Geophysical evolution of forming rocky planets

Tim Lichtenberg

SWISS NATIONAL SCIENCE FOUNDATION

Second Oxford Network for Planets Workshop, 5 Dec 2018

The Solar system: exceptional or ordinary?

Exoplanetary diversity

Modified from Kaltenegger 17

 H_2O

Fe

H₂/He

100% H₂O

50% H₂O

25% H₂O

MgSiO₃ (rock) 25% Fe 50% Fe

100% Fe

'Earth-like'?

Composition rooted in formation

S. Andrews, L. Cieza, A. Isella, A. Kataoka, B. Saxton (NRAO/AUI/NSF), ALMA (ESO/NAOJ/NRAO)

Avenhaus+ 18

Geophysical evolution during accretion

²⁶Al dominated Accretion-energy dominated

Thermal evolution of planetesimals

Lichtenberg+ 16a

Volatile loss & chemical differentiation

Degassing

Planetesimal radius R_P [km]

Magmatism & Differentiation

Volatile loss & chemical differentiation

Degassing

Planetesimal radius R_P [km]

Chemical segregation

Lichtenberg, Keller, Katz+ 19

Planetary accretion altered by ²⁶Al

Enrichment with short-lived radionuclides (²⁶Al + ⁶⁰Fe)

~ 10²-10⁸ × Earth's present-day interior radiogenic heating

Lichtenberg+ 16b

²⁶Al-heated icy planetesimals forming planets

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO)

Rapidly dehydrated icy planetesimals

10

²⁶Al-heated icy planetesimals forming planets

10

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO); ESA/NASA/M.A.Garlick

²⁶Al controls bulk water content

Synthetic exoplanet populations

Accretion & decreasing water abundance in planetesimals

²⁶Al controls bulk water content

²⁶Al controls bulk water content

²⁶Al controls bulk water content

²⁶Al controls bulk water content

 $f_{\rm w} > 0, M_{\rm P} < 10 M_{\rm Earth}, G stars$

²⁶Al controls bulk water content

Leger+ 04, Sotin+ 07, Alibert 14, Noack+ 16/17

Synthetic exoplanet populations

 $f_{\rm W} > 0, M_{\rm P} < 10 \, {\rm M}_{\rm Earth}, \, {\rm G} \, {\rm stars}$

 $f_{\rm w} > 0, M_{\rm P} < 10 M_{\rm Earth}, G stars$

²⁶Al shapes distribution systematics

 $f_{\rm w} > 0, M_{\rm P} < 10 \, {\rm M}_{\rm Earth}, {\rm G \ stars}$

Geophysical evolution of forming rocky planets

A water budget dichotomy of rocky protoplanets from ²⁶Al-heating Lichtenberg, Golabek, Burn, Meyer, Alibert, Gerya, Mordasini (2019) Geophysical evolution links studies of early solar system and accretion to exoplanets

Volatile loss & differentiation in planetesimals

Systematically shapes planet composition

Planetary system water budget dichotomy from ²⁶AI:

Not-enriched systems form ocean worlds

Enriched systems form water-poor planets

Statistically traceable with future transit missions?

htenbera.n