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o Inference of demographics and population history parameters
e Phylodynamic and epidemiological parameters
@ Want to sample phylogenetic tree and model parameters
according to their probability given the data P (7,6 | D)

o Need a way to efficiently explore different models
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Current State-of-the-Art

Metropolis—Hastings Markov chain Monte Carlo (MCMC)
Imagine a robot taking a random walk
That’s just unbearably slow

But suppose we gave our robot a pair of skis...
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Cooker, an Aspiring Skier
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@ v be its velocity
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@ U(q) be its potential energy
@ K (p) be its kinetic energy
Then the Hamiltonian H is

H(a,p) =U(a)+ K(p)
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Physics Primer (Hamiltonian Dynamics)

Let
@ q be the robot's position
@ v be its velocity
@ M be its mass
@ U(q) be its potential energy
@ K (p) be its kinetic energy
Then the Hamiltonian H is

H(a,p) =U(a)+ K(p)

@ H is conserved

@ Simulates robot’s motion
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Hamiltonian Moves

Flip direction
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Hamiltonian Moves

Ski!
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Hamiltonian Moves

Push in a random direction
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Hamiltonian Monte Carlo

How do we make a stats problem into a physics problem?
@ Every location g maps to some model parameters
e Elevation at q is —log P (7,6 | D)
@ Locations with high elevation have low probability
@ Locations with low elevation have high probability
°

Donel
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Hamiltonian Monte Carlo

Running a physics simulator seems like a lot of work!
Why should we bother?

Theorem (Creutz 1988)

Consider a model with n variables.
Then (under simplifying assumptions) the computation time is

e O (n2) for MCMC; and
0 O <n%> for HMC.

In practice this means doubling the model complexity increases
computation time by

@ 4x for MCMC
e <2.5x for HMC!
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Performance of HMC vs. MCMC

For {8,16,32,64} taxa:
@ Simulated 100 datasets under Yule and HKY models

@ Estimated node heights with optimally-tuned HMC/MCMC

© Measured efficiency as ESS of tree length per unit time
(Effective Sample Size is # of independent samples)

@ Compared efficiency of HMC versus MCMC
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Concluding Remarks

@ HMC consistently out-performed MCMC
@ On average, HMC was 5x more efficient than MCMC

@ Open source implementation at
http://github.com/armanbilge/B3/tree/hamilton

Inferring parameters for other evolutionary models

Automatic tuning of HMC for optimal performance

°
@ Moving between tree topologies
°
°

Implementing and testing more sophisticated flavors of HMC
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