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Abstract—The growing complexity and diversification of cyber-
attacks are largely reflected in the increasing sophistication of
security appliances, which are often too cumbersome to be
run in virtual services and IoT devices. Hence, the design of
cyber-security frameworks is today looking at more cooperative
models, which collect security-related data from a large set of
heterogeneous sources for centralized analysis and correlation.

In this paper, we outline a flexible abstraction layer for access
to security context. It is conceived to program and gather data
from lightweight inspection and enforcement hooks deployed in
cloud applications and IoT devices. We also provide a preliminary
description of its implementation, by reviewing the main software
components and their role.

I. INTRODUCTION

Virtualization and the cloud paradigm usually bring agility

and cost-effectiveness in building and operating ICT services,

but they pose a number of additional security concerns, when

compared to current legacy deployments [1], [2].

Motivated by the substantial limitations of security mech-

anisms in the virtualization infrastructure (i.e., distributed

firewalling, micro-segmentation, and security groups [3]–[5]),

the difficulty to coordinate them in cross-cloud deployments,

and the typical diffidence in trusting security services pro-

vided by third parties, there is an increasing trend to insert

legacy security appliances in the topology of virtual services

(see Fig. 1a). However, this approach has several drawbacks.

First, each appliance has its own inspection hooks, and this

may result in unnecessary duplication of operation (i.e., the

same packet may be processed by different appliances for

retrieving very similar information). Second, given the ever-

growing number and complexity of protocols and applications,

detection is a cumbersome task and requires large amount of

computing resources, which may significantly increase the cost

of running the graph. Third, it is difficult to balance the need

for pervasive protection (i.e., many cybersecurity appliances)

with performance of the whole graph (e.g., in case of NFV

packet processing should happen at wire speed). Last, but not

least, complex security appliances are not immune to bugs and

vulnerabilities, which eventually increase the overall attack

surface of the deployed service.
Building situational awareness for virtual services requires

new architectural paradigms, able to overcome the above
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limitations by combining fine-grained and precise information

with efficient processing, elasticity with robustness, autonomy

with interactivity [2]. In this respect, the transition from

standalone security appliances to more cooperative models has

already proven to improve the detection rate while decreasing

the overhead on each terminal [6]. For cooperative model, we

mean a centralized architecture where security information,

data, and events are collected from multiple sources within

a given domain for common analysis and correlation. This

is a common trend today for all major vendors of cyber-

security applications, which are increasingly developing Se-

curity Events and Information Management and Security An-

alytics software for the enterprise, leveraging machine learning

and other artificial intelligence techniques for data correlation

and identification of attacks. They are usually designed as

integration tools of existing security applications and require

to run heavyweight processes on each host; hence, they are

not suitable for virtual services.

Recently, we have outlined the general architecture of a

novel framework for AddreSsing ThReats for virtualIzeD

services (ASTRID) [7]. The underlying concept is the de-

coupling of inspection tasks (to be integrated into the different

forms of virtualization boxes, as Virtual Machines or contain-

ers) from a (logically) centralized ans shared detection logic

(to be kept outside the graph), as schematically shown in Fig

1b. In this paper, we describe our on-going work about the

definition of an abstraction layer to provide the detection logic

with uniform and “bi-directional” access to heterogeneous

security context of virtualized services. The novelty of our

work consists in abstracting lightweight programmable hooks

in the kernel or system libraries, without the need to deploy

complex and cumbersome security appliances inside VMs

or as separate components in the overall service graph. The

ability to program both the collection of security context and

the configuration of enforcement rules (which is the mean for

“bi-directional” access) is just a major improvement over the

number of log collection tools already available as commercial

or open-source implementations.

The rest of the paper is organized as follows. We de-

scribe the overall ASTRID architecture in Section II. We

then elaborate on the concept of abstraction layer and its

architectural design in Section III, while we discuss relevant

technologies and the current implementation stage in Section

IV. We briefly report related work in Section V. Finally, we

give our conclusion in Section VI.978-1-5386-9223-3/19/$31.00 c© 2019 IEEE
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Fig. 1: The difference between the current approach (left side) and the proposed paradigm (right side).
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Fig. 2: Multi-layer security architecture

II. THE ASTRID ARCHITECTURE

The ASTRID multi-layer architecture is organized in three

complementary planes, as shown in Fig. 2. Due to func-

tional similarities (especially with architectures for software-

defined networking), we used a typical networking terminol-

ogy, though our architecture is not directly tied to network

operations. ASTRID is a multi-tier architecture, where a

common, programmable, and pervasive data plane feeds a

powerful set of multi-vendor detection and analysis algorithms

(business logic). On the one hand, the challenge is to assemble

a wide knowledge over multiple sites by real-time collection of

massive events from a multiplicity of capillary sources, while

maintaining essential properties such as forwarding speed,

scalability, autonomy, usability, fault tolerance, resistance to

compromises, and responsiveness. On the other hand, the

ambition is to support better and more reliable situational

awareness by inter- and intra-domain data correlation in both

space and time, in order to timely detect and respond even the

more sophisticated multi-vector and interdisciplinary cyber-

attacks.

The data plane is the only part of the architecture that

is deployed in the virtualization environment. It collects the

security context, i.e., a knowledge base including events (failed

login attempts, denied access, system calls), logs (service re-

quests, operations, anomalies, client identity, execution traces,

memory dumps), measures (network metrics, usage profiles)

that can be useful for detection of known attacks or identifi-

cation of new threats.

One of the main advantages of a common control plane

is the availability of data from different subsystems (disk,

network, memory, I/O), instead of relying on a single source

of information as is the common practice nowadays. Since

the collection of data from multiple sources may easily result

in excessive network overhead, it is important to shape the

inspection, monitoring, and collection processes to the actual

need. The data plane must therefore support re-configuration of

individual components and programming of their virtualization

environments, to change the reporting behavior, including

parameters that are characteristics of each app (logs, events),

network traffic, system calls (e.g., disk read/write, memory

allocation/deallocation), RPC toward remote applications (e.g.,

remote DB). Programming also include the capability to

offload lightweight aggregation and processing tasks to each

virtual environment, hence reducing bandwidth requirements

and latency.

The data plane is responsible for enforcing security policies,

including packet filtering, access control, and re-configuration

of the execution environment. A fundamental property for the

data plane is programmability, that is the capability to shape

the deep of inspection according to the current need, in both

spacial and temporal dimensions, so to effectively balance

granularity of information with overhead.

The control plane is a (logically) centralized collections

of algorithms for detection of attacks and identification of

new threats. Every algorithm retrieves the data it needs (e.g.,

number of packets intended to given port on specific host,

number of login failures, username used for failed authen-

tication, etc.) from the common data plane. This represents

one the main innovation behind the proposed framework:

indeed, every algorithm has complete visibility on the overall

system, removing the need to have local agents deployed

in each virtual function, which often perform the same or

very similar inspection operations. The control plane should

also include programming capabilities, i.e., a framework to

configure and offload local processing tasks to the data plane,

so to effectively balance the depth of inspection with the

generated overhead.

Beyond the mere (re-)implementation of legacy appliances

for performance and efficiency matters, the ASTRID approach

is specifically conceived to pave the road for a new generation

of detection intelligence, arguably by combining detection

methodologies (rules-based, machine learning) with big data

techniques; the purpose is to locate vulnerabilities in the graph

and its components, to identify possible threats, and to timely

detect on-going attacks. In this respect, the application of

machine learning and artificial intelligence would be useful

to inspect and correlate the large amount of data, events, and



measures that have to be analyzed for reliable detection and

identification of even complex multi-vector attacks.

The management plane is conceived to keep humans in

the loop. It notifies detected attacks and anomalies, allowing

access to the full context in case the human expertise is

needed to complement artificial intelligence in the inspection

process. The management plane supports quick and effective

remediation actions, by the definition of high-level policies

that are then translated in specific data plane configurations

from the control plane. The management plane also seamlessly

integrates with orchestration tools, which are expected to

be widely used for automating deployment and life-cycle

operations of virtual services.

The main tasks at the management plane are the repre-

sentation and usage of situational awareness built by under-

lying security applications. Specific challenges include data

visualization (e.g., to pinpoint the actual position of attacks

and threats in the network topology, to point out the possible

correlation between events in different domains), and decision

support (e.g., to suggest remediation and countermeasures, to

define automatic response to well-known attacks). Also, the

presentation layer should provide seamless integration with

CERT networks to share information about new threats and

attacks among different administrative domains (e.g., with

STIX), in order to facilitate continuous update of the attack

data base and the elaboration of common reaction and miti-

gation strategies [8]. Integration with existing risk assessment

and management tools is also possible, so to automate most

procedures that are still carried out manually.

III. AN ABSTRACTION LAYER FOR THE DATA PLANE

The main purpose for an abstraction layer is to provide

uniform access to the underlying data plane capabilities.

According to the general description in Section II, the data

plane is made of heterogeneous inspection, measurements, and

enforcement hooks, which are implemented in the virtualiza-

tion environment.

These hooks include logging and event reporting developed

by programmers into their software, as well as monitoring

and inspection capabilities built in the kernel and system

libraries that inspect network traffic and system calls. They

are ‘programmable’ because they can be configured at run-

time, hence shaping the system behavior according to the

evolving context. This means that packet filters, types and

frequency of event reporting, and verbosity of logging are

selectively and locally adjusted to retrieve the exact amount

of knowledge, without overwhelming the whole system with

unnecessary information. The purpose is to get more details for

critical or vulnerable components when anomalies are detected

that may indicate an attack, or when a warning is issued by

cyber-security teams about new threats and vulnerabilities just

discovered. This approach allows lightweight operation with

low overhead when the risk is low, even with parallel discovery

and mitigation, while switching to deeper inspection and larger

event correlation in case of anomalies and suspicious activities.

This allows to scale with the system complexity, even for the

largest services (e.g., carriers large scale virtual networks, and

worldwide mass applications as social nets).

There are two main aspects to be covered by the abstraction

layer:

• hiding the technological heterogeneity of the monitoring

hooks;

• abstracting the whole service graph and the capabilities

of each node.

Fig. 3 shows a schematic view of the envisioned ab-

straction. Locally, within each virtualization box, a Local

Security Agent (LSA) provides a common interface to differ-

ent hooks (e.g., different logging interfaces, different packet

filtering/inspection tools). Then, the whole graph topology is

abstracted as a hub-and-spokes graph. In this model, each

node represents a virtual function and each link a com-

munication path. Satellites of nodes are security properties;

they include both monitoring/inspection capabilities (what

can be collected, measured, and retrieved) and relative data

(metrics, events, logs). Similarly, links have properties too

(though not explicitly shown in the picture), related to the

usage of encryption mechanisms and utilization metrics. This

abstraction, effectively decouples the detection logic from the

distributed data plane: a common language can be used to

query security-related attributes and to re-program inspection

and enforcement tasks, without the need to use different

interfaces and heterogeneous semantics.

To provide composite metrics, data fusion is also envisioned

as part of the overall abstraction framework. Pre-processing

and aggregation of elementary data can be accomplished by

the same query, hence optimizing look ups in the abstraction

model. The abstraction layer also includes storage capabilities,

so to provide both real-time and historical information for both

on-line and off-line analyses.

IV. IMPLEMENTATION

We started the implementation of our concept by an in-depth

analysis of design requirements and the selection of suitable

technologies to implement the whole data plane.

Remote collection of logs is already a well established

practice, with many frameworks available for this purpose:

Scribe1, Flume2, Heka3, Logstash4, Chukwa5, fluentd6, nsq7

and Kafka8. There are two ways to collect logs from appli-

cations: either forcing applications to directly write to these

sources through specific APIs (as happens for Scribe, nsq and

Kafka) or parsing their own log files (this option is available

for Logstash, Heka, fluentd and Flume). The advantage of the

first method is to reduce latency and improve reliability. A

quite standard method for logging under Linux is syslogin this

1https://github.com/facebookarchive/scribe.
2https://flume.apache.org.
3http://hekad.readthedocs.io/en/v0.10.0.
4https://www.elastic.co/products/logstash.
5http://chukwa.apache.org.
6https://www.fluentd.org/.
7https://nsq.io.
8http://kafka.apache.org.
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Fig. 3: The data plane collects and abstract the security context for the whole virtual graph.

case, remote collection would be possible through rsyslog9 and

Syslog-ng10, but not all applications use syslog.

Network statistics are usually collected on flow-level basis

through protocols as SNMP, NetFlow, sFlow, IPFIX, and,

more recently, OpenFlow [9]. These are usually static and

pre-defined kinds of data, so the interest in recent years has

shifted towards stateful inspection. In this respect, we chose

the extended Berkeley Packet Filter (eBPF) as the main packet

inspection tool. eBPF enables arbitrary code to be dynamically

injected and executed in the Linux kernel while at the same

time providing hard safety guarantees in order to preserve the

integrity of the system. While originally conceived to filter

network packets only, it has now evolved to catch a broader set

of kernel events; in general, any kernel event can be potentially

intercepted (Kprobes, Uprobes, syscalls, tracepoints), making

eBPF capable of analyzing message (socket-layer) received,

data written to disk, page fault in memory, files in /etc folder

being modified.

Beyond collection of data, the data plane must also tackle

storage and querying. We considered the following technical

issues in the selection of the most suitable storage technology:

(1) the nature and composition of data (2) validity and volume

of data, (3) query language and access interface.

The basic principle behind the abstraction layer is uni-

form access to heterogeneous security context, including data

from network measurements, application logs, system calls,

and other security events. This drives towards non relational

(NoSQL) databases. The validity and volume of data affect

the size of the database and the need for scalability. Local

installations are suitable when the data are kept for days or

months, but cloud storage services may be necessary for longer

persistence or large systems.

On the other hand, cloud storage is not suitable for real-time

or even batch analysis. Distributed storage systems such as

9https://www.rsyslog.com.
10https://www.syslog-ng.com/products/open-source-log-management.

HDFS11, Cassandra12, MongoDB13, or ElasticSearch14 allow

to work with the raw data more effectively and can scale-

out horizontally if data volume become large. In addition,

they often offer inborn support for parallel processing and big

data analytics (e.g., HDFS with Apache Hadoop15 or Apache

Spark16).

Based on the above considerations, graph databases as

Neo4j17, OrientDB18, and ArangoDB19 looks the best solu-

tion for building our abstraction layer. Indeed, unlike tabular

databases like Cassandra, they support fast traversal and im-

prove look up performance and data fusion capabilities. Our

current implementation is based on Neo4j, which has a really

great interface for searching, exploring and analyzing graph

data in an intuitive way without requiring special domain

knowledge.

The other fundamental component is the ability to perform

quick look-ups and queries, also including some forms of data

fusion. We adopted the data and manipulation language APIs

called GraphQL20. It is an open source project, and a runtime

for fulfilling queries with existing data. It provides a more

efficient, powerful and flexible alternative to REST and ad-

hoc web service architectures. It allows clients to define the

structure of the data required, and exactly the same structure

of the data is returned from the server, therefore preventing

excessively large amounts of data from being returned.

V. RELATED WORK

The increasing complexity of cyber-attacks is urging the

evolution of legacy security applications towards new central-

11https://hadoop.apache.org/docs/r1.2.1/hdfs design.html.
12http://cassandra.apache.org.
13https://www.mongodb.com.
14https://www.elastic.co.
15https://hadoop.apache.org/.
16https://spark.apache.org.
17https://neo4j.com/.
18https://orientdb.com.
19https://arangodb.com.
20https://graphql.org.



ized models, which enable deeper correlation and analytics

than today [10]. As a matter of fact, the stages of advanced

persistent threats and multi-vector attacks are quite easily

mistaken to be independent events that occur in unrelated slots

of time or network segments. Similar, zero-day attacks and

outdated definitions are the main causes for the propagation

and infection of malware. Typical recent architectures are

made of four components:

1) monitoring probes (that may include log collectors,

packet inspection, tracing of system calls),

2) local analysis,

3) data collection, and

4) centralized processing.

Most commercial tools for Security Information and Event

Management (SIEM) and many research papers collect logs

directly from local applications and legacy security appliances,

focusing on centralized correlation to detect advanced per-

sistent threats and other multi-vector attacks [11], [12]. N-

version protection and big data techniques have been proposed

to improve detection capabilities, though sometimes this may

increase the rate of false positive [6], [13]. Evolving algorithms

for anomaly detection are progressively introducing artificial

intelligence (neural networks, fuzzy logic, support, vector

machines, genetic algorithms, machine learning), but they are

still largely tied to the concept of independent frameworks and

appliances for different threats (e.g., firewalling, host-based

intrusion detection, network-based intrusion detection) [14],

[15]; indeed, the definition of distributed intrusion detection

systems is mostly seen as a grid of independent appliances.

To improve efficiency, distributed firewalling and

hypervisor-based security appliances are already available,

but all these solutions introduce dependency and trust on the

infrastructure provider (which is often an external entity).

Further, the impact of hardware virtualization on the attack

surface has already been largely recognized [1], [16].

To reduce the overhead on small devices and lightweight

cloud services, all the detection logic may be logically cen-

tralized (even with redundancy for scalability and availability

purposes), limiting local agents to inspection and collection

tasks [6]. Indeed, cyber-security appliances are not immune

to bugs and vulnerabilities, as witnessed by the continuous

threat reporting to the NIST National Vulnerabilities Database.

This means that beyond protection, the usage of cyber-security

appliances increases the attack surface of virtual services.

Finally, we argue that, though in some cases the verbosity

of the collected information can be dynamically tuned, there is

currently a lack of more advanced programmability, which can

offload specific inspection and detection tasks to local systems.

VI. CONCLUSION

In this paper, we have outlined the main features and the

preliminary design of an abstraction layer that provide bi-

directional access to an heterogeneous set of information and

sources. This approach makes large data sets available for

application of machine learning and other artificial intelli-

gence mechanisms, which are currently the main research

frontier for a new generation of threat detection algorithms.

Differently from existing approaches, our target is to expose

programmable features of the execution environment, which

can be used to program local inspection and monitoring tasks.

Our next steps will be functional validation and extensive

performance evaluation of a proof-of-concept implementa-

tion, including integration with local monitoring/enforcement

agents (eBPF) and detection logic (based on OSSEC). Rel-

evant aspects under investigation will include scalability, la-

tency, and overhead, to demonstrate its applicability for both

on-line and batch analysis and detection.

ACKNOWLEDGMENT

This work was supported in part by the European Commis-

sion, under Grant Agreement no. 786922.

REFERENCES
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