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Motivation

Bayesian statistics has transformed evolutionary biology
Divergence dating and clock rate estimation
Inference of demographics and population history parameters
Phylodynamic and epidemiological parameters

Want to sample phylogenetic tree and model parameters
according to their probability given the data P (T , θ | D)

Need a way to efficiently explore different models
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Current State-of-the-Art

Metropolis–Hastings Markov chain Monte Carlo (MCMC)

Imagine a robot taking a random walk

That’s just unbearably slow

But suppose we gave our robot a pair of skis...
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Cooker, an Aspiring Skier
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Physics Primer (Hamiltonian Dynamics)

Definition

Let

q be the robot’s position

v be its velocity

M be its mass

U (q) be its potential energy

K (p) be its kinetic energy

Then the Hamiltonian H is

H (q,p) = U (q) + K (p)

H is conserved

Simulates robot’s motion

U (q)

q

p = Mv

K (p) = 1
2pTM−1p
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Hamiltonian Moves

Flip direction


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Hamiltonian Moves

Ski!


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Hamiltonian Moves

Push in a random direction


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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Hamiltonian Monte Carlo

How do we make a stats problem into a physics problem?

Every location q maps to some model parameters

Elevation at q is − logP (T , θ | D)

Locations with high elevation have low probability

Locations with low elevation have high probability

Done!
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Hamiltonian Monte Carlo

Running a physics simulator seems like a lot of work!
Why should we bother?

Theorem (Creutz 1988)

Consider a model with n variables.
Then (under simplifying assumptions) the computation time is

O
(
n2
)
for MCMC; and

O
(
n

5
4

)
for HMC.

In practice this means doubling the model complexity increases
computation time by

4x for MCMC

<2.5x for HMC!
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The Phylogenetic Ski Slope
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Performance of HMC vs. MCMC

For {8, 16, 32, 64} taxa:

1 Simulated 100 datasets under Yule and HKY models

2 Estimated node heights with optimally-tuned HMC/MCMC

3 Measured efficiency as ESS of tree length per unit time
(Effective Sample Size is # of independent samples)

4 Compared efficiency of HMC versus MCMC
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Performance of HMC vs. MCMC
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Concluding Remarks

Conclusions

HMC consistently out-performed MCMC

On average, HMC was 5x more efficient than MCMC

Open source implementation at
http://github.com/armanbilge/B3/tree/hamilton

Future Work

Inferring parameters for other evolutionary models

Moving between tree topologies

Automatic tuning of HMC for optimal performance

Implementing and testing more sophisticated flavors of HMC
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