477 0.1375

sixtrack 1.4039 1.3970 0.0049 1.4750 1.3877 0.0629 1.4617 1.3930 0.0493 1.4644 1.3927 0.0514

swim 1.3084 1.3025 0.0045 1.5102 1.3524 0.1167 1.4813 1.3508 0.0966 1.4871 1.3585 0.0947

wupwise 1.1406 1.1396 0.0009 1.2814 1.2626 0.0149 1.2200 1.2075 0.0104 1.2323 1.2067 0.0212

Table 11: Upper bounds cA on the performance ratios achieved by A ∈ {MTF ,TS,BIT ,COMB} on the

memory access traces, as implied by Theorems 1–4. The values are compared to the experimentally observed

competitiveness c∗A, which is the actual cost incurred by A to that of the pairwise optimum. The comparison

yields a relative error fcA .
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file λ cλMTF f
cλ
MTF

cλBIT f
cλ
BIT

bzip2 g7 0.2864 1.5547 0.2434 1.7500 0.3908

bzip2 g9 0.3076 1.5296 0.2243 1.7500 0.3919

bzip2 p7 0.2992 1.5394 0.2367 1.7500 0.3991

bzip2 p9 0.3193 1.5160 0.2189 1.7500 0.3955

bzip2 s7 0.2940 1.5456 0.2396 1.7500 0.3977

bzip2 s9 0.3151 1.5208 0.2208 1.7500 0.3891

crafty 0.5245 1.3119 0.0974 1.6560 0.2408

eon cook 0.3766 1.4529 0.2155 1.7264 0.4212

eon kajiya 0.3800 1.4493 0.2199 1.7247 0.4326

eon rush 0.3788 1.4506 0.2195 1.7253 0.4335

gap 0.3843 1.4448 0.1600 1.7224 0.3178

gcc 166 0.4277 1.4008 0.1267 1.7004 0.2760

gcc 200 0.4595 1.3703 0.1197 1.6852 0.2644

gcc expr 0.4427 1.3863 0.1221 1.6932 0.2694

gcc integ 0.4407 1.3882 0.1222 1.6941 0.2700

gcc scilab 0.4555 1.3741 0.1203 1.6871 0.2676

gzip graphic 0.3336 1.4997 0.1975 1.7498 0.3652

gzip log 0.2363 1.6177 0.3233 1.7500 0.4404

gzip program 0.3237 1.5109 0.2091 1.7500 0.3669

gzip random 0.3367 1.4963 0.1857 1.7481 0.3463

gzip source 0.3034 1.5344 0.2309 1.7500 0.3832

mcf 0.5794 1.2663 0.0399 1.6331 0.1447

parser 0.3841 1.4449 0.1747 1.7225 0.3498

perl diffmail 0.4869 1.3450 0.1091 1.6725 0.2595

perl makerand 0.5459 1.2938 0.0720 1.6469 0.2714

perl perfect 0.5157 1.3195 0.0980 1.6598 0.2386

perl splitmail 0.4903 1.3420 0.1053 1.6710 0.2498

twolf 0.4697 1.3608 0.1223 1.6804 0.2713

vortex one 0.4994 1.3339 0.0976 1.6669 0.2515

vortex two 0.5031 1.3306 0.0954 1.6653 0.2478

vortex three 0.5060 1.3280 0.0937 1.6640 0.2474

vpr place 0.3319 1.5016 0.1718 1.7500 0.3225

vpr route 0.3455 1.4865 0.1983 1.7432 0.3701

ammp 0.3858 1.4432 0.1790 1.7216 0.3491

applu 0.5229 1.3133 0.1510 1.6567 0.3571

apsi 0.4896 1.3426 0.1500 1.6713 0.3245

art 0.3621 1.4683 0.1878 1.7341 0.3547

equake 0.2626 1.5840 0.2869 1.7500 0.4417

facerec 0.3765 1.4530 0.1787 1.7265 0.3462

fma3d 0.2436 1.6082 0.2809 1.7500 0.4057

galgel 0.2266 1.6306 0.3054 1.7500 0.4401

lucas 0.2641 1.5821 0.2684 1.7500 0.4263

mesa 0.1889 1.6823 0.2639 1.7500 0.3916

mgrid 0.3909 1.4379 0.1721 1.7189 0.3870

sixtrack 0.2720 1.5723 0.1254 1.7500 0.2563

swim 0.3872 1.4417 0.1069 1.7209 0.2740

wupwise 0.4640 1.3661 0.1988 1.6830 0.3938

Table 12: Competitive ratios cλMTF and cλBIT for the memory access traces, according to Corollaries 1 and 2.

The values are compared to c∗MTF and c∗BIT , respectively, yielding relative errors fcλ
MTF

and fcλ
BIT

.
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