Volatile partitioning and mantle stratification during late-stage magma ocean solidification

Tim Lichtenberg

Relevance

- Atmospheric composition
- Faint Young Sun paradox
- Mantle redox state
- Cessation of core formation
- Tectonic regime of early Earth
- Extrapolation to exoplanets
- Mars-Earth divergence
- Subaerial prebiotic chemistry

Relevance

- Atmospheric composition
- Faint Young Sun paradox
- Mantle redox state
- Cessation of core formation
- Tectonic regime of early Earth
- Extrapolation to exoplanets
- Mars-Earth divergence
- Subaerial prebiotic chemistry

4

Major challenges & opportunities

- Provide a bridge from planet formation to long-term planet evolution
- Constraints on early Earth geochemistry poor
- Magma ocean (MO) evolution complex: interplay between siderophile + atmophile partitioning, atmospheric chemistry/radiation, fluid dynamics
- Suspension flow regime (so far) inaccessible/too expensive for computational geodynamics

- Timing of volatile addition better constrained
- Majority of former results based on 0D to 1D approximations
- Former models neglect mantle fluid dynamics
- Only very few studies w/ two-phase flow approach
- Synergies of expertise in Katz +
 Pierrehumbert groups

Early Earth's surface environment

Lebrun+13; Marcq+12,17 Salvador+17

Atmosphere – MO connection

Solomatov 15; Massol+16 Salvador+17

Simplistic equilibrium partitioning models

Simplistic equilibrium partitioning models

Equilibrium partitioning + some evolution

The Moon-forming impact to the rescue

Fractional crystallisation during freezing

Elkins-Tanton 12; Ikoma+18

Fractional crystallisation during freezing

Elkins-Tanton 12; Ikoma+18

Fractional crystallisation during freezing

Elkins-Tanton 12; Ikoma+18

MO thermal structure bracketed

Incremental overturns?

Two-phase flow to remix stratified mantle?

Two-phase flow to remix stratified mantle?

What to do / project goals

- Quantify impact of incremental overturns
 - Mantle compositional stratification
 - → Mantle redox gradient
 - → Layering stability
 - ▶ BSE C-H-N-S ratio/total budget
 - Uppermost mantle/plume chemistry?
- Earliest atmospheric composition
- Avoid bracketing of thermal evolution(?)

- Self-consistent atmospheric treatment
 - Pre-computed flux for various atmospheric compositions (+ solar insolation) as boundary condition
- Melt-solid compositional distribution
 - Composition tracking
- Computational feasibility
- Starting conditions

What to do / project goals

- Quantify impact of incremental overturns
 - Mantle compositional stratification
 - → Mantle redox gradient
 - → Layering stability
 - ▶ BSE C-H-N-S ratio/total budget
 - Uppermost mantle/plume chemistry?
- Earliest atmospheric composition
- Avoid bracketing of thermal evolution(?)

1. Whole-mantle MO

Density-inverted incremental overturns

2. After overturn

- Bracket overturn stratification
- Compute remixing of stratification + volatile partitioning

3. Intermediate (late-stage) MO

 Bracket early thermal evolution, assume end-member late-stage thermalcompositional profile

1. Whole-mantle MO -> global volatile budget

1. Whole-mantle MO -> global volatile budget

- Whole mantle completely molten
- Initial temperature profile following adiabat when bottom intersects with liquids
- Employ partition coefficients for alloy/O + CHNS ratios
 - Track composition/mixing + density inversion
 - Oversaturated volatiles released to atmosphere
- MO heat flux through eddy diffusivity

1. Whole-mantle MO

- Whole mantle completely molten
- Initial temperature profile following mantle liquidus
- Employ partition coefficients for alloy/O + CHNS ratios
 - Track composition/mixing + density inversion
 - Oversaturated volatiles released to atmosphere
- MO heat flux through eddy diffusivity

TABLE 2. Volatile solubilities and partition coefficients used for model calculations

		Solubility constants S _i (Eq. 6) (ppm/MPa)	Partition coefficients $D_i^{\text{alloy/silicate}}$
С	oxidized	1.6	500
	reduced	0.55	1000
	very reduced	0.22	3000
Н	oxidized	a	6.5
	reduced	a	6.5
	very reduced	5	6.5
N	oxidized	1	20
	reduced	5	20
	very reduced	50	20
S	oxidized	5000	60
	reduced	5000	60
	very reduced	5000	60

Hirschmann 16

Schaefer & Elkins-Tanton 18

1. Whole-mantle MO -> global volatile budget

- Whole mantle completely molten
- Initial temperature profile following mantle liquidus
- Employ partition coefficients for alloy/O + CHNS ratios
 - Track composition/mixing + density inversion
 - Oversaturated volatiles released to atmosphere
- MO heat flux through eddy diffusivity

2. After overturn: remixing of stratified mantle

- Overturn is bracketed, primary late-stage result of overturn must be assumed
 - Mixing scenarios predicted differ
 - Some constraints can be taken from average mantle convection time + LLSVP compositions
- Density inversions are reduced to variations due to mantle composition
- Remixing from MMU feedback + enhanced plutonism?
 - Radiogenic heat-source partitioning

- Overturn is bracketed, primary late-stage result of overturn must be assumed
 - Mixing scenarios predicted differ
 - Some constraints can be taken from average mantle convection time + LLSVP compositions
- Density inversions are reduced to variations due to mantle composition
- Remixing from MMU feedback + enhanced plutonism?
 - Radiogenic heat-source partitioning

3. Intermediate (late-stage) MO

- Bracketing rapid early MO evolution
 - ► Initial atmospheres dominated by either H₂O/CO₂ (oxidised) or H₂/CO (reduced)
 - Initial rapid cooling phase dominated by batch crystallisation
- Cannot avoid largely molten regions, but reduces uncertainties related to Fe partitioning
 - ▶ Fe-related density inversions
 - + MMU feedback (Ogawa+18)
 - ► + Intrusion feedback (Lourenco+18)
- Computationally a compromise

Summary & open questions

- 2D global or quarter-shell model
- Two-phase separation between melt and solid
- Chemical partitioning of iron phases (or mantle chemical evolution) between silicate melt and rock?
 - ► Feedback between density inversions, MMU effect + plutonism?
- Volatiles continually released + fed to uppermost mantle vs. parameterised using Salvador+17 scaling relations?
 - Atmospheric phase space?

- Partitioning/chemical evolution?
 - Constants derived from geochemical experiments?
 - ▶ Parameterisation à la Rees Jones+?
 - ► Mixture of both w/ regards to Fe vs. H₂O/CO₂/volatiles and high/low melt regions?
- Eddy diffusivity?
- Numerical feasibility?