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In the headlines

Verizon hits 1.45Gbps 4G LTE speeds in New York (with a little help from Nokia and Qualcomm)

5G mm-wave base station shipments: increased plans in the USA by AT&T and Verizon to pursue
mobile 5G in the 24-39 GHz bands, not just fixed wireless.

The China 5G ramp at 2.6 through 3.5 GHz was adjusted to account for new expectations from MIIT

in China: Each of the three operators in China are expected to deploy 500,000 base stations within
two years of receiving the 5G spectrum license.

“:msonn ,,' B ,‘*’EOVFE o- = AR e sl
46 MOBILE mléotx.rs DEPARTMENT THINKS
THE "G~ STANDS FOR.

GUESS WHAT
DOESNT MEAN
"GOODNESS."

Source:
dilbert.com




] | ITU IMT-2020 5G Vision and Research Challenges @%

MICROWAVES RFI[
User Experience
Peak Data Rate Data Rate
[Gbps] [Mbps] Data rates exceeding 10 GBps

{ [100-1000]

Area Traffic
Capacity
[Mbps/m?] /.

Spectrum Network latency under

\_yEfficiency 1 millisecond
\[2x/3x/5X]

Capacity expansion by a factor

of 1,000
Netwark Mobility — :
Energy [km/h] Energy efficiency gains by a
Efficiency factor of 1,000 per transported
bit
Connection Densty Latency
[#/km?] [ms] Source: ITU and Ericsson Mobility Report
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Business impacts to semiconductor industry

* Wireless major driver for semiconductor industry

 5G expected to be the next major driver of wireless semiconductor market from
2020 onwards

 Challenges
— Massive MIMO sells much more signal paths - what happens to cost
— Cost per antenna
— Can’t be 100x more expensive
— Moore’s law - will it come to end and what is the impact to 5G
 Cost per unit very critical parameter for business success

QIEEE _/W\ 0 IMS "ﬁ-
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|dentification of Key 5G Characteristics

@STON i
and relevance for RF Architectures
Massive MIMO Efficient Small Data Transmission
RAN Transmission Centimeter and Wireless Backhaul / Access Integration

Millimeter Waves Flexible Networks

New Waveforms Flexible Mobility

Shared Spectrum Access Context Aware Networking

Advanced Inter-Node Coordination Information Centric Networking

Simultaneous Transmission Reception Moving Networks
Multi-RAT Integration & Management

D2D Communications
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« Complementary use of alternative spectrum
— Unlicensed spectrum, secondary spectrum usage, spectrum sharing,... ,LAA®

* Usage of very high frequency bands (for 5G NR Phase 2)

— Lots of spectrum available =» Extreme capacity and data rates
— Small wave length =» Possibility for large array antenna solutions

Future spectrum range

Current spectrum range

300 MHz 3 GHz 30 GHz 300 GHz

Source: Sven Mattisson, ISSCC-2016
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3GPP Time Line: LTE Adv. through 5G-NR

B ‘t‘ OFEg)uES
DL 256 UL 64 5cc
QAM QAM 2x UL CA 3DL/2UL CA 20M HZ U E
LTE Advanced > R12 [
p v max Ch. BW
VolLTE X

4
Prestd ¢y 4x4DL
HPUE MIMO

20MHz UE
LTE Advanced Pro » R13 _ oy Ch. BW

\ UL 256 8x8
QAM HPUE SDL CA DL MIMO
14 e ———
LAA-UL 3ULCA V2V /
mMTC vax URLLC
i rrrle— G 02 e

5G NR » R15 B
q 7 1 LTE Evolution ' max Ch - BW
" Advar’r;;zeg eMBB -6 GHz
lte_ R 1 6 5G NR Phase 2 mmWave 4OOM Hz UE
Official Launch - max Ch . BW
New Radio
mmWave

2015 2016 2017 2018 2021

SKYWORKS (12017 White paper: ‘5G in Perspective’
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Massive MIMO is multi-user
MIMO

Impact is very demanding:

Signals go in all directions. - 10 times increased capacity

Don't add upp contructively . .

at user terminals. - 100 times reduced radiated

power

- Overall: improvement in
radiated energy efficiency
(bits/J) > 1000 times, on

the uplink & the downlink.

Conventional

Massive MIMO

Signals only in directions where
they end up at the correct place.

Add up contructively. Source: Ove Edfors, ISSCC-2019, Forum-1
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Digital Beamforming

Mixer

Beamforming/mMIMO options
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Pros/cons investigation for beamforming options

Simple BF Digital BF Hybrid BF Complex Hybrid BF
Power Eff. © QUG ©O ©0O
Area Eff. © Y ©O ©©
Nr. of Streams Single Multiple Multiple Multiple
Flexibility ® ©O© @O ©O
Complexity ©© OB © ®
Spectral Eff. ) ©OO © ©O
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Full Digital Beamformer/mMIMO for sub 6GHz

RF-Frontend for Massive
MIMO system

OF MICROWAVES

Alternative (hardware efficient)
topologies needed
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Channel/ user terminals

Near linear increase of area and power consumption with array size

* Traditional analog/RF approach becomes inefficient

» Efficient System in Package solution for: PA+LNA+Switch+Control

* Alternatives like all-digital transceiver to be considered like: PWM-based digital RF, RF-DAC, ...

0. IMS
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Analog/RF Requirements (some considerations)
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Establishing translations between circuit and radiated performance is challenging

 For bands below 6 GHz the requirements are L B s
in the same ball-park of existing systems " .
 The Tx output power per antenna element gf R
depends on EIRP and array size Y - — |
* On the receiver side due to required coverage and S o e i - _—
cell-edge bitrates, the performance requirements 8 ol S \/E
like noise-figure are increasing. % i} /75 - ——
 IBW requirement is increasing - L ‘:;‘.ﬁ:::.":';;‘:?:";m
: _ BT e it et g 4221 8
* Beamforming and AAS/massive MIMO S [==—wemecopgames)
implies new challenges due to e.g. antenna Frequency in MHz

cross talk etc. ,
Source: Sven Mattisson, ISSCC-2016, Forum 3
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Hybrid beamforming for mm-Wave
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— Beam-steering is sub-optimal

— Analog combiners are an issue
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Design criteria for beamforming chip

* Number of channels
* Bandwidth
* Phase Shifter versus True Time Delay

* Rx performance like NF, phase/time resolution, Gain, Linearity,
power consumption, ....

* Tx performance like of output power (P1dB, back-off,...), phase/time
resolution, gain, evm, linearity, power consumption, ...

* Phase shift or true time delay immune to temperature variation
* Phase invariant programmable gain

* Integrated test and calibration capabilities like LO-generation, signal
Injection and detection, ...

. The 2019 IEEE
$IEEE 7\ o IMS

WFB-1 17




Absolute phase

Absolute phase

frequency

frequency i s




EIFIEIT]]
gl |1 & nnl:"gﬁn

OF MICROWAVES

* Introduction
* Trends in communications and key characteristics

* RF Frontend Architectures for 5G
* Massive MIMO Technology
e Full Digital Beamformer/mMIMO for sub 6GHz
* Hybrid beamforming for mm-Wave

OUTLINE

* RF Technology considerations

e Chip design for 5G technology demonstration (some examples)
* Transmitter line-up and radio architecture
* PA technology trade-offs
» Case studies
— Case 1: Doherty PA in GaN technology for sub 6GHz
— Case 2: mm-Wave RF beamforming example
— Case 3: Efficient 30 GHz Doherty PA design in SiGe

Summary

WFB-1




s RF Transistor and RF-IC Technology Chart
ItDMOS Transistors| |[Smart Power l:v‘aN-SiC & GaN-Si Transistors
DMOS ICs Technology nd MMIC
4 /

GaN (GaN-SiC, GaN-Si)

’—

i-Ge/BiCMOS

>2GHz to 100GHz apable of mmW TRx

D <1IW Tx &

incl. RF-beamforming |

30V LDMOQOS InP >6 to >>100GHz
<2.7GHz ?

GaAs up to >100GHz

RF CMOS <6GHz RF CMOS up to 100GHz

RF CMOS limitation on

Si-Ge/BiCMOS up to >100GHz Performance for mmw
= transceiver

to be studied

1GHz  2GHz 5GHz 10GHz 30GHz  60GHz 1OOGH2'
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Packaging Technology Chart
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eWLB (embedded Wafer Level Under investigation:
Ballgrid-Array) Packaging Packaging by ‘Chip-Embedding’

eWLB with
Integrated Antenna

c Redist m’b\mcm
Diel lecmc Layer (Cu)

‘\/( m

i
Solder ball Reflector

_ Cu Flange
Ceramic Package PCB based Full RF-Power Under investigation:
Package Module Multilayer RF-laminate, plastic overmold
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WFB-1 21



IEE
gl |1 & nnD‘Eﬁn

OF MICROWAVES

* Introduction
* Trends in communications and key characteristics

* RF Frontend Architectures for 5G
* Massive MIMO Technology
e Full Digital Beamformer/mMIMO for sub 6GHz
* Hybrid beamforming for mm-Wave

OUTLINE

* RF Technology considerations

e Chip design for 5G technology demonstration (some examples)
* Transmitter line-up and radio architecture
* PA technology trade-offs
» Case studies
— Case 1: Doherty PA in GaN technology for sub 6GHz
— Case 2: mm-Wave RF beamforming example
— Case 3: Efficient 30 GHz Doherty PA design in SiGe

Summary

PIEEE /¥A 0 1M S

WFB-1 22



OF MICROWAVES

Traditional Transmitter line-up

LPF
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PA eff. is the major bottleneck

TX power
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Emerging RF architectures
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Future: Digital I/Q Transmitters Digita"y aSSiSted RF
(| _ « RF-sampled AD/DA converters and
Doherty PA

- GHz-range, high resolution ADCs and DACs

* Envelope Tracking
+ RF path is broadband and reconfigurable

Digital Baseband (DSF)

~ + SMPA
Pu;mmmlgmﬁmm — Requires wideband and efficient supply
~ N L ¢ § = : modulator

e[ ‘ Comater | | suP : * Digital (PWM and outphasing) transmitter
2| liotopow| |ouonasno | + SMPA with high-efficiency e.g. Class-E PA

2| | (CoRoig | |uesameing . + Reconfigurability

2|, N ; — High resolution DTC for linearity (ACPR),
o) U : — High bandwidth (IBW) requirement

Digital Baseband Digjtal RF |

The 2019 I
$IEEE /W > 1M
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GaAs, GaN, SiGe, or CMOS for the PA

e Choice of semiconductor process for the PA
— Tricky balance of output power, linearity, and efficiency.
— At 2,5-6 GHz, the PA process technology is likely to be GaN,
— Above 20 GHz, the choice is more complex.

« mm-Wave (>24 GHz) PA’s
— Class-A, Class-AB in GaAs (used in many trials)

— Huge heat load of several hundred Watt or higher.

— Significant improvement needed for volume deployment
* Fineline GaN technology
* Doherty PA with RF predistortion
* Relaxed ACLR specification

mmlsl
SIEEE /W\ o IS i
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I Comparison of CMOS, SiGe, GaAs and GaN for

B&STON
12N mmWave PAs
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A few assumptions for mm-Wave PA’s

* Peak-to-Average Ratio of the waveform of 10-12 dB.
 ACLR requirements likely to be set to about -30 dBc.
— Ericsson’s input to the 3GPP RAN4 committee,

* ACLR requirements tighter than -35 dBc yield little benefit (and are probably
not achievable in practical systems).

 Multiple deployment scenarios - different transmit power levels
— Urban Deployment
— Dense Urban Deployment
— Indoor Small Cells

Output power per PA depends on EIRP and number of antenna elements

WFB-1 27
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Power Amplifier Technology Selection vs. Array Size
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Backoff in the calculation below is 10dB

EIRP = 60 dBm
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Case 1: Doherty PA for sub 6GHz

ain (Carrier) Offset line o . . ]
e~ Multi-carrier cellular signals
. | have high PAPR
npu
(~ 8dB after CFR)
* PA architecture
— Doherty is best in efficiency at
e Efficiency (%) vs. Output Fower {(dBm) , deep baCk'Off
TO— ke
Z 60- i — Linearization is a must in order
g e to meet both power and
30- emissions requirements:
E N predistortion is a must
R S A % A * Discrete or MMIC integration
Output Power [dBm]

©IEEE /W\ 0 IMS Frifiseompan
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Area:
2,5x2,5mm

Design targets:
Frequency: 4,5GHz
IBW: 400 MHz
PAE: >40%

Pout: >33dBm
PAPR: 9dB
Gain: 30dB
Supply: 28V

A The 2019 IEEE MTT-S
n I M s International Mi
' 4 2.7 June 2019 Boston,
N
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Case 2: mm-Wave RF beamforming example

 For current mm-wave amplifiers and beamformers:

— PAE < 4% (@10dB back-off)
— Beamforming cost ~ 250 mW/channel

e “Optimum” array configuration:
— 200 elements (14 x 14)
— 10 dBm average power per element @ 4% PAE — 50 W
— 250 mW/element beamforming — 50 W
— Total per antenna array = 100 W just for the RF front-end ...

WFB-1 32
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Beamer 28 RFIC Block Diagram

Beamer28
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Antenna array

« Variable TTD supports wideband

signals

Center frequency 28...32 GHz,
Instantaneous Bandwidth 800MHz
Quadruple bidirectional channels
iIncluding Wilkinson splitter/combiner
True time delay range 180ps and
1ps resolution

Integrated BITE for Test and
calibration (RF signal generation and
monitoring)

~ The 2019 IEEE
O IMS inaio
- 2-7 June 2019
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v Case 3: Efficient 30 GHz Doherty PA design in SiGe @%
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Technology
Freq. [GHz]
Channels
Area [mm?]
Package
RX P, [W]

TX P, [W]

RX NF [dB]
BITE

SiGe 130nm
24.25-30.5
4
19.4
eWLB

1.6
(0.4/path)

1.8 (0.45
@P,4/path)

4
YES

Comparison Table

CMOS 65nm
28 (n257) 28 (n257)
4 (4xH-BF, 4xV-BF) 24x TRX
12 27.8
— Flipped on PCB
0.6 (0.112/path) 0.042/path

CMOS 28nm SiGe 130nm SiGe 180nm
27-29 28-32

16/pol (16xH/16xV-TRX) 4 (4xH-BF, 4xV-BF)
165.9 23

Flipped on PCB

0.15/path

Laminate
3.3/pol (0.206/path)

1.2 (0.252 @11.3 0.119 @11
dBm/path) dBm/path @16.4dBm/path)

4.2 4.4—-4.7 6 (Front-end) 4.8
NO NO NO NO

4.6/pol (0.319 0.22/path

[1] J. Pang et al., "21.1 A 28GHz CMOS Phased-Array Beamformer Utilizing Neutralized Bi-Directional Technique Supporting Dual-Polarized MIMO for 5G NR," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 344-346.
[2] J. D. Dunworth et al., "A 28GHz Bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment,” 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 70-72.

[3] B. Sadhu et al., "A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications," in IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3373-3391, Dec. 2017.

[4] K. Kibaroglu, M. Sayginer, A. Nafe and G. M. Rebeiz, "A Dual-Polarized Dual-Beam 28 GHz Beamformer Chip Demonstrating a 24 Gbps 64-QAM 2x2 MIMO Link," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, 2018, pp. 64-67.
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SUMMARY

* Demanding performance of the emerging 5G NR solutions
require a new approach from system architecture down to
circuits and technologies involved

 Massive MIMO and mm-Wave frequencies are required to
achieve the ever increasing communication demand

* This leads to increased hardware complexity: cost and power are
exploding

* PA becomes the bottleneck and has to be addressed at all levels
including technology selection and architecture

The 2019 IEEE
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