

PyTorchPipe

A framework for rapid prototyping and training of computational pipelines combining language and vision

Tomasz Kornuta Machine Intelligence Team Almaden Research Center IBM Research AI

PyTorchPipe

T. Kornuta | Machine Intelligence Team July, 2019

Agenda

Motivation

PyTorchPipe

- Pipeline explained
- Component explained
- Task/model/component zoo, workers

How to

- Use workers, components, build pipelines, use CPUs and GPUs
- Develop components

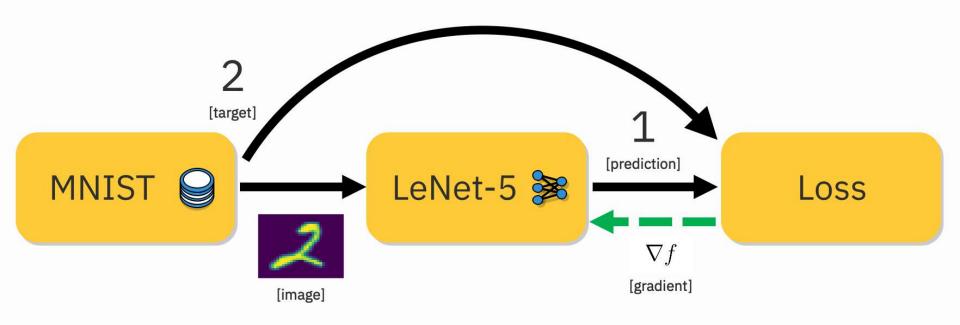
PyTorchPipe

Summary

IBM

Story 1

- What do you do when you want to train a model?
 - pick your favorite *middleware* (e.g. PyTorch)
 - > pick a *dataset* (e.g. MNIST) and a *model* (e.g. LeNet-5)



> coding, coding...

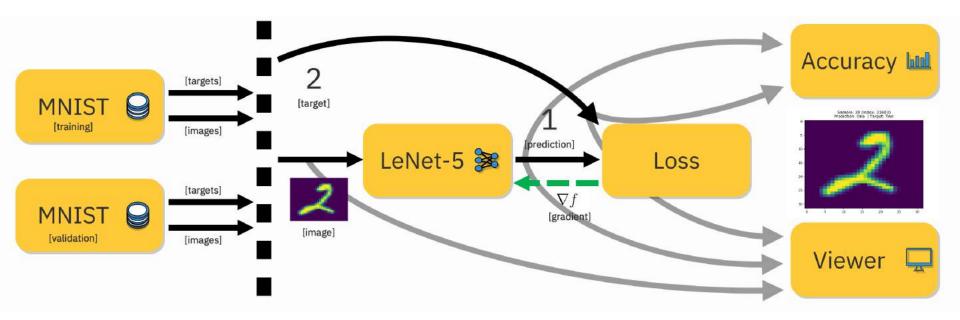
3

PyTorchPipe

Story 2

How about training with...

- > dataset split into training and validation?
- > monitoring of accuracy?
- visualization of results?



> coding, coding...

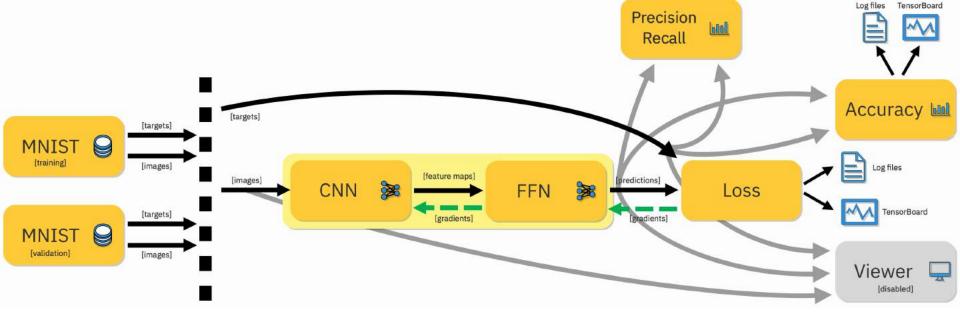
4

PyTorchPipe

Story 3

And how about training...

- of a slightly different model?
- > with monitoring of some more statistics?
- > on a remote server?



> some more coding...

PyTorchPipe

5

Log files TensorBoard

Story 4

6

Next you move to the Visual Question Answering problem domain and...

copy some code snippets from your previous solutions

- > decide to implement a simple multi-modal fusion (e.g. concatenation)
- need to incorporate some pretrained word embeddings (e.g. GloVe)
- need to incorporate a pretrained image encoder (e.g. VGG-16)

- ... and need to solve all other unexpected (but encountered) issues!
- > coding, debugging, training, coding, coding, coding, debugging, training, debugging...

July, 2019

TensorBoard MA

Accuracy 📠

Log files

Log files

TensorBoard

Viewer

Story 5

- Log files TensorBoard Phew! It works...! ~~~ Answer Precision [targets] [answers] hand la Recall Indexer [images] [questions] VQA [training] [answers] Pretrained weights dictions 3 Loss FFN X [images] [questions] VQA **↑** [answers] [answers] [validation] [image embeddings] [images] VGG-16 🎉 Concatenate [images] [pretrained & frozen] Prediction [question embeddings Decoder Question [questions] GRU 200 [predicted answers] Tokenizer [words] [word embeddings] Pretrained embeddings Question [word indices] GloVe 🎘 X Well, kind of... Indexer
- > It takes ages to train!

PyTorchPipe

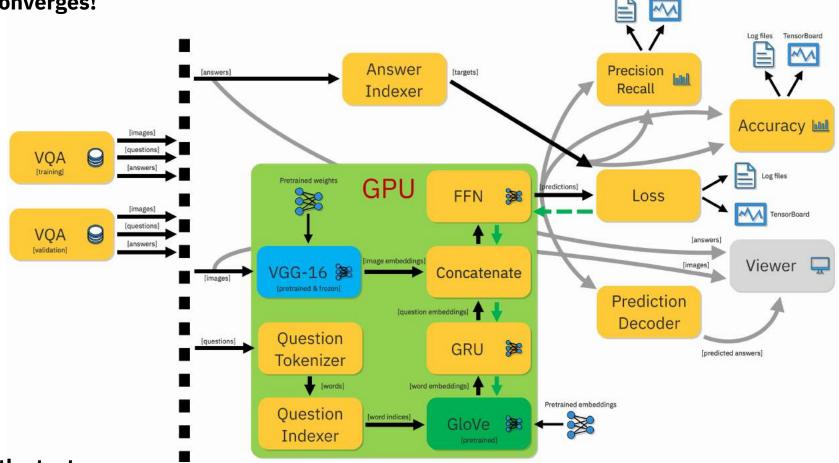
- Must use GPUs!
- Coding...

7

Log files TensorBoard

Story 6

Yay! Converges!

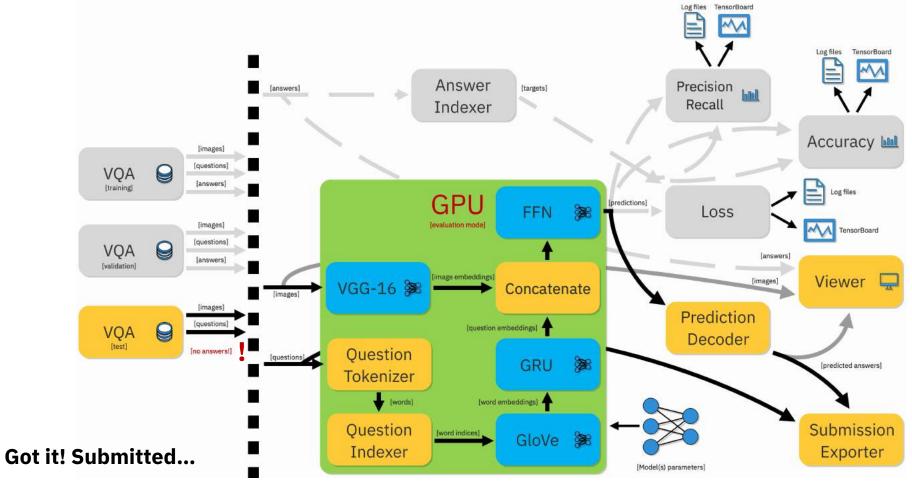


- Now: the test scores...
 - (+ saving the model)

PyTorchPipe

Coding...

Story 7



But the scores are so low...

PyTorchPipe

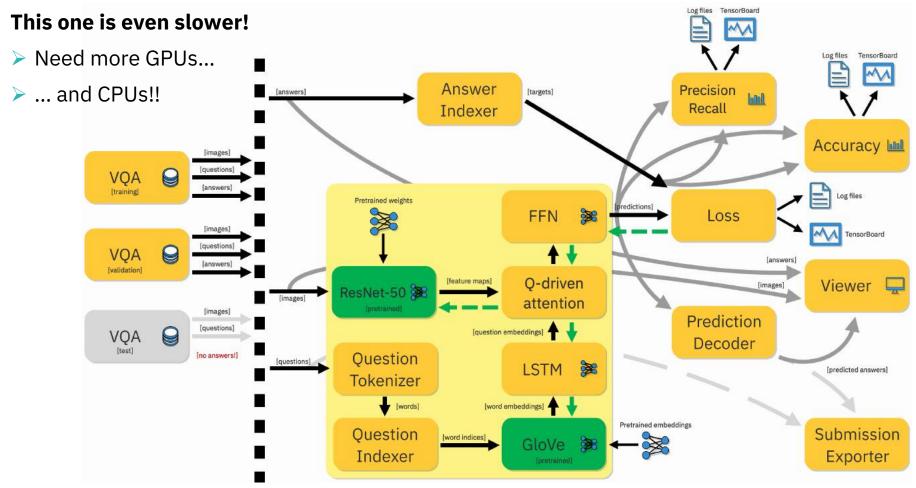
- Need a better model!
- Coding...

9

PyTorchPipe

Story 8

10

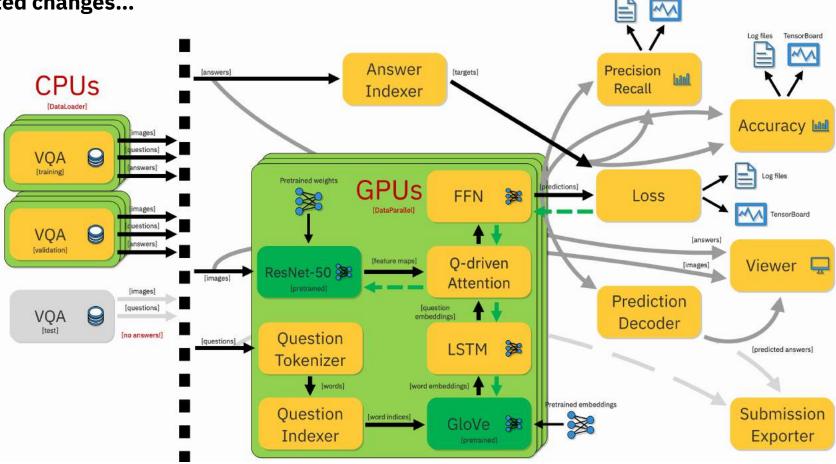


T. Kornuta | Machine Intelligence Team July, 2019

Log files TensorBoard

Story 9

Reverted changes...



Training...

11

Now I need to run tests once again... ouch!

PyTorchPipe

Story summary: the *requirements*

- "Plugging" in/out "modules" realizing different functionalities
- Importing the pretrained models (or their "parts")...
 - (... and saving them after the training)
- > Freezing/unfreezing the models (or their "parts") at run-time
- Disabling some of the "modules" at run-time
- Run-time parametrization of all "modules" (hyperparameters!)...
 - .. and training/test procedures!

PyTorchPipe

12

- Utilization of many CPUs/GPUs (on demand at run-time)
- > ... logging, statistics collection, export to files (e.g. to TensorBoard), visualization...

>Ok, can we have a tool facilitating all that?

Agenda

Motivation

PyTorchPipe

- Pipeline explained
- Component explained
- Task/model/component zoo, workers

How to

- Use workers, components, build pipelines, use CPUs and GPUs
- Develop components

PyTorchPipe

Summary

[data_stream_x] 1 component_a [data_stream_y] 2 component_b [data_stream_z] 3 component_c

Welcome to PyTorchPipe!

IBM Research AI

- Pipeline": formalization of a concept of a "high-level computational graph" (DAG)
 - Components connected via data streams and executed by their priority

>Yes, we can!

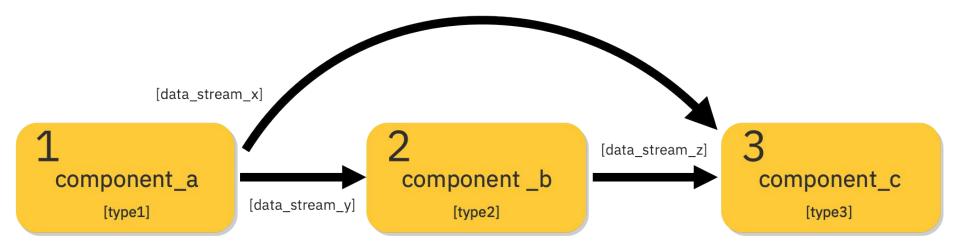
PyTorchPipe

14

T. Kornuta | Machine Intelligence Team July, 2019

PTP: pipeline 1

- Components are unaware of each other (loose coupling)
- > Components only care about their *input* and *output (data)* streams
- Components have different types



3

component c

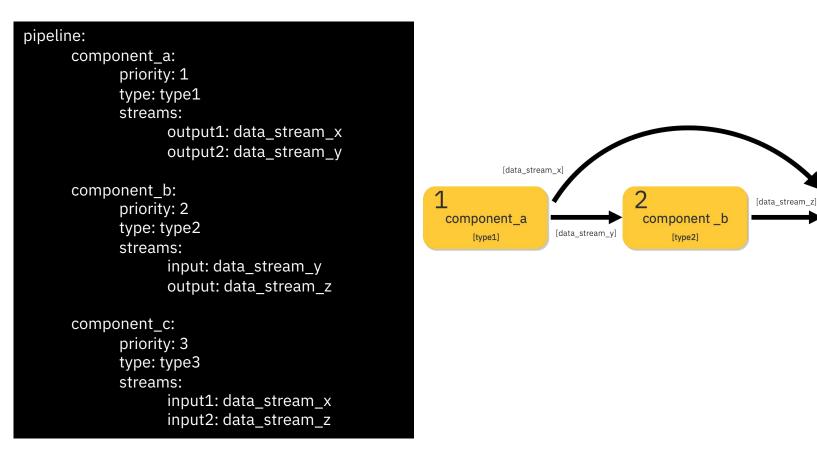
[type3]

PTP: pipeline 2

16

Pipelines are defined in .yml files

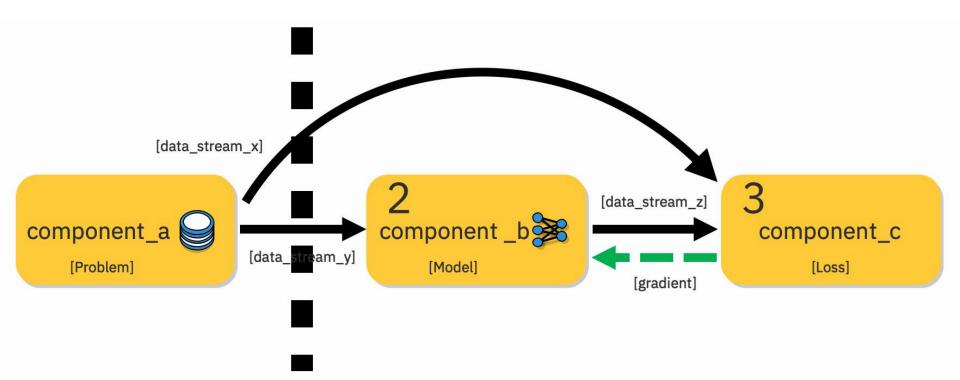
PyTorchPipe



T. Kornuta | Machine Intelligence Team July, 2019

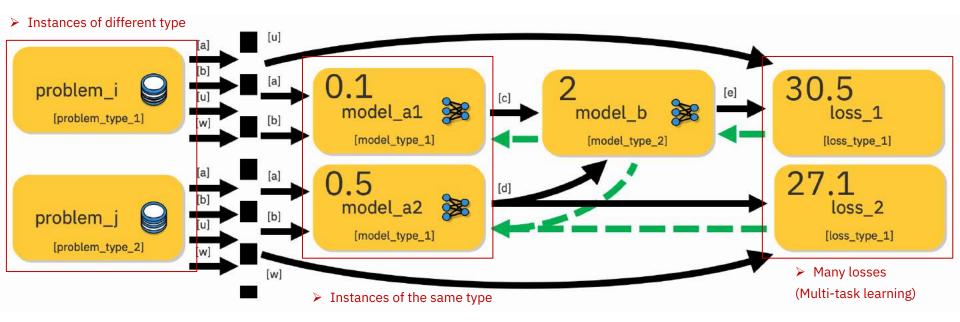
PTP: pipeline 3

- > Three *special* types of components: *Task, Model, Loss*
- > Tasks are treated in a special way (thus outside of *pipeline*).. but are still components!



PTP: pipeline 4

Everything is allowed...



... as long as:

18

- Names are unique,
- > priorities make sense and

PyTorchPipe

data stream types fit!

Agenda

Motivation

PyTorchPipe

- Pipeline explained
- Component explained
- Task/model/component zoo, workers

How to

- Use workers, components, build pipelines, use CPUs and GPUs
- Develop components

PyTorchPipe

Summary

PTP: component 1

Initialization

pipeline:

20

LeNet-5 model. image_classifier: priority: 1

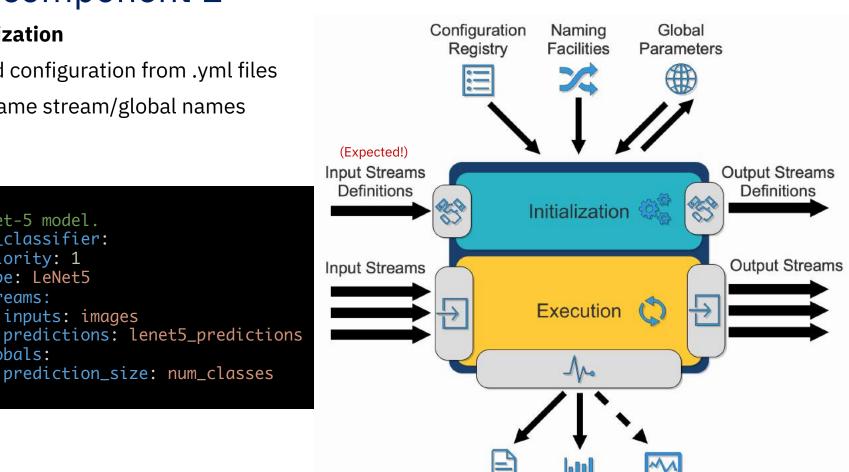
streams:

alobals:

type: LeNet5

inputs: images

- Load configuration from .yml files
- Rename stream/global names



\succ Get/set global variables

PyTorchPipe

Handshake output-input definitions

prediction_size: num_classes

Logs

Statistics TensorBoard

Example: the LeNet5 model default configuration file (lenet5.yml)

streams:

```
# Stream containing batch of images (INPUT)
inputs: inputs
```

```
# Stream containing predictions (OUTPUT)
predictions: predictions
```

globals:

21

```
# Size of the prediction (RETRIEVED)
prediction_size: prediction_size
```

PyTorchPipe

Note: All components come with files defining their default configurations. Check them out!

PyTorchPipe

22

Example: the LeNet5 model initialization (lenet5.py)

```
class LeNet5(Model):
    def __init__(self, name, config):
         super(LeNet5, self).__init__(name, LeNet5, config)
         # Get key mappings.
         self.key_inputs = self.stream_keys["inputs"]
         self.key_predictions = self.stream_keys["predictions"]
         # Retrieve prediction size from globals.
         self.prediction_size = self.globals["prediction_size"]
         # Create the LeNet-5 layers.
         self.conv1 = torch.nn.Conv2d(1, 6, kernel_size=(5, 5))
         self.maxpool1 = torch.nn.MaxPool2d(kernel_size=(2, 2), stride=2)
         self.conv2 = torch.nn.Conv2d(6, 16, kernel_size=(5, 5))
         self.maxpool2 = torch.nn.MaxPool2d(kernel_size=(2, 2), stride=2)
         self.conv3 = torch.nn.Conv2d(16, 120, kernel_size=(5, 5))
         self.linear1 = torch.nn.Linear(120, 84)
         self.linear2 = torch.nn.Linear(84, self.prediction_size)
```


PyTorchPipe

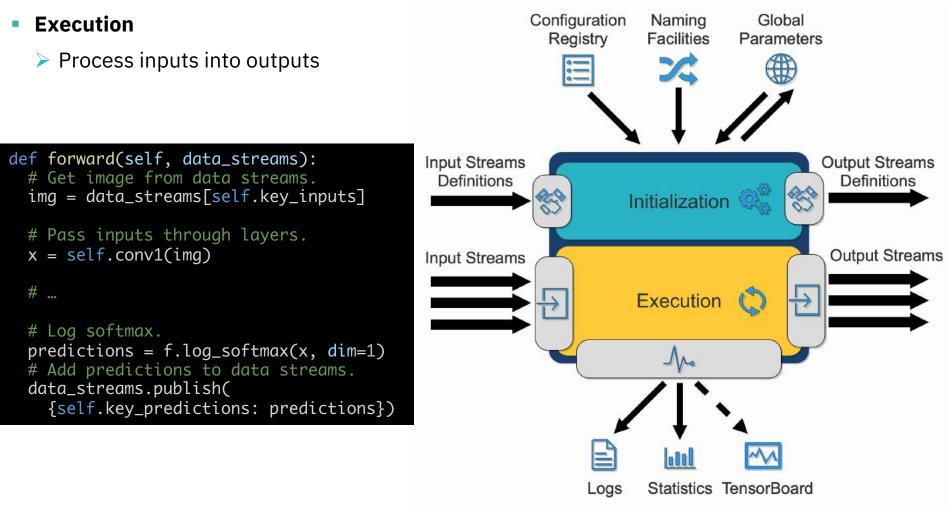
23

- Example: the LeNet5 model input/output data streams definitions
 - > Components can have many input/output data streams, each need a definition!
 - > Data stream definition is a triplet: sizes, types and description
 - -1 is a special value, meaning "can work with different sizes"

```
def input_data_definitions(self):
    return {
        self.key_inputs: DataDefinition([-1, 1, 32, 32], [torch.Tensor],
        "Batch of images [BATCH_SIZE x IMAGE_DEPTH x IMAGE_HEIGHT x IMAGE WIDTH]"),
    }

def output_data_definitions(self):
    return {
        self.key_predictions: DataDefinition([-1, self.prediction_size], [torch.Tensor],
        "Batch of predictions, each represented as probability distribution over classes
[BATCH_SIZE x PREDICTION_SIZE]")
    }
```

Note: Tasks are sources of data, so need only output data definitions!



Logging facilities

24

Statistics collectors/aggregators

Agenda

Motivation

PyTorchPipe

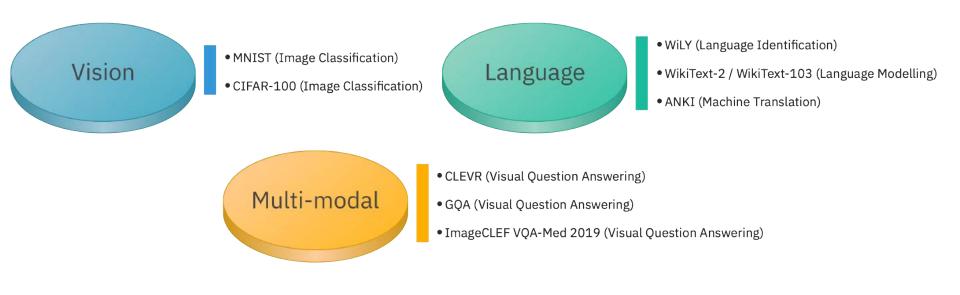
- Pipeline explained
- Component explained
- Task/model/component zoo, workers
- How to
 - Use workers, components, build pipelines, use CPUs and GPUs
 - Develop components

PyTorchPipe

Summary

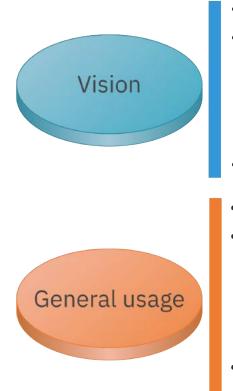
PTP provides... the task zoo

• **"Task":** a non-trainable component fetching data to the pipeline



PTP provides... the model zoo

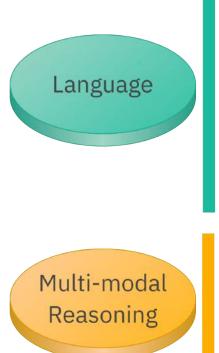
"Model": a component with trainable weights



PyTorchPipe

27

- Convnet Encoder • Generic Image Encoder ेVGG-16 ResNet-50 ° ResNet-152 OpenseNet-121 LeNet-5 • Feed Forward Network Recurrent Neural Network **RNN** TanH RNN Sigmoid ି GRU **।STM** Seq2Seq
- Attention Decoder



- Sencence Embeddings GloVe.6B.50d
 GloVe.6B.100d
 GloVe.6B.200d
 GloVe.6B.300d
 GloVe.42B.300d
 GloVe.840B.300d
 GloVe.twitter.27B
 MIMIC.fastText.300d
- Question-driven attention over image
- Multi-modal Low-rank Bilinear pooling
- Multi-modal Compact Bilinear pooling
- Milti-modal Factorized Bilinear pooling
- Relational Network

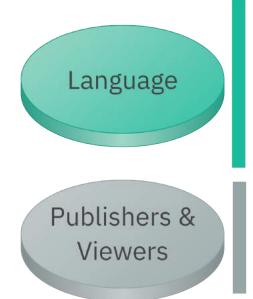
T. Kornuta | Machine Intelligence Team

July, 2019

IBM

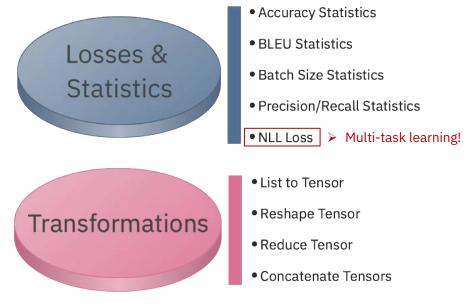
PTP provides...

Other components



PyTorchPipe

- Sentence Tokenizer
- Sentence Indexer
- Sentence One Hot Encoder
- Label Indexer
- BoW Encoder
- Word Decoder
- Global Variable Publisher
- Image Viewer
- Stream Viewer
- Stream File Exporter



PTP provides.... workers

ptp-offline-trainer

 A trainer relying on classical methodology interlacing training and validation at the end of every epoch. Creates separate instances of training and validation tasks and trains the models by feeding the created pipeline with batches of data.

ptp-online-trainer

 A flexible trainer creating separate instances of training and validation tasks and training the models by feeding the pipeline with training data. Validation is performed on as subset of the validation set and user might set how often it is executed.

ptp-processor

- Worker performing one pass over the all samples returned by a given task instance, useful for collecting scores on a given set, answers for submissions to competitions etc.

Agenda

Motivation

PyTorchPipe

- Pipeline explained
- Component explained
- Task/model/component zoo, workers

How to

- Use workers, components, build pipelines, use CPUs and GPUs
- Develop components

PyTorchPipe

Summary

How to use workers

1) PTP offers three general-usage *workers* scripts

Not sure how to use them?

Simply call given worker with –h option to learn about its run-time arguments

foo@bar:~\$ ptp-offline-trainer --h

PyTorchPipe

31

> Each worker comes with *default configuration file* located in *configs/default/workers/*

How to use components

- 2) PTP comes with component/model zoo
- Not sure what are component global variables, data streams etc.
 - Open the associated default configuration file located in configs/default/components/...

```
# 1. CONFIGURATION PARAMETERS that will be LOADED by the component.
             # Folder where task will store data (LOADED)
data folder: '~/data/mnist'
# Defines the set that will be used used (LOADED)
# True: training set | False: test set.
use train data: True
# Optional parameter (LOADED)
# When present, resizes the MNIST images from [28,28] to [width, height]
#resize_image: [height, width]
streams:
       # 2. Keymappings associated with INPUT and OUTPUT streams.
       # Stream containing batch of indices (OUTPUT)
       indices: indices
```

Not sure what given component does?

PyTorchPipe

32

If anything else fails... simply open the source file ;)

July, 2019

How to build pipelines 1

3) Rapid prototyping!

- Compose your pipeline from the existing library of components...
 - PTP will assist you in that task!
- Not sure whether you connected your components correctly?
 - No problem! PTP will check your pipeline by handshaking output-input definitions of streams of all component and will informing you if something is improper, e.g.:

[2019-06-11 20:37:05] - ERROR - reshaper >>> Input definition: expected field 'feature_maps1' not found in DataStream keys (stream_keys(['indices', 'inputs', 'targets', 'labels', 'feature_maps']))

[2019-06-11 20:38:51] - ERROR - reshaper >>> Input definition: field 'inputs' in DataStream has dimension 3
different from expected (expected [-1, 16, 1, 1] while received [-1, 1, 28, 28])

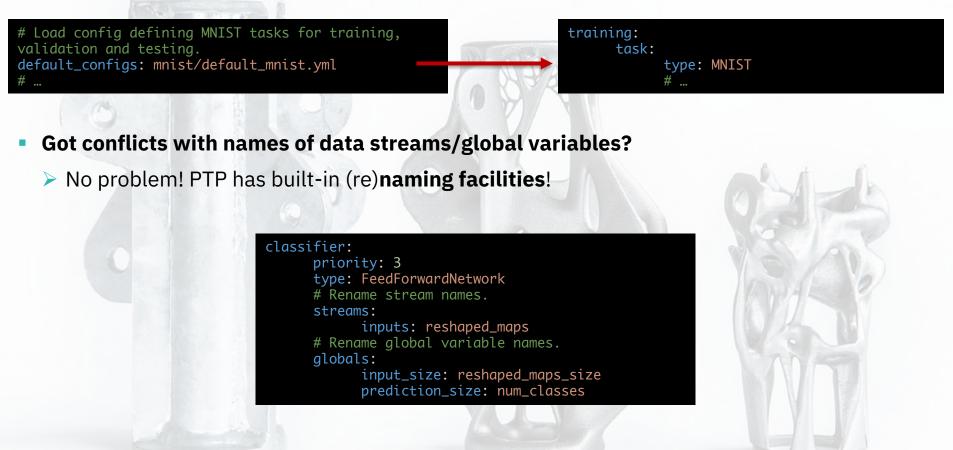
[2019-06-11 20:38:51] - ERROR - OfflineTrainer >>> Found 6 errors, terminating execution

34

PyTorchPipe

How to build pipelines 2

- Your configuration file is getting too complex?
 - No problem! Use the build-in mechanism for **nesting** of the configuration files!



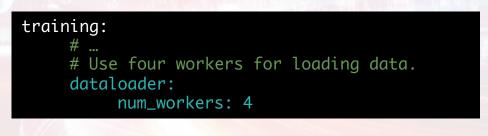
Note: All components come with files defining their *default configurations*. Check them out!

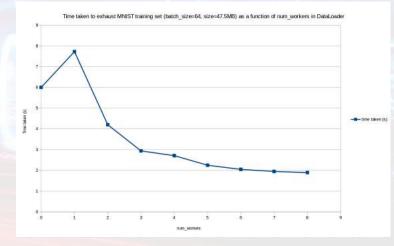
IBM

How to use CPUs and GPUs 1

4) Effort-less harnessing of the computational power!

- Want to many **CPU** cores/processes for loading data when creating e.g. *training* batches?
 - Simply add to the training section in your configuration file the following:





Note: All workers come with files defining their default configurations. Check them out!

35

July, 2019

How to use CPUs and GPUs 2

- Want to use many GPUs for forward and backward batch propagation?
 - Simply call a given worker script with -gpu flag on, e.g.:

foo@bar:~\$ CUDA_VISIBLE_DEVICES=0,1 ptp-processor ... --gpu

Note: Without setting the environment variable worker with –gpu will use **all GPUs** by default!

					Ť		-		
GPU Fan						Bus-Id Disp.A Memory-Usage			
0	GeForce	GTX	τιτ	On	ī	00000000:04:00.0 Off	1		N//
22%	5ØC		74W /	25@W		571MiB / 12212MiB		2.3%	Default
	GeForce	GTX	TIT	0n	1	00000000:05:00.0 Off			N//
22%	46C		73W /	250W		558MiB / 12212MiB		8%	Default
	GeForce	GTX	τιτ	0n	i	00000000:09:00.0 Off	1		N/)
22%	46C	Ρ2	72W /	25ØW		558MiB / 12212MiB		8%	Default
3	GeForce	GTX	τιτ	On	ī	00000000:83:00.0 Off	1		N//
22%	48C		72W /	250W		558MiB / 12212MiB		8%	Default
4	GeForce	GTX	τιτ	On	i	00000000:84:00.0 Off	1		N//
22%	45C	P2	72W /	250W		558MiB / 12212MiB		8%	Default
5	GeForce	GTX	TIT	0n	Ì	00000000:87:00.0 Off	i		N//
22%	45C		72W /	250W		558MiB / 12212MiB			Default
6	GeForce	GTX	тіт	0n	ĺ	00000000:88:00.0 Off	ľ		N//
22%	47C	PZ.	75W /	250W		554MiB / 12212MiB		6%	Default

We encourage utilization of the cuda-gpupick tool for automatic optimal allocation on GPUs

foo@bar:~\$ cuda-gpupick -n2 ptp-processor ... --gpu

PyTorchPipe

36

https://github.com/aasseman/cuda-gpupick/

July, 2019

Agenda

Motivation

PyTorchPipe

- Pipeline explained
- Component explained
- Task/model/component zoo, workers

How to

- Use workers, components, build pipelines, use CPUs and GPUs
- Develop components

PyTorchPipe

Summary

How to develop components 1

1) Focus of attention!

38

- Compose your pipeline from the existing library of components...
 - …and focus on developing your new component

def forward(self, data_streams):
 # Get image from data streams.
 img = data_streams[self.key_inputs]
 # Pass inputs through layers.
 x = self.conv1(img)
 #

... then use the existing worker scripts to test it!

PyTorchPipe

PTP supports Test-Driven Development! Write unit tests first and let DevOps do their job!

IBM/pyterchiple C a sub-	O IBM / PTTORCHPIPE	37%	IBM/pytorchpipe o	form the integ	- 10 M	The set traces 2 heres
	Lan Maria and Andrea Maria		Breakdown 258 FILES	Codebase s	ummary	
No starts , encount total an analysis inclusion ,		Annual Machine and Lond Collaboration	an bear beauting of the	Reputry data		
		The field interview constitution (22 to a file	1001 0 00 0 0 0 0 0	102	212	0

T. Kornuta | Machine Intelligence Team

July, 2019

How to develop components 2

2) Parametrization

39

- Derive your component by deriving it from adequate parent class
 - > Task, Model, Loss, Component are four major base classes
- Divide parameters of your component into:
 - Parameters loaded at run-time from the configuration
 - i.e. internal parameters that do not depend on other components
 - Example: *FeedForwardNetwork* loads number of hidden layers along with respective numbers of neuron in each of them
 - Parameters **retrieved** at run-time from **global variables**
 - i.e. parameters set by other components
 - Example: *AnswerDecoder* retrieves word mappings created by other components
 - Parameters exported to global variables

PyTorchPipe

- i.e. parameters that other components might find useful
- Example: *MNIST* exports number of target classes

How to develop components 3

3) Implementation

- Define input and output streams
 - Implement methods returning input/output stream definitions

Good practice: Get stream keys using naming facilities in the *init()* method

- Implement the *forward()* method realizing the main operation
 Note: Task classes do not use forward(), instead require __getitem__() and collate() methods
- Each component comes with default configuration
 - > They need to be developed concurrently!
- We strongly encourage Test-Driven Development
 - > Start your implementation from writing unit tests, run them as you progress!

foo@bar:~\$ coverage run -m unittest

PyTorchPipe

Agenda

Motivation

PyTorchPipe

- Pipeline explained
- Component explained
- Task/model/component zoo, workers

How to

- Use workers, components, build pipelines, use CPUs and GPUs
- Develop components

PyTorchPipe

Summary

PyTorchPipe: summary 1

- **PyTorchPipe** is an open-source framework accelerating AI/Machine Learning research
- It provides datasets, a growing model zoo and predefined pipelines to jump start research on various multi-modal tasks (with focus on, but not limited to, vision and language).

Key Features:

- Flexible pipelines with plug-and-play modules (components)
- Support for multi-task training (multiple loss functions)
- > Easy to read **yaml** files describing pipeline and training/test configuration
- Out-of-the-box distributed computing over multiple GPUs/CPUs
- Logging and visualization tools

 open source (official release!)

 https://github.com/IBM/pytorchpipe

 language
 Pytor

 Icense
 Apache-2.0

 Version
 0.1.0

 build
 passing

 Secode quality:
 python

 A+
 Secode quality:

 PyTorchPipe
 T. Kornuta

 Machine
 Intelligence

 Teach
 July, 2019

🞯 code quality: python 🗛+

Igtm 0 alerts

July, 2019

PyTorchPipe: summary 2

- 3 universal, configurable *workers*: scripts for training/testing of all kinds of pipelines
- 8 configurable tasks from diverse domains (visual question answering, image classification, language classification, language modelling, machine translation)
- 32 configurable *components*, including 13 trainable *models*
- around 80 *pipelines*, varying from simple ones with few components for MNIST classification to ones consisting of 50+ components (!) for VQA

44

PyTorchPipe

PyTorchPipe: comparison

IHH	_	
	8	Error Errorie

July, 2019

	Tensor2Tensor	Ludwig	Pythia	MI-Prometheus	PyTorchPipe
Middleware	TensorFlow	PyTorch	PyTorch	PyTorch	PyTorch
Multi-modal tasks	Yes?	No	Yes	Yes	Yes
Model split into many pieces	No	Encoder-Combiner- Decoder (fixed)	No	No	Yes
Multi-task learning (many losses at once)	many losses at once)		Yes	No	Yes
Configuration files	No	yaml	yaml	yaml	yaml
General scripts / workers	trainer	train, predict, test, experiment, visualize, collect_weights, collect_activations	trainer	2 x trainer, tester	2 x trainer, processor
Support for many GPUs	Yes	Yes	Yes	No (1 GPU max)	Yes
Many CPU workers during data loading	Yes?	MPI + Horovod (external)	Yes	Yes	Yes
Logging	Yes	Yes	Yes	Yes	Yes
Statistics collection	TensorBoard	json	TensorBoard	csv files, TensorBoard	csv files, TensorBoard
Visualization of intermediate results	No	No	No	In models (matplotlib)	Dedicated components (matplotlib)
Visualization after run	TensorBoard	Yes (visualize)	TensorBoard	TensorBoard	TensorBoard
Organization	Google Brain	Uber Al	Facebook AIR	IBM Research AI	IBM Research AI

T. Kornuta | Machine Intelligence Team