
Enumerative Parallel and Distributed State Space Construction

Rodrigo T. Saad, Silvano Dal Zilio, Bernard Berthomieu, François Vernadat
CNRS; LAAS;

7, avenue du Colonel Roche, F-31077 Toulouse – France
Université de Toulouse;

UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
{rsaad, dalzilio, bernard, francois}@laas.fr

Abstract

Model Checking requires high end computers to verify
complex systems. Consequently, it is interesting to use
a multi-processors architectures in order to have more
computational resources available to deal with bigger
models. This work presents a survey of parallel and
distributed state space construction for Model Checking
purpose.

I. Introduction

Formal verification is one of the main approaches to
help engineers on the development of concurrent systems.
A formal verification technique is based on mathematical
formal methods able to provide formal proofs that a
system has the desired properties, in agreement with
the supplied models. Among these techniques, this work
presents an overview of parallel and distributed enu-
merative state space construction for Model Checking
purpose. Model Checking is an automatic technique
for verifying finite state systems that suffers from the
state space explosion, which is when the number of
reachable states grows exponentially with the number of
the system’s components.

Although the state space construction is considered as
a problem hard to perform in parallel, it is interesting,
from the point of view of time saving and memory expan-
sion, to use a multi-processors environment in order to
have more computational resources available to deal with
bigger models. We consider two different kind of such
architecture based on the memory model: distributed and
shared memory. On the one hand, distributed memory
machines may offers more memory space allowing the
construction of bigger models. Solutions based on this
kind of architecture are more common in the literature
maybe because of two reasons; first they are easy to scale

This work has been supported by the French AESE project Topcased
and by region Midi-Pyrénées

and second due its lower price. On the other hand, shared
memory machines may result in a faster execution time
but there are not too many solutions in literature up to
now, maybe because of the price and the complexity
associated with this architecture, i.e. data race, false
sharing, etc.

The rest of this paper is organized as follows. Section
II presents an introduction about parallel distributed
architecture. Then, in Section III, we briefly introduce
model checking and the problematic surrounding par-
allel and distributed state space construction. Section
IV presents solutions proposed up to know for both
architectures. Finally, Section V summarizes this paper.

II. Parallel and Distributed Architecture

A parallel processor is defined as a computer system
consisting of multiple processing units connected via
some interconnection network plus the software to make
the processing units work together [4]. The interconnec-
tion network is mainly of two types:

• shared memory: coordination among processes is
accomplished through global memory shared among
all processes. If all processes access the memory in
the same way, its considered a UMA(Uniform Mem-
ory Access) architecture. In the case where each
processor has part of the memory attached and the
access time depends on the distance to the proces-
sor owner, it is classified as NUMA(Non-Uniform
Memory Access). Finally, the COMA(Cache-Only
Memory Architecture) in the case where the shared
memory consists of cache memory;

• message passing: there is no shared memory space
among the processors and communication is pro-
vided through exchange of messages instead of
memory access. Depending on the provided inter-
communication bus, they can be classified as static
or dynamic.

III. Model Checking and State Space Con-
struction

Model Checking [3] is an autonomous formal tech-
nique used to inquire if a given model meets its specifica-
tions. This technique is based on mathematical structures
to formally describe the system model and logic formulas
to represent the desired properties, which are obtained
from the specifications. Moreover, a finite state space rep-
resentation is extracted from the mathematical structure
by exploring until saturation all possible states. Finally,
the finite state space is checked weather it satisfies the
given logic formulas. .

For the finite state space representation, two graphs
are considered: symbolic and enumerative. Enumerative
graph is when the states are represented in extension, by
enumerating all reachable states. By contrast, symbolic
graph is the one where the state space is represented in a
compressed way, by using several encoding techniques.
In our case, we consider only enumerative graphs because
they are more suitable to parallelize than symbolic graph,
since symbolic graphs would also require parallel state
encoding techniques.

A. Irregular Problem
Finite state space construction can be classified as an

irregular problem in the parallel algorithms community
because of the irregularity of its structure, in other words,
the cost to operate this kind of structure is not exactly
know or is unknown by advance. As a consequence, the
parallel execution of such problems may result in a bad
load balance among the processors [7, 5].

Figure 1. Three pathological models [5].

In [5], the authors explain that the characteristics
of the model under consideration has a key influence
on the performance of a parallel algorithm because it
may result in extra overhead during the exploration
task. Figure 1 shows three pathological models. Figure
a) shows a model where the parallel exploration will
perform like a sequential one, incapable of speedups.
Figure b) illustrates a model that imposes high scheduling
overheads, due to the small size of the work units. Figure
c) is the ideal model where (almost) every node has more
than one successor, minimizing the scheduling overhead.

B. Sequential State Space Construction
The Sequential State Space Construction is the simple

and well-know reachability graph algorithm. It starts
from the initial state (S := Initial;) by exploring until
saturation (for each a ∈ Enabled(s) do) all possible

successor states (snew := NewState(s, a)). Every new
state found (if snew /∈ S) is stored in the state graph
(S := S∪ {nnew}) with their input arcs (s ⇁a snew).
The sequential algorithm is shown in Figure 2.

S := {Initial}; Snew := {Initial}; A := ∅;
while Snew 6= ∅ do

Snew := Snew \ s;
for each a ∈ Enabled(s) do

snew := NewState(s, e);
if snew /∈ S then

Snew := Snew ∪ {snew};
S := S ∪ {snew};

end if;
A := A ∪ {s ⇁a snew};

end for
end while;
Figure 2. Sequential State Space Construc-
tion algorithm.

IV. Parallel and Distributed State Space
Construction

Parallel and Distributed state space construction have
been studied in various context and different solutions
have been proposed. A majority of these solutions adopt
a common approach: they can be considered as an
“homogeneous” parallelism and they follow an SPMD
(Single Program Multiple Data) programming style. The
SPMD approach is commonly used to accomplish coarse-
grained parallelism and it requires an explicit data and
work assignation by the programmer to each processor.
Another characteristic about SPMD programs is that the
work executed by the threads is typically “homogeneous”
in the sense that all threads performs concurrently the
same steps, which is in this case a similar algorithm to
the one presented at Figure 2.

A common approach to assign work and data is to
partition the state space into several chunks, one for
each processor available, through a slicing function. This
solution is more common on distributed memory environ-
ments; they all follow almost the same architecture but
differ by the nature of the slicing function, i. e. static or
dynamic. In contrasts, solutions based on shared memory
architectures are more concerned with synchronizations
among processors, memory consistency and overheads
caused by the extended used of locking systems (mutual
exclusion for memory access).

A survey of solutions proposed up to now are pre-
sented below. The solutions presented on the following
survey were selected because of the theoretical results
they propose, hence, papers describing implementation of
model checking tools is out of the scope of this overview.

A. Distributed Memory
A great deal of solutions proposed up to now are based

on a partition function, i.e. Proc : S ⇒ {0,, N − 1}
where Proc(s) is the owner of state s among N proces-
sors. They differ basically by the nature of this function

in order to provide both locality and balance. Locality is
important to reduce the communication overhead caused
when successors are assigned to a different processor.
Balance can be measured as spatial or temporal balance.
Spatial balance means that each processor will receive
an equal amount of states. Temporal balance means that
each processor will be busy most of the time.

Some partition functions use heuristic analysis based
on the model structure in order to achieve both locality
and balance [2, 12]. A partition function is proposed in
[2] based on the structure of the modeling formalism
SPN (Stochastic Petri Nets). They propose a hashing
function taking into account a small set of places called
control set (P). The idea is that any transition firing that
does not involve a place in P corresponds to a state
transition between two markings assigned to the same
processor, otherwise this transition will correspond to
a cross-arc and the new marking will be assigned to
another processor. The disadvantage of this approach is
that there is no automatic way to suggest this control
set, therefore the technique relies on the user intuition
to select the places that are part of the control set.
Later, [12] suggested a heuristic to select the control
set based on the notion of conflicting transitions. Thus,
the data holders associated to the conflicting transitions
are chosen as the control set. This approach expects to
achieve both locality and balance because the successors
states computed from conflicting transition can be ex-
ported to different partitions. Another work that extends
[2] is [1] by introducing the dynamic load balancing
strategy. This strategy consists in monitoring the average
memory utilization of all processors and if one of them
differs more than a fixed percentage, the dynamic loading
balance phase starts. The loading balance phase estimates
how much memory each processor has to give/receive
to its neighbors. In the end, a new partition function is
created and broadcasted to all the processors. The main
disadvantage of this approach is that all processes are
blocked during the dynamic loading balance phases.

In contrast, other solutions rely on previous analyzes
for extracting relevant information to slice the state
graph. In [10], the authors try to minimize the cross-arcs
by computing a small approximation of the state space
by an abstract interpretation of the system specification.
From this prediction, it is possible to extract the shape
of the original system and the relations among the states.

Finally, there is a group of solutions that do not
take into account any structural information from the
model and are based only in a mathematical function to
partition the graph. The solution presented in [6] divide
the graph trough a hash function taking into account only
the balance requirement. As a consequence, their solution
does not handle cross-arcs and suffers from communica-
tion overhead. The results reported in this work present
distributions with a standard deviation smaller than 1%
of the mean value. However, these results are highly
influenced by the employed static function and the set

of chosen examples. The same approach is followed in
[11] to construct the state graph with a slight difference
for the partition function. It assumes that several states
have more than one successor and allocates the excess to
a different processor. The authors show that the addition
of this technique results in a better balance work load.
However, not only this technique cannot handle cross-
arcs (as [6]) but it also duplicates states.

The anatomy of a basic distributed algorithm is pre-
sented below[8]:

• all processors start their exploration program;
• processor i, for which i := Z(initial), starts to

explore successor states;
• upon generation a state s′ from s:

– the allocation for s′ is computed: j := Z(s′)
– if j = i then state s′ is handled locally;
– if j 6= i then s′ and (s ⇁a′) are sent to proc. j;
– all processors process the states received from

others, as well as those generated locally;
• the algorithms terminates when all process has no

more states to be explored.
The sequential algorithm (Figure 2) can be extended

from the considerations above to handle the state space
partition promoted by the slicing function.

B. Shared Memory
The main advantage shared memory architecture of-

fers over distributed memory is that it provide a shareable
memory space for concurrent manipulation, thus obviat-
ing the need of passing messages among the processors.
As a consequence, there is no more need for a slicing
function to partition the state space because the storage
structure is shared among the processors. However, it
imposes other difficulties related to data consistency and
synchronization operations to manipulate the shared data.
Data consistency is mandatory to assure that a certain
processor is accessing the most recent update of the
global data. Consequently, synchronization techniques to
guarantee mutual exclusive access must be implemented.
Nonetheless, to achieve high degree of parallelism, the
share of global data that is locked for mutual exclusion
must be kept small because synchronization operations
are usually time-consuming.

The work presented in [1] was one of the first to
implement a parallel state space construction on a shared
memory machine. They solve the consistency problem
by using locking variables to protect the data structures.
In this work, the authors make use of a Balanced-tree
as search structure with a method called splitting-in-
advance to reduce the number of data locking, allowing
a better concurrent access. The major problem working
with structures like Balanced-tree is when an insertion
happens into a full node, which forces the node to split
into two parts. One of the keys is sent to the parent node,
which may also be split. This propagation may occur
back to the root. In conclusion, a common Balanced-
tree would force the use of several locking variables.

Accordingly, the splitting-in-advance method consists in
splitting immediately each full node while crossing the
Balanced-tree on the way down, regardless of whether
an insertion will take place or not. Since non-full nodes
serve as barrier, back propagation does not occur because
parent nodes can never be full. The result is that each
processor holds at most one lock at time. In addition,
locking variables are also used to protect the shared stack
responsible of load balance, following a work sharing
scheduling paradigm where new work is distributed to
underutilized processors. The examples in [1] report
speedups close to linear.

Later, [9] proposed a parallel algorithm for state ex-
ploration based on the work stealing scheduling paradigm
to maintain a dynamic load balance without a blocking
phase. The base concept behind this paradigm is that un-
derutilized processors attempt to “steal” work from other
processors. In this work, the work-stealing paradigm was
implemented by using a two-queue structure per proces-
sor and a hash table to store visited states. The two-queue
structure consists in a private and a shared queue that are
used to store unexpanded states. Every time a process
has no more unexpanded states in its private queue, it
has to acquire the mutual exclusion lock to check over
its own shared queue for a state. If no state is found, the
processor starts searching through all other shared queues
until it finds a nonempty queue or finds that all shared
queues are empty. With reference to the storage data,
unlike [1], this work implements a hash table without
any mutual exclusions locks to synchronize access. The
authors emphasize that the duplication caused by the
lack of a locking strategy is not relevant compared to
the parallel computation power available. Finally, the
results reported show that efficiency of the work stealing
load balance strategy depends on the division of the
state graph (number of successors) and the size of the
shared queue. From the experiments presented, optimum
results are achieved when the shared queue size of each
processor are equal to the branching degree of the graph
or one more.

V. Conclusion
Parallel state space construction is a problem hard to

parallelize due to its irregular structure. Another impor-
tant issue regarding its parallel implementation is the
choice of parallel architecture. For distributed memory
computers, the solutions are more concerned with parti-
tioning the space state among processors. Regarding the
solutions proposed for shared memory computers, they
are more oriented towards finding the least restrictive way
to share the state space. Moreover, as can be noticed there
are more solutions reported for distributed than shared
memory machines. This disparity can be explained in
part by the higher cost (in the past) of high end shared
computers. To conclude, we strongly believe that new
solutions for shared computers will be proposed because
this kind of machine is becoming more affordable each
year.

References

[1] S.C. Allmaier, M. Kowarschik, and G. Horton. State
space construction and steady-state solution of gspns
on a shared-memory multiprocessor. Petri Nets and
Performance Models, 1997., Proceedings of the Seventh
International Workshop on, pages 112–121, Jun 1997.

[2] G. Ciardo, J. Gluckman, and D. Nicol. Distributed
state space generation of discrete-state stochastic models.
INFORMS J. on Computing, 10(1):82–93, 1998.

[3] E.M. Clarke, O. Grumberg, and D.A. Peled. Model
checking. Springer, 1999.

[4] H. El-Rewini and M. Abd-El-Barr. Advanced computer
architecture and parallel processing. Wiley-Interscience,
2005.

[5] Jonathan Ezekiel and Gerald Lüttgen. Measuring and
evaluating parallel state-space exploration algorithms.
Electronic Notes in Theoretical Computer Science, 198:47
– 61, 2008. Proceedings of the 6th International Workshop
on Parallel and Distributed Methods in verifiCation.

[6] H. Garavel, R. Mateescu, and I. Smarandache. Parallel
State Space Construction for Model-Checking. Volume
2057/2001:217–234, Jan 2001.

[7] T. Gautier, J. L. Roch, and G. Villard. Regular versus
irregular problems and algorithms. In In Proc. of IRREG-
ULAR’95, pages 1–25. Springer, 1995.

[8] B. Haverkort, A. Bell, and H. Bohnenkamp. On the
efficient sequential and distributed generation of very
large markov chains from stochastic petri nets. Petri Nets
and Performance Models, 0:12, 1999.

[9] Cornelia P. Inggs and Howard Barringer. Effective state
exploration for model checking on a shared memory
architecture. Electronic Notes in Theoretical Computer
Science, 68(4):605 – 620, 2002. Parallel and Distributed
Model Checking.

[10] S. Orzan, J. Van de Pol, and M. V. Espada. A state space
distribution policy based on abstract interpretation. Elec-
tronic Notes in Theoretical Computer Science, 128(3):35 –
45, 2005. Proceedings of the 3rd International Workshop
on Parallel and Distributed Methods in Verification.

[11] D. Petcu. Parallel explicit state reachability analysis and
state space construction. Parallel and Distributed Com-
puting, 2003. Proceedings. Second International Sympo-
sium on, pages 207–214, Oct. 2003.

[12] C.L. Rodrigues, P.E.S. Barbosa, J.M. Cabral, J.C.A.
de Figueiredo, and D.D.S. Guerrero. A bag-of-tasks
approach for state space exploration using computational
grids. Software Engineering and Formal Methods, 2006.,
pages 226–235, Sept. 2006.

