
IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PyTorchPipe

A framework for rapid prototyping and training of
computational pipelines combining language and vision

Tomasz Kornuta
Machine Intelligence Team
Almaden Research Center
IBM Research AI

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Agenda

§ Motivation

§ PyTorchPipe
• Pipeline explained
• Component explained
• Task/model/component zoo, workers

§ How to
• Use workers, components, build pipelines, use CPUs and GPUs
• Develop components

§ Summary

2

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story 1
§ What do you do when you want to train a model?

Ø pick your favorite middleware (e.g. PyTorch)
Ø pick a dataset (e.g. MNIST) and a model (e.g. LeNet-5)

Ø coding, coding...

3

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story 2
§ How about training with…

Ø dataset split into training and validation?
Ø monitoring of accuracy?
Ø visualization of results?

Ø coding, coding…

4

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story 3
§ And how about training…

Ø of a slightly different model?
Ø with monitoring of some more statistics?
Ø on a remote server?

Ø some more coding…

5

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story 4
§ Next you move to the Visual Question Answering problem domain and…

Ø copy some code snippets from your previous solutions

Ø decide to implement a simple multi-modal fusion (e.g. concatenation)

Ø need to incorporate some pretrained word embeddings (e.g. GloVe)

Ø need to incorporate a pretrained image encoder (e.g. VGG-16)

Ø … and need to solve all other unexpected (but encountered) issues!

Ø coding, debugging, training, coding, coding, coding, debugging, training, debugging…

6

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story 5
§ Phew! It works…!

§ Well, kind of…
Ø It takes ages to train!
Ø Must use GPUs!

Ø Coding…

7

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story 6
§ Yay! Converges!

§ Now: the test scores…
Ø (+ saving the model)

Ø Coding…

8

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story 7

§ Got it! Submitted…
Ø But the scores are so low…
Ø Need a better model!

Ø Coding…

9

!

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story 8
§ This one is even slower!

Ø Need more GPUs…
Ø … and CPUs!!

10

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story 9
§ Reverted changes…

§ Training...
Ø Now I need to run tests once again… ouch!

11

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Story summary: the requirements
Ø “Plugging” in/out “modules” realizing different functionalities

Ø Importing the pretrained models (or their “parts”)…
• (… and saving them after the training)

Ø Freezing/unfreezing the models (or their “parts”) at run-time

Ø Disabling some of the “modules” at run-time

Ø Run-time parametrization of all “modules” (hyperparameters!)…
Ø .. and training/test procedures!

Ø Utilization of many CPUs/GPUs (on demand at run-time)

Ø … logging, statistics collection, export to files (e.g. to TensorBoard), visualization…

12

ØOk, can we have a tool facilitating all that?

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Agenda

§ Motivation

§ PyTorchPipe
• Pipeline explained
• Component explained
• Task/model/component zoo, workers

§ How to
• Use workers, components, build pipelines, use CPUs and GPUs
• Develop components

§ Summary

13

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Welcome to PyTorchPipe! (or PTP in short)

14

§ Pipeline”: formalization of a concept of a “high-level computational graph” (DAG)
Ø Components connected via data streams and executed by their priority

ØYes, we can!

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP: pipeline 1
Ø Components are unaware of each other (loose coupling)
Ø Components only care about their input and output (data) streams
Ø Components have different types

15

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP: pipeline 2
§ Pipelines are defined in .yml files

pipeline:
component_a:

priority: 1
type: type1
streams:

output1: data_stream_x
output2: data_stream_y

component_b:
priority: 2
type: type2
streams:

input: data_stream_y
output: data_stream_z

component_c:
priority: 3
type: type3
streams:

input1: data_stream_x
input2: data_stream_z

16

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP: pipeline 3
Ø Three special types of components: Task, Model, Loss
Ø Tasks are treated in a special way (thus outside of pipeline).. but are still components!

17

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP: pipeline 4
§ Everything is allowed…

§ … as long as:
Ø Names are unique,
Ø priorities make sense and
Ø data stream types fit!

Ø Many losses
(Multi-task learning)Ø Instances of the same type

Ø Instances of different type

18

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Agenda

§ Motivation

§ PyTorchPipe
• Pipeline explained
• Component explained
• Task/model/component zoo, workers

§ How to
• Use workers, components, build pipelines, use CPUs and GPUs
• Develop components

§ Summary

19

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP: component 1
§ Initialization

Ø Load configuration from .yml files
Ø Rename stream/global names

Ø Get/set global variables
Ø Handshake output-input definitions

(Expected!)

pipeline:
LeNet-5 model.
image_classifier:

priority: 1
type: LeNet5
streams:

inputs: images
predictions: lenet5_predictions

globals:
prediction_size: num_classes

20

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP: component 2
§ Example: the LeNet5 model default configuration file (lenet5.yml)

This file defines the default values for the LeNet5 model.
##
1. CONFIGURATION PARAMETERS that will be LOADED by the component.
##

streams:
##
2. Keymappings associated with INPUT and OUTPUT streams.
##

Stream containing batch of images (INPUT)
inputs: inputs

Stream containing predictions (OUTPUT)
predictions: predictions

globals:
##
3. Keymappings of variables that will be RETRIEVED from GLOBALS.
##

Size of the prediction (RETRIEVED)
prediction_size: prediction_size

Note: All components come with files defining their default configurations. Check them out!

21

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP: component 3
§ Example: the LeNet5 model initialization (lenet5.py)

class LeNet5(Model):
def __init__(self, name, config):

super(LeNet5, self).__init__(name, LeNet5, config)

Get key mappings.
self.key_inputs = self.stream_keys["inputs"]
self.key_predictions = self.stream_keys["predictions"]

Retrieve prediction size from globals.
self.prediction_size = self.globals["prediction_size"]

Create the LeNet-5 layers.
self.conv1 = torch.nn.Conv2d(1, 6, kernel_size=(5, 5))
self.maxpool1 = torch.nn.MaxPool2d(kernel_size=(2, 2), stride=2)
self.conv2 = torch.nn.Conv2d(6, 16, kernel_size=(5, 5))
self.maxpool2 = torch.nn.MaxPool2d(kernel_size=(2, 2), stride=2)
self.conv3 = torch.nn.Conv2d(16, 120, kernel_size=(5, 5))
self.linear1 = torch.nn.Linear(120, 84)
self.linear2 = torch.nn.Linear(84, self.prediction_size)

22

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP: component 4
§ Example: the LeNet5 model input/output data streams definitions

Ø Components can have many input/output data streams, each need a definition!
Ø Data stream definition is a triplet: sizes, types and description

• -1 is a special value, meaning “can work with different sizes”

23

def input_data_definitions(self):
return {

self.key_inputs: DataDefinition([-1, 1, 32, 32], [torch.Tensor],
"Batch of images [BATCH_SIZE x IMAGE_DEPTH x IMAGE_HEIGHT x IMAGE WIDTH]"),

}

def output_data_definitions(self):
return {

self.key_predictions: DataDefinition([-1, self.prediction_size], [torch.Tensor],
"Batch of predictions, each represented as probability distribution over classes

[BATCH_SIZE x PREDICTION_SIZE]")
}

Note: Tasks are sources of data, so need only output data definitions!

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP: component 5
§ Execution

Ø Process inputs into outputs

Ø Logging facilities
Ø Statistics collectors/aggregators

def forward(self, data_streams):
Get image from data streams.
img = data_streams[self.key_inputs]

Pass inputs through layers.
x = self.conv1(img)

…

Log softmax.
predictions = f.log_softmax(x, dim=1)
Add predictions to data streams.
data_streams.publish(

{self.key_predictions: predictions})

24

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Agenda

§ Motivation

§ PyTorchPipe
• Pipeline explained
• Component explained
• Task/model/component zoo, workers

§ How to
• Use workers, components, build pipelines, use CPUs and GPUs
• Develop components

§ Summary

25

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP provides… the task zoo
§ “Task”: a non-trainable component fetching data to the pipeline

26

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP provides… the model zoo
§ “Model”: a component with trainable weights

27

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP provides…
§ Other components

Ø Multi-task learning!

28

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PTP provides…. workers
§ ptp-offline-trainer

– A trainer relying on classical methodology interlacing training and validation at the end of
every epoch. Creates separate instances of training and validation tasks and trains the
models by feeding the created pipeline with batches of data.

§ ptp-online-trainer
– A flexible trainer creating separate instances of training and validation tasks and training

the models by feeding the pipeline with training data. Validation is performed on as subset
of the validation set and user might set how often it is executed.

§ ptp-processor
– Worker performing one pass over the all samples returned by a given task instance, useful

for collecting scores on a given set, answers for submissions to competitions etc.

29

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Agenda

§ Motivation

§ PyTorchPipe
• Pipeline explained
• Component explained
• Task/model/component zoo, workers

§ How to
• Use workers, components, build pipelines, use CPUs and GPUs
• Develop components

§ Summary

30

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

How to use workers
1) PTP offers three general-usage workers scripts

§ Not sure how to use them?
Ø Simply call given worker with –h option to learn about its run-time arguments

Ø Each worker comes with default configuration file located in configs/default/workers/

31

foo@bar:~$ ptp-offline-trainer --h

##
Section defining all the default values of parameters used during training when using ptp-offline-trainer.
If you want to use different section for "training" pass its name as command line argument '--
training_section_name' to trainer (DEFAULT: training)
Note: the following parameters will be (anyway) used as default values.
default_training:

Set the random seeds: -1 means that they will be picked randomly.
Note: their final values will be stored in the final training_configuration.yml saved to log dir.
seed_numpy: -1
seed_torch: -1

Default batch size.
batch_size: 64

Definition of the task (Mandatory!)
#task:

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

How to use components

32

2) PTP comes with component/model zoo
§ Not sure what are component global variables, data streams etc.

– Open the associated default configuration file located in configs/default/components/…

§ Not sure what given component does?
Ø If anything else fails… simply open the source file ;)

##
1. CONFIGURATION PARAMETERS that will be LOADED by the component.
##

Folder where task will store data (LOADED)
data_folder: '~/data/mnist'

Defines the set that will be used used (LOADED)
True: training set | False: test set.
use_train_data: True

Optional parameter (LOADED)
When present, resizes the MNIST images from [28,28] to [width, height]
#resize_image: [height, width]

streams:
##
2. Keymappings associated with INPUT and OUTPUT streams.
##

Stream containing batch of indices (OUTPUT)
indices: indices

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

How to build pipelines 1
3) Rapid prototyping!

§ Compose your pipeline from the existing library of components…
Ø PTP will assist you in that task!

§ Not sure whether you connected your components correctly?
Ø No problem! PTP will check your pipeline by handshaking output-input definitions of

streams of all component and will informing you if something is improper, e.g.:

[2019-06-11 20:37:05] - ERROR - reshaper >>> Input definition: expected field 'feature_maps1' not found in
DataStream keys (stream_keys(['indices', 'inputs', 'targets', 'labels', 'feature_maps']))

[2019-06-11 20:38:51] - ERROR - reshaper >>> Input definition: field 'inputs' in DataStream has dimension 3
different from expected (expected [-1, 16, 1, 1] while received [-1, 1, 28, 28])

[2019-06-11 20:38:51] - ERROR - OfflineTrainer >>> Found 6 errors, terminating execution

33

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

How to build pipelines 2
§ Your configuration file is getting too complex?

Ø No problem! Use the build-in mechanism for nesting of the configuration files!

§ Got conflicts with names of data streams/global variables?
Ø No problem! PTP has built-in (re)naming facilities!

Note: All components come with files defining their default configurations. Check them out!

classifier:
priority: 3
type: FeedForwardNetwork
Rename stream names.
streams:

inputs: reshaped_maps
Rename global variable names.
globals:

input_size: reshaped_maps_size
prediction_size: num_classes

Load config defining MNIST tasks for training,
validation and testing.
default_configs: mnist/default_mnist.yml
…

training:
task:

type: MNIST
…

34

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

How to use CPUs and GPUs 1
4) Effort-less harnessing of the computational power!

§ Want to many CPU cores/processes for loading data when creating e.g. training batches?

Ø Simply add to the training section in your configuration file the following:

§ Note: All workers come with files defining their default configurations. Check them out!

training:
…
Use four workers for loading data.
dataloader:

num_workers: 4

35

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

How to use CPUs and GPUs 2
§ Want to use many GPUs for forward and backward batch propagation?

Ø Simply call a given worker script with –gpu flag on, e.g.:

Note: Without setting the environment variable worker with –gpu will use all GPUs by default!

§ We encourage utilization of the cuda-gpupick tool for automatic optimal allocation on GPUs

foo@bar:~$ CUDA_VISIBLE_DEVICES=0,1 ptp-processor … --gpu

foo@bar:~$ cuda-gpupick -n2 ptp-processor … --gpu

https://github.com/aasseman/cuda-gpupick/
36

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Agenda

§ Motivation

§ PyTorchPipe
• Pipeline explained
• Component explained
• Task/model/component zoo, workers

§ How to
• Use workers, components, build pipelines, use CPUs and GPUs
• Develop components

§ Summary

37

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

How to develop components 1
1) Focus of attention!
§ Compose your pipeline from the existing library of components…

Ø …and focus on developing your new component

Ø … then use the existing worker scripts to test it!
§ PTP supports Test-Driven Development! Write unit tests first and let DevOps do their job!

def forward(self, data_streams):

Get image from data streams.
img = data_streams[self.key_inputs]

Pass inputs through layers.
x = self.conv1(img)
…

38

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

How to develop components 2
2) Parametrization
§ Derive your component by deriving it from adequate parent class

Ø Task, Model, Loss, Component are four major base classes

§ Divide parameters of your component into:
– Parameters loaded at run-time from the configuration

• i.e. internal parameters that do not depend on other components
• Example: FeedForwardNetwork loads number of hidden layers along with respective

numbers of neuron in each of them

– Parameters retrieved at run-time from global variables
• i.e. parameters set by other components
• Example: AnswerDecoder retrieves word mappings created by other components

– Parameters exported to global variables
• i.e. parameters that other components might find useful
• Example: MNIST exports number of target classes

39

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

How to develop components 3
3) Implementation

§ Define input and output streams
Ø Implement methods returning input/output stream definitions

Good practice: Get stream keys using naming facilities in the init() method

§ Implement the forward() method realizing the main operation
Note: Task classes do not use forward(), instead require __getitem__() and collate() methods

§ Each component comes with default configuration
Ø They need to be developed concurrently!

§ We strongly encourage Test-Driven Development
Ø Start your implementation from writing unit tests, run them as you progress!

40

foo@bar:~$ coverage run -m unittest

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

Agenda

§ Motivation

§ PyTorchPipe
• Pipeline explained
• Component explained
• Task/model/component zoo, workers

§ How to
• Use workers, components, build pipelines, use CPUs and GPUs
• Develop components

§ Summary

41

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PyTorchPipe: summary 1

§ PyTorchPipe is an open-source framework accelerating AI/Machine Learning research

§ It provides datasets, a growing model zoo and predefined pipelines to jump start research on
various multi-modal tasks (with focus on, but not limited to, vision and language).

§ Key Features:
Ø Flexible pipelines with plug-and-play modules (components)
Ø Support for multi-task training (multiple loss functions)
Ø Easy to read yaml files describing pipeline and training/test configuration
Ø Out-of-the-box distributed computing over multiple GPUs/CPUs
Ø Logging and visualization tools

42
https://github.com/IBM/pytorchpipe

(official release!)

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PyTorchPipe: summary 2

§ 3 universal, configurable workers: scripts for training/testing of all kinds of pipelines

§ 8 configurable tasks from diverse domains (visual question answering, image classification,
language classification, language modelling, machine translation)

§ 32 configurable components, including 13 trainable models

§ around 80 pipelines, varying from simple ones with few components for MNIST classification
to ones consisting of 50+ components (!) for VQA

https://github.com/IBM/pytorchpipe

(official release!)

43

IBM Research AI

PyTorchPipe T. Kornuta Machine Intelligence Team July, 2019

PyTorchPipe: comparison
Tensor2Tensor Ludwig Pythia MI-Prometheus PyTorchPipe

Middleware TensorFlow PyTorch PyTorch PyTorch PyTorch

Multi-modal tasks Yes? No Yes Yes Yes

Model split into many
pieces

No Encoder-Combiner-
Decoder (fixed)

No No Yes

Multi-task learning
(many losses at once)

Yes? No Yes No Yes

Configuration files No yaml yaml yaml yaml

General scripts /
workers

trainer train, predict, test,
experiment, visualize,
collect_weights,
collect_activations

trainer 2 x trainer, tester 2 x trainer,
processor

Support for many
GPUs

Yes Yes Yes No (1 GPU max) Yes

Many CPU workers
during data loading

Yes? MPI + Horovod
(external)

Yes Yes Yes

Logging Yes Yes Yes Yes Yes

Statistics collection TensorBoard json TensorBoard csv files,
TensorBoard

csv files,
TensorBoard

Visualization of
intermediate results

No No No In models
(matplotlib)

Dedicated
components
(matplotlib)

Visualization after run TensorBoard Yes (visualize) TensorBoard TensorBoard TensorBoard

Organization Google Brain Uber AI Facebook AIR IBM Research AI IBM Research AI

44

