Introduction	Methods	Results	Conclusion

Implementing Hamiltonian Monte Carlo for Efficient Bayesian Evolutionary Analysis

Arman Bilge abi1933@aucklanduni.ac.nz

Computational Evolution Group The University of Auckland

21 October 2015

Introduction	Methods	Results	Conclusion
•00			
Motivation			

- Bayesian statistics has transformed evolutionary biology
 - Divergence dating and clock rate estimation
 - Inference of demographics and population history parameters
 - Phylodynamic and epidemiological parameters

Introduction	Methods	Results	Conclusion
•00			
Motivation			

- Bayesian statistics has transformed evolutionary biology
 - Divergence dating and clock rate estimation
 - Inference of demographics and population history parameters
 - Phylodynamic and epidemiological parameters
- Want to sample phylogenetic tree and model parameters according to their probability given the data $P(T, \theta \mid D)$

Introduction	Methods	Results	Conclusion
00			
Motivation			

- Bayesian statistics has transformed evolutionary biology
 - Divergence dating and clock rate estimation
 - Inference of demographics and population history parameters
 - Phylodynamic and epidemiological parameters
- Want to sample phylogenetic tree and model parameters according to their probability given the data $P(T, \theta \mid D)$
- Need a way to efficiently explore different models

Introduction	Methods	Results	Conclusion
000			
Current Stat	e of the Art		

- Metropolis-Hastings Markov chain Monte Carlo (MCMC)
- Imagine a robot taking a random walk

Introduction	Methods	Results	Conclusion
○●○	000000	000	00
Current State-	of-the-Art		

- Metropolis-Hastings Markov chain Monte Carlo (MCMC)
- Imagine a robot taking a random walk
- That's just unbearably slow

Introduction	Methods	Results	Conclusion
○●○	000000	000	00
Current State	-of-the-Art		

- Metropolis-Hastings Markov chain Monte Carlo (MCMC)
- Imagine a robot taking a random walk
- That's just unbearably slow
- But suppose we gave our robot a pair of skis...

Introduction	Methods	Results	Conclusion
○○●	000000	000	00
Cooker, an Asp	iring Skier		

Definition

Let

- **q** be the robot's position
- v be its velocity
- M be its mass
- $U(\mathbf{q})$ be its potential energy
- $K(\mathbf{p})$ be its kinetic energy

Then the Hamiltonian ${\mathcal H}$ is

 $\mathcal{H}(\mathbf{q},\mathbf{p}) = U(\mathbf{q}) + K(\mathbf{p})$

$$\mathcal{K}(\mathbf{p}) = \frac{1}{2}\mathbf{p}^{T}\mathbf{M}^{-1}\mathbf{p}$$
$$\mathbf{p} = \mathbf{M}\mathbf{v}$$
$$U(\mathbf{q})$$
$$\mathbf{q}$$

 Introduction
 Methods
 Results
 Conclusion

 000
 000000
 000
 00

 Physics Primer (Hamiltonian Dynamics)

Definition

Let

- **q** be the robot's position
- v be its velocity
- M be its mass
- $U(\mathbf{q})$ be its potential energy
- $K(\mathbf{p})$ be its kinetic energy

Then the Hamiltonian ${\mathcal H}$ is

 $\mathcal{H}(\mathbf{q},\mathbf{p}) = U(\mathbf{q}) + K(\mathbf{p})$

- \mathcal{H} is conserved
- Simulates robot's motion

$$\mathcal{K}(\mathbf{p}) = \frac{1}{2}\mathbf{p}^{T}\mathbf{M}^{-1}\mathbf{p}$$
$$\mathbf{p} = \mathbf{M}\mathbf{v}$$
$$U(\mathbf{q})$$
$$\mathbf{q}$$

Introduction	Methods	Results	Conclusion
000	○●○○○○	000	00
Hamiltonian M	oves		

Flip direction

Introduction	Methods	Results	Conclusion
000	00000	000	00
Hamiltonian	Moves		

Ski!

Introduction	Methods	Results	Conclusion
000	○○○●○○	000	00
Hamiltonian Move	es		

Push in a random direction

Introduction	Methods	Results	Conclusion
000	○○○○●○	000	00
Hamiltonian I	Monte Carlo		

Introduction	Methods	Results	Conclusion
000	○○○○●○	000	00
Hamiltonian I	Monte Carlo		

• Every location **q** maps to some model parameters

Introduction	Methods	Results	Conclusion
000	○○○○●○	000	00
Hamiltonian N	Nonte Carlo		

- Every location **q** maps to some model parameters
- Elevation at \mathbf{q} is $-\log P(\mathcal{T}, \theta \mid D)$

Introduction	Methods	Results	Conclusion
000	○○○○●○	000	00
Hamiltonian N	Nonte Carlo		

- Every location **q** maps to some model parameters
- Elevation at **q** is $-\log P(\mathcal{T}, \theta \mid D)$
- Locations with high elevation have low probability
- Locations with low elevation have high probability

Introduction	Methods	Results	Conclusion
000	○○○○●○	000	00
Hamiltonian N	Nonte Carlo		

- Every location **q** maps to some model parameters
- Elevation at **q** is $-\log P(\mathcal{T}, \theta \mid D)$
- Locations with high elevation have low probability
- Locations with low elevation have high probability
- Done!

Introduction	Methods	Results	Conclusion
000	○○○○○●	000	00
Hamiltonian Mor	nte Carlo		

Running a physics simulator seems like a lot of work! Why should we bother?

Introduction	Methods	Results	Conclusion
000	○○○○○●	000	00
Hamiltonian Mc	onte Carlo		

Running a physics simulator seems like a lot of work! Why should we bother?

Theorem (Creutz 1988)

Consider a model with n variables.

Then (under simplifying assumptions) the computation time is

• $\mathcal{O}\left(n^{2}\right)$ for MCMC; and

•
$$\mathcal{O}\left(n^{\frac{5}{4}}\right)$$
 for HMC.

Introduction	Methods	Results	Conclusion
000	○○○○○●	000	00
Hamiltonian Mc	onte Carlo		

Running a physics simulator seems like a lot of work! Why should we bother?

Theorem (Creutz 1988)

Consider a model with n variables.

Then (under simplifying assumptions) the computation time is

•
$$\mathcal{O}\left(\mathit{n}^{2}
ight)$$
 for MCMC; and

•
$$\mathcal{O}\left(n^{\frac{5}{4}}\right)$$
 for HMC.

In practice this means **doubling the model complexity** increases computation time by

- 4x for MCMC
- <**2.5x** for HMC!

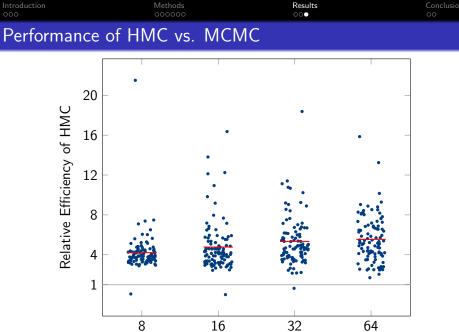
Introduction	Methods	Results	Conclusion
		000	

The Phylogenetic Ski Slope

		000	00
Performance of HN	AC vs MCMC		

For $\{8, 16, 32, 64\}$ taxa:

- Simulated 100 datasets under Yule and HKY models
- Stimated node heights with optimally-tuned HMC/MCMC
- Measured efficiency as ESS of tree length per unit time (Effective Sample Size is # of independent samples)
- Compared efficiency of HMC versus MCMC



Number of Taxa

Introduction	Methods	Results	Conclusion
			•0
Concluding Remai	rks		

Conclusions

- HMC consistently out-performed MCMC
- On average, HMC was 5x more efficient than MCMC
- Open source implementation at http://github.com/armanbilge/B3/tree/hamilton

Introduction	Methods	Results	Conclusion
000	000000	000	• O
Concluding Remai	rks		

Conclusions

- HMC consistently out-performed MCMC
- On average, HMC was 5x more efficient than MCMC
- Open source implementation at http://github.com/armanbilge/B3/tree/hamilton

Future Work

- Inferring parameters for other evolutionary models
- Moving between tree topologies
- Automatic tuning of HMC for optimal performance
- Implementing and testing more sophisticated flavors of HMC

Introduction	Methods	Results	Conclusion
000	000000	000	○●
Acknowledgements	5		

Thanks to

- Tim Vaughan and Alexei Drummond
- Members of the Computational Evolution Group
- Allan Wilson Centre Summer Scholarship
- New Zealand eScience Infrastructure

References

M Creutz. Physical Review D 38.4 (1988). doi:10.1103/PhysRevD.38.1228 RM Neal. Handbook of Markov Chain Monte Carlo (2011).