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Abstract
The standard model of particle physics classifies particles into elementary leptons and hadrons composed of
quarks. In this article the existence of an alternate ordering principle will be demonstrated giving particle
energies to be quantized as a function of the fine-structure constant, α. The quantization can be derived using
an appropriate wave function that acts as a probability amplitude on the electric field. The value of α can be
approximated numerically by the gamma functions of the integrals for calculating particle energy. The series
expansion  of  the  energy  equation  provides  quantitative  terms  for  Coulomb,  strong  and  gravitational
interaction.  The relationship of the model  with gravitational  effects is  corroborated by the possibility to
derive the basic equations directly from the Einstein field equations.
The only parameters of the model are the values of the speed of light and the elementary charge.

1 Introduction
Particle  zoo is  the  informal  though fairly common nickname  to describe  what  was  formerly known as
"elementary  particles".  The  standard  model  of  particle  physics  [1]  divides  these  particles  into  leptons,
considered to be fundamental "elementary particles" and the hadrons, composed of quarks. 
Well hidden in the data of particle energies lies another ordering principle that may be derived directly from
the principles of general relativity. A simple metric defined by a Ricci scalar of R = -2/r 2 yields a function
Ψ(r) that will produce a quantization of energy states with powers of 1/3n over the fine-structure constant α  1

and gives α itself as the product of two gamma functions, representing the energy terms in a photon and a
point charge expression, suggesting that α may be understood as a characteristic coefficient for the curvature
of spacetime implied by the corresponding difference in symmetry. 
To conform to the correct absolute scale of energy will require to replace G/c0

4 in the Einstein field equation
(EFE) by an appropriate constant. The terms of this model suggest to use a natural unit system attributing the
value of the speed of light, c0, to the inverse value of electric and magnetic constant, εc and μc 2. In addition
the units will be chosen to yield the elementary charge, ec, in units of energy. Using SI units this will result
in:

c0
2  = (εc μc)-1 (1)

with 
εc = (2.998E+8 [m²/Jm] )-1 = (2.998E+8)-1 [J/m] 
μc = (2.998E+8 [Jm/s²] )-1 = (2.998E+8)-1 [s2/Jm] 
From the  Coulomb term  3 b0 =  e2/(4πε0)  =  ec

2 /(4πεc)  =  2.307E-28 [Jm]  follows  for  the  square  of  the
elementary charge: ec

2 = 9.67E-36 [J2]. In the following ec
 = 3.110E-18 [J] and ec/εc = 9.323E-10 [m] may be

used as natural unit of energy and length. 
The appropriate replacement for G/c0

4 in the EFE will be 1/εc.
In the development of this model originally Ψ(r) was introduced ad hoc and since this approach is elaborated
in more detail it will be outlined first in chapter 2 while in chapter 3 it will be demonstrated that the basic
equations can be derived from the Einstein field equations.
For both approaches it might be useful to visualize a particle as a rotating electromagnetic field with the E-
vector  constantly pointing towards the origin  4. Neutral particles are supposed to exhibit nodes separating
corresponding equal volume elements of opposite polarity. 
To focus on the more fundamental relationships the discussion of minor aspects of the model parameters is
exiled to an appendix, related topics to be marked as [A]. The model may be used to calculate additional

1 The relation of the masses e, µ, π with α was noted in 1952 by Y.Nambu [2]. M.MacGregor calculated particle mass 
and constituent quark mass as multiples of α and related parameters [3]. There is an extended, slightly altered and more 
speculative working paper [4].
2 Subscript c will indicate the connection of the corresponding coefficients with c0. 
3 b0 = e2/(4πε) used as abbreviation, e=elementary charge, ε=electric constant
4 with B-field and propagation velocity perpendicular to it;
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particle properties,  magnetic  moment  is  given as example in [A6].  Typical  accuracy of the  calculations
presented is ~ 0.001 which would be in the order of magnitude of expectable QED corrections 5 .

2 Ad hoc approach
2.1 Basic calculations
The model may be essentially based on a single assumption: 
Particles  can  be  described  by  using  an  appropriate exponential  wave  function,  Ψ(r),  that  acts  as  a
probability amplitude on an electromagnetic field. 
An appropriate form of Ψ can be deduced from three boundary conditions:
1.) To be able to apply Ψ to a point charge Ψ(r = 0) = 0 is required
2.) To ensure integrability an integration limit is needed. 
3.) Ψ should be applicable regardless of the expression chosen to describe the electromagnetic object. In
particular requiring a point charge and a photon representation of a localized electromagnetic field (particle)
to have the same energy results in an exponent of 3 for r in the following equation (see (12)).
Condition 1.) to 3.) are met by an expression (corresponding differential equation see [A1]) :

Ψ n(r)  = exp(−(βn /2

r3
+[(β n/2

r3 )
2

– 4
βn/2

σ r3 ]
0.5

)/2)       (2)

Up to the limit of the real solution of (2), r = rn, with

rn = (σ βn /8)1/3 , (3)

in all integrals over Ψ(r) given below equ. (4) may be used as approximation for (2)

Ψ n(r<rn)  ≈ exp(−βn /2

r 3 ) (4)

Phase will be neglected on this approximation level, properties of particles will be calculated by the integrals
over Ψ(r)2  (hence factor 2 in (2)ff)  times some function of r which can be given by:

∫
0

rn

Ψ (r)2 r−(m+1)dr  ≈ ∫
0

rn

exp(−β /rn
3)r−(m+1)dr  = Γ (m /3, β / rn

3)  β−m/3

3
  =  ∫

β/rn
3

∞

t
m
3

 −1
e−t dt  β−m/3

3
(5)

with m = {..-1;0;1;..}. The term Γ(m/3, β/r l
3)) denotes the upper incomplete gamma function, given by the

Euler integral  of  the second kind with β/rn
3 as lower integration limit.  For m ≥ 1 the complete gamma

function Γm/3 is a sufficient approximation, for m ≤ 0 the integrals have to be integrated numerically.
Coefficient  βn may  be  given  as  partial  product  of  a  value  for  a  reference  particle,  β ref,  carrying  the
dimensional term, βdim , that might be given in the unit system defined in chpt. 1 as [see A4]:

βdim  = 1
(4 π )2( ec

ε c
)

3

= 5.131E-30 [m3]       (6)

times particle specific dimensionless coefficients, αn, of succeeding particles representing the ratio of βn and
βn+1: 

βn  = βref Πk=1
n αk  = 2σ α ref βdim Πk=1

n α k  = 2σ α ref βdim Πn            n = {1;2;..}      6 (7)

Index n will indicate solutions of (2) and serve in the following as a radial quantum number. For the angular
terms of  Ψ(r, ϑ, φ), to be indicated by index l, only rudimentary results exist, their contribution has to be
incorporated in  parameter  σ  which according to  (2)  is  related to  the  solution for  a  bound state  and rn.
Coefficients rn and σ determine the integration limit of the integrals over Ψ and thus are a crucial factor in
particular  for  the (semi-classical)  calculation  of  angular  momentum J.  For  J  =  1/2  [ħ] σ  will  have  the
following value, given here in various expressions useful in the following (see [A2,3]):

σ = 8 rn
3 /βn = (1.5133 α-1 2/3 |Γ-1/3|)3  = 1.51333 σ* = 8(4 π|Γ -1/3

3|
3 )

3

= 1.772E+8 [-]       7 (8)

5 errors due to approximation of Γ-functions may be in the same range;
6 Πn denoting the sum of all particle coefficients except the one of the reference particle (electron, see below)
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Particle energy is expected to be equally divided into electric and magnetic part, W n = 2Wn,el = 2Wn,mag . To
calculate energy, the integral over the electrical field E(r) of a point charge is used as a first approximation.
Using (5) for m = 1 gives:

Wpc,n = 2ε0∫
0

∞

E (r)2 Ψ n(r)2 d3 r = 2b0∫
0

rn

Ψ n(r)2 r−2 dr = 2 b0 Γ1/3 βn
-1/3 /3     (9)

Using equation (5) for m = -1 to calculate the Compton wavelength, λC, in the expression for the energy of a 
photon,  hc0/λC , gives the following expression for λC :

λC,n  ≈ ∫
0

λC , n

Ψ n(r)2 dr = ∫
β / λC, n

3

∞

t -4/3e-t dt  βn
1/3

/3 ≈  36 π2  |Γ-1/3| βn
1/3 /3 (10)

to be used in:

WPhot,n = hc0/λC,n  =
hc0

∫
λC, n

Ψ n(r)2 dr

=
3hc0

36 π 2
|Γ−1/ 3|βn

1/3 (11)

The energy of a particle has to be the same in both photon and point charge description. Equating (9) with 
(11) and rearranging to emphasize the relationship of α with the gamma functions ( Γ1/3 = 2.679; |Γ-1/3| = 
4.062) gives (note: h => ħ):

4 π Γ 1/3|Γ−1/3|
0.998

 = 
9hc0

18 π b0

=
ħ c0

b0

= α-1       (12)

2.2 Quantization with powers of 1/3n over α
Inserting (7) in the product of the point charge and the photon expression of energy, (9) and (11), gives for
Wn

2:

W n
2  = 2b0 hc0  

∫
rn

Ψ n(r)
2 r−2 dr

∫
λC , n

Ψ n (r)2 dr

~
1

βn
2/3 ~

α1
1/3 α2

1/3 ..... αn
1/3

α1 α2 ....α n

                     (13)

The last expression of (13) is obtained by expanding the product Πn
- 2/3 included in βn

- 2/3 of (7) with Πn
1/3

From this term it is obvious that a relation αn+1 = αn
1/3 yields the only non-trivial solution for Wn

2 where all
intermediate particle coefficients cancel out and Wn becomes a function of coefficient α1 only. Identifying α1

as α1 = αµ = α3  would give an expression using the muon as reference state: 

α1 α1/3 ....α ^(3 /3n)

α 3 α1 ....α ^(9 /3n)
= α ^(3/3n)/α 3                                                 n = {1;2;..} (14)

The corresponding term for particle energies would be (using (12)):

W n  = (4 π b0
2

   α
 
∫
rn

Ψ n(r)2 r−2 dr

∫
λC ,n

Ψ n(r)
2 dr )

0.5

 = (4 b0
2 Γ 1/3

2

9[α 4 π Γ1 /3|Γ−1/3|] βn
2/3 )

0.5

 ≈ W µ  Π k=1
n α^(-1/3k )    n = {1;2;..}  (15)

for spherical symmetry. Equation (15) requires a reference state though no state is singled out in particular in
the equations. The partial product of (15) may be extended to include the electron by inserting  ad hoc an
additional factor ≈ 3/2 to represent the anomaly due to the energy ratio of e, µ, W µ /We = 1.5088 α-1 (see
[A3]).  
Extending the terms of the partial product further, beyond the electron, yields a term for Planck energy, W Pl,
(see 2.6.1) which might be interpreted as a fundamental limit of the product, yielding the ground state term.

7 Factor 1.5133 is also part of a minor term depending on the radial quantum number, n (see [A3,4]). Thus in the 
following βn  may be split into σ* =  σ/1.51333 = 5.112E+7 [-] and n-dependent terms containing factor 1.51333. The 
expression as cube of |Γ-1/3|3 results from a geometrical ansatz for σ ([A3], chpt. 4.2), numerically identical to the value 
from the angular momentum calculation.
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The ratio of electron and Planck energy,

1.0006
W e

W Pl

 = 1.5133
2
α

10
/2 = 4.90 E-22  = αo  (16)

may be used to define a ground state as:

βref = βe = σ*α0 β dim= 
σ *α 0

(4 π )2 (
ec

εc
)

3

(17)

indicating that the electron represents this ground state and enabeling to express particle energy “ab initio”
by using equ. (16) (see [A4 (52)]).

 2.3 Non-spherical symmetric states
Up to here only spherical symmetry, y0

0, and Ψ(r) have been considered 8. The ratio of the volume integrals
attributed  to  spherical  harmonic  Y1

0  and  Y0
0  gives  a  factor  of  1/3.  Assuming  Y1

0  to  be  a  sufficient
approximation for the next angular term and  Wn,l ~ 1/rn,l ~ 1/Vn,l

1/3 (V = volume) to be applicable for non-
spherically  symmetric  states  as  well,  will  give  W1

0/W0
0 =31/3  =1.44  =  (y1

0  )-1/3.   A change  in  angular
momentum is expected for this transition which is actually observed with ΔJ = ± 1 except for the pair µ/π
with Δ J = 1/2. Such angular terms have to be attributed to the parameter σ (see 2.4). Results for particles
assigned to y0

0,  y1
0 are presented in table 1.

Relative to the energy of the electron, We, this gives in first approximation:

Wn /We  ≈ 3 /2( yl
m)-1/3 Π k=0

n α^(-1/3k )            n = {0;1;2;..} (18)

2.4 Upper limit of energy
According to 2.3 higher angular terms will reduce the value of σ  9. The variable part in σ is given by the
term (1.5133 α-1)3, leaving the minimum for σ, defined by |Γ-1/3| /3, being required to appear in the integral
expression for r, and the integers in the square bracket of (2), to be: 

σmin = (2/3 |Γ-1/3|)3 (19)

The maximum angular contribution to Wmax would be :

ΔWmax, angular  = 1.5133 α-1   (20)

According to (18) and  (20) 10, the maximum energy will be Wmax = We 1.5*1.5133 α-2.5 = 4.05E-8 [J].
In the simple visualization sketched in the introduction the “rotating E-vector” might be interpreted to cover
the whole angular range in the case of spherical symmetric states while a p-like state of an Y1

0-analogue
might be interpreted as forming a double cone. Increasing the number of angular nodes would close the angle
of the cone leaving in the angular limit case, l -> ∞, a state of minimal angular extension representing the
original vector, however, extending in both directions from the origin and featuring parity p= -1. Considering
only „half“ such a state, extending in one direction only and having p= +1, would notably feature an energy
of 1.019 WHiggs, suggesting the energy value of the Higgs boson as possible high energy end of (18).

2.5 Expansion of the incomplete gamma function Γ(1/3, βn/r3)
The series expansion of Γ(1/3,βn/r3) in the equation for calculating particle energy (9) gives [7]:

Γ (1/3,  β n/(r3))  ≈ Γ 1/3  - 3( βn

r3 )
1/3

+ 3
4 (

βn

r 3 )
4 /3

 = Γ 1/3  - 3
βn

1/3

r
 + 3

4

βn
4/ 3

r4 (21)

and for Wn(r): 

W n(r)  ≈ W n  - 
2
2

b0

3 βn
1/3

3 βn
1/3 r

 + 2b0
3
4

β n
4/3

3 βn
1/3 r 4

 = W n  - 
b0

r
 + b0

β n

2r 4
      11 (22)

The 2nd term in (22) drops the particle specific factor βn and gives the electrostatic energy of two elementary

8 yl
m defined as yl

m = ∫∫Ψ (φ ,ϑ )
2sin(ϑ )dφ dϑ  / 4 π

9 See 4.2  as well and the general expression of (2) for bound states;
10 and using the limit term of note 30 in place of 1.5133, i.e. using the exact terms;
11 Signs not adapted to conventional definition. The 2nd term may be divided by two since it represents only an 
electrostatic contribution, to be complemented by an equivalent magnetic term.
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charges at distance r. The 3rd term is an appropriate choice for the 0th order term of the differential equation
[A1 (38)ff]. It is thus supposed to be responsible for the localized character of a particle state and thus may
be identified with the “strong force” of the standard model.

Table 1: Particle energies for y0
0 (bold), y1

0   12; col. 2: radial, angular quantum number; col. 3: energy values
of [6] except* (see 2.6.1); col. 4: α-coefficient according to the energy terms of (18), including (2/3) α-3 of
electron; col. 5: coefficients in β of (7); col. 6: Wcalc calculated using the slightly more precise [A4 (50)f] in
place of (18); ** see 2.4; 13

2.6 Gravitation
2.6.1 Planck scale
Expressing  energy/mass  in  essentially  electromagnetic  terms  suggests  to  test  if  mass  interaction  i.e.
gravitational  attraction  can  be  derived  from  the  corresponding  terms.  Assuming the  expansion  of  the
incomplete Gamma function for the integral over r-2, Γ(1/3,βn/r3) (21)f, might be an adequate starting point
for gravitational attraction as well, implies that the Coulomb term b0 will be part of the expression for FG, i.e.
the ratio between gravitational and Coulomb force, e.g. for the electron,  FG,e /FC,e = 2.41E-43, should be be a
term that can be given as completely separate, self-contained expression. 
This  is  equivalent  to  assume  that  gravitational  interaction  is  a  higher  order,  nonlinear  effect  of
electromagnetic interaction and as such should be of less or equal  strength compared to the latter.  This
suggests to use the expression

b0 = G mPl
2 = G WPl

2 /c0
4               (23)

12 up to Σ'0 all resonance states given in [6] as **** included; for residual gaps see [4]; Exponents of -9/2, 27/2 for Δ and tau 
are equal to the limit of the partial products in (7) and (18); rn calculated with (3); 1.5133 rounded to 3/2;
13 Extending the model to energies below the electron with a coefficient of α3 in (18) gives a state of energy ~ 0.2eV 
which is roughly in a range expected for a neutrino [5]. 
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n, l J

Planck 1.0 E+21* - -

0, 0 0.51 1.0001 1/2 1412

1, 0 105.66 1.0000 1/2 6.83

1, 1 139.57 1.0918 0 4.74
K 495 0

2, 0 547.86 0.9933 0 1.32

2, 1 775.26 1.0124 1 0.92

2, 1 782.65 1.0028 1 0.92
K* 894 1

3, 0 938.27 1.0016 1/2 0.76

n 3, 0 939.57 1.0003 1/2 0.76
958 0

1019 1

4, 0 1115.68 1.0106 1/2 0.63

5, 0 1192.62 1.0046 1/2 0.61

Δ 1232.00 1.0025 3/2 0.59
1318 1/2

3, 1 1383.70 0.9796 3/2 0.53

4, 1 1672.45 0.9724 3/2 0.45

N(1720) 5, 1 1720.00 1.0046 3/2 0.43

1776.82 1.0026 1/2 0.4

Higgs 1.25 E+5 1.0192 0 0.006

W
n,Lit      

 
[MeV] 

α-coefficient (energy)            
equ (18) 

α-coefficient  in ß    
                

equ (7)

W
calc

/ W
Lit

 r
n
 [fm]

(-1,∞)  (2/3 α-3)3 3/2 α-1 2                    
source term, relative to e ! 

0.9994  

rel. to e ! 

e+-  2/3 α-3  (3/2)3 α9

µ+-  α-3α-1  α9α3

π+-  α-3α-1 1.44  α9α3/3

η 0  α-3α-1α-1/3  α9α3α1

ρ0  (α-3α-1α-1/3) 1.44  α9α3α1 /3
ω0  (α-3α-1α-1/3) 1.44  α9α3α1 /3

p+-  α-3α-1α-1/3α-1/9  α9α3α1α1/3

 α-3α-1α-1/3α-1/9  α9α3α1α1/3

η'

Φ0

Λ0  α-3α-1α-1/3α-1/9α-1/27  α9α3α1α1/3α1/9

Σ0  α-3α-1α-1/3α-1/9α-1/27α-1/81  α9α3α1α1/3α1/9α1/27

∞, 0  α-9/2  α27/2

Ξ

Σ*0  (α-3α-1α-1/3α-1/9) 1.44  α9α3α1α1/3 /3
Ω-  (α-3α-1α-1/3α-1/9α-1/27) 1.44  α9α3α1α1/3α1/9 /3

 (α-3α-1α-1/3α-1/9α-1/27α-1/81)1.44  α9α3α1α1/3α1/9α1/27 /3
tau+- ∞, 1  (α-9/2)1.44  α27/2 /3

∞,∞ 
**  (α-9/2) 3/2 α-1 /2  (α27/2)/(3/4 α-1)3 



as definition for Planck terms , giving for the Planck energy WPl
 :

WPl
  = c0

2 (b0 /G)0.5 = c0
2 (αhc0/G)0.5 (24)

Expression (16) gives the ratio of We to WPl as  3rd power of the electron coefficient, αe
3 = (1.51333 α9)3, 

divided by two times the angular limit factor according to (20), 1.5133 α-1. The latter factor may be 
interpreted as sum of minor factors of a more detailed analysis of β [A4 (50)ff]. The relationship is somewhat
phenomenological, in chapter 4.2 a more fundamental interpretation of the position of WPl in the model will 
be discussed.
Using [A3 (48)] to express factor 1.5133 gives (FG, FC = gravitational, Coulomb forces):

( W e

W Pl
)

2

 = ( FG, e

FC ,e
)

calc

 ≈ ( 1.51333 α 9

1.5133 α−1 2)
2

 = ((4 π )2|Γ -1/3|
4
α12

2 )
2

 = 1.0008
2  (FG, e

FC, e
)

exp

 = 
GW e

2

c0
4 b0

 = α0
2    (25)

Using (12) and  [A4 (52)] for calculating We would turn G into a coefficient based on electromagnetic 
constants:

Gcalc  ≈ 
c0

4

4 π εc ( 1
3 π2/3

 (|Γ−1/3|
Γ 1/3

)
4

α12)
2

 ≈  
c0

4

4 π ε c

 
2
3

 α 24  = 1.001Gexp   (26)

2.6.2 Virtual superposition states
Within this model particles might interact via direct contact in place of boson-mediated interaction. The
particles are not expected to exhibit a rigid radius. Within the limits of charge and energy conservation a
superposition of many states might be conceivable, extending the particle in space with radius ~ r n, λC,n etc.
appropriate for energy of each virtual particle state (VS)  14, providing a source of energy at a distance rVS

from the  primary particle and in turn contributing to the stress-energy tensor responsible for curvature of
spacetime that manifests itself in gravitational attraction.  
In  general  VS are not  supposed to consist  of  analogues of e.g.  spherical  symmetric states covering the
complete angular range of 4π but to be an instantaneous, short term extension of the (rotating) E-vector thus
requiring the angular limit factor of (20).
A long range effect of the 3rd, the strong interaction term, of (22) may be exerted via virtual particle states. To
estimate such an effect in first approximation the following will be used;

- the 3rd term of equ. (22) with β according to (7), (17), 
- the angular limit state of  σ*min according to (19), σ*min ≈ 1, 
- βdim = (4π)-2 (ec/εc)3 ≈ (α-1 re)3 . 

For any VS at r = α-1  rVS = (4π)-2/3 ΠVS
1/3 ec/εc , i.e. the radius of the VS in natural units,  equ. (27) will hold:

W VS(r )  ≈ b0  
βVS/2

(α−1  rVS)
4

 ≈ b0

α0ΠVS(α−1  re)
3

(α−1  rVS)
3(α−1  rVS)

 ≈ b0

α0 ΠVS(α
−1  r e)

3

(ΠVS
1/3 α−1  re )

3(α−1  rVS)
 = b0

       α0

(α−1  rVS)
 = 

   b0

(α−1  rVS)
 (FG ,e

FC, e
)

0.5

          
(27)

Considering that the composition of the stress-energy tensor from virtual states is expected to be based on a
much more complex mechanism requiring consideration of all possible virtual states at a particular point and
appropriate averaging, (27) seems to be an acceptable first approximation. The crucial factor that turns the r-4

dependence of the strong interaction term into r-1 of gravitational interaction is the proportionality of βn to the
cube of any characteristic particle length, rn,  λC,n etc. which is valid for each particle state subject to the
relations of this model.
Equ. (27) is a representation of the gravitational potential of the electron, terms for other particles may be
obtained by inserting values according to (18) in (27) which might be interpreted as the intensity/frequency
of emergence of virtual states being proportional to the energy of the primary particle.

14 The superposition states considered here would be not virtual in a Heisenberg sense, the energy is provided by the 
source particle.
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3 Relationship with General Theory of Relativity
3.1 Basic model + order of magnitude
The model provides a quantitative expression for the constant of gravitation in electromagnetic terms as well
as a mechanism for energy based curvature of spacetime at a distance from a primary particle, adding some
features to the General Theory of Relativity (GR).
The minute  factor  G/c0

4 in  the  Einstein  field equation (EFE)  is  responsible  for  this  equation  not  being
particularly suited to attempt a calculation of particle energies based on this formalism. The interpretation of
gravitation as a higher order effect with respect to electromagnetism suggests to replace G/c 0

2 [m/kg] or G/c0
4

[m/J] by an equivalent electromagnetic term. A term of order 1/ε c [m/J] may provide the appropriate units
and the necessary order of magnitude, suggesting to use the substitution 

G /c0
4      =>     

1
εc

    15
(28)

It is tempting to test if the equations of this model may be derived directly from the Einstein field equations.
The central concept will be the “rotating E-vector” of the introduction, i.e. a photon is visualized as having
its E-field vector component constantly oriented to a fixed point, the origin of the coordinate system used.

The basic question will be: What kind of metric will yield an undisturbed photon propagation according to
Maxwell equations that manifests itself as a localized object in flat spacetime ? 16 
In a spherical coordinate system 17 the rotation of an object with extension in angular direction will result in
some kind of self interaction increasing with r ->0  unless space(time) is curved in such a way as to prevent
that. This will be the case if the r2 - term in the angular coordinates is canceled, implying an expansion of
curved spacetime with r2 at any given r, i.e. the Ricci scalar should be R(r) ~ - 1/r2. 

In a trivial version the metric will be given by

g µν=(+1,−1,−r2 ,−r2sin2Θ)    =>   gµν=(+1,−1,+r2,+r2sin2 Θ)    18 (29)

All Christoffel symbols except Γ23
3, Γ32

3, Γ33
2 will be zero, yielding R22 = - 1,  a Ricci scalar R = -2/r 2 and an

Einstein tensor Gµν  of

Gµν = (+ 1/r 2, - 1/r 2, 0, 0)  

3.2 Differential equation + coordinate transformation
In the following the Ricci scalar will be required to be:

R = - 2/r2 (30)

and a general exponential ansatz will be used for g00,11 :

gµν = (+exp(a v(r)), − exp(b v(r)), +r2,  +r2 sin2θ)   

This will result in a  Ricci scalar of (see [A5]):

R  = (e−bv[−av ' '  - 
a2 v '2

2
 + 

ab v'2

2
−

(a−b) v '
r ]

00,11
 + e−bv[(b−a) v '

r
 - 

2

r2]
22,33

)  - 2 /r2 (31)

To get R = -2/r2 one has to set the term in curved brackets to zero. 

The equation (31) refers to local coordinates and has to be solved for these or transformed to flat coordinates.
The  latter  will  be  attempted  by transforming  the  spherical  object  of  a  particle  back  into  a  photon  of
appropriate wavelength, assuming that 

1.) for  r ->0 the angular coordinates have to reflect the expansion ~ 1/r2, while

2.) the energy-space-time relation of a photon, i.e. Wph ~1/r, ~1/T reflects a contraction of spacetime linear in
coordinates ct, r .

15 It remains unclear if a factor of  4π, 8π  or similar has to be included.
16 Or alternatively: How to transform an object of C∞,v  (O(2)) symmetry (considering for the photon the E-vector only) 
into one of Kh (O(3)) symmetry ? (considering phase / the rotational quality of the objects SO(2) and SO(3) may be 
more appropriate);
17 coordinates t, r, Θ, Φ = x0, x1, x2, x3; only diagonal elements considered, µ=ν;
18 The plus sign implies non-Lorentz invariance as expectable since a distinctly local coordinate system is dealt with.
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A coefficient ρ [m] will be needed to obtain dimensionless terms 19. This gives:

[  - a v ' '  - a2 v '2

2
 + ab v' 2

2
 - 

(a−b)v '
r ]

00,11

 r
ρ

  +  [ (b−a) v '
r

 - 2
r 2 ]

22,33

 ρ
2

r2
 = 0 (32)

An equation of type (32) will in general feature solutions of type exp(v) = exp (+/- x/r3), which is a sufficient
criterion to obtain equations (12), (13)f i.e. the numerical expression for α and the quantization of particle
energies. 

Setting a = b eliminates some terms, giving:

 - av ' '  
r
ρ

  -  
2

r2  
ρ2

r2  = 0      =>     a v ' '  =  - 
2 ρ3

r5 (33)

The solution of equ. (33) corresponds to equ. (4) with setting a = b  = 1/3, ρ3 = 3/2 β:

ev  = Ψ (r) = exp(−ρ3

3r3 )     =>     
−4 ρ3

r 5  + 
2 ρ3

r 5  =  - 
2 ρ3

r5    20 (34)

In order to reproduce the factors 4π included in (9) and (17) an appropriate term might be added to the
angular terms of  (31) giving

R=(e
−v [−av ' ' ]00,11

r
ρ

 + e
−v[ - 

2

r2 ]
22,33

ρ2

(4 πr)2) - 
2 ρ2

(4 πr)2 r4 (35)

The Einstein tensor component G00 will be:
G00 = [- v''/2  - v'/r] + ev ρ2/((4π)2 r4) =  ev ρ2/((4π)2 r4)
Equating with the component of the stress-energy tensor, G00 = T00, and using (28) will give (w = energy density):

ev ρ2

(4 π )
2r 4  ≈ 

w
ε

     =>     
ε ev ρ2

(4 π )
2 r4  ≈ w     (36)

The volume integral over (36) gives the particle energy according to (9) if ρ in (36) is given by 

ρ3  = 3
2σ αe Π n(4 π )2( ec

ε c
)

3

     21 (37)

4 Discussion
4.1 Standard model of particle physics
The standard model of particle physics in spite of its numerous achievements is not particularly efficient in
quantitative calculation of intrinsic particle properties such as mass / energy. Input parameters of lattice QCD
calculations of hadron masses [8], [9], are quark masses, coupling constant and a reference particle for the
absolute energy scale, i.e. typically about 4 parameters are needed to calculate mass of ~12 particles with an
accuracy in  the range of 1%. The model  presented here achieves  comparable results  “ab initio” and in
contrast to QCD methods includes all particles, leptons and hadrons. The standard model distinguishes quite
rigidly between both types, postulating that a set of physical objects characterized by an almost identical set
of experimental observables is based on completely different physical principles. The distinctive observable
for both particle groups is assumed to be the strong force which is postulated to be zero for leptons, which
per se is not verifiable beyond experimental accuracy. The three generation model, attributing a neutrino to
each charged lepton, serves as supporting argument. However, the total number of neutrinos is not beyond
doubt [5], [10], and neutrino oscillation obscures the earlier assumption of clearly distinct particles. Last not
least, a distinctive interaction of neutrinos with the charged leptons might simply be due to a very weak
strong interaction of the particles involved, not requiring any assumption beyond that. 

19 i.e. the factor r2 in the angular terms will be canceled by ρ2/r2, restoring C∞,v (O(2)) symmetry, while using factor r /ρ
in the ct, r terms would assure all photons to obey Wph ~ 1/ρ . 
20 polar coordinates
21 The term σ αe Πn has to appear in the denominator since ρ2 appears in the nominator of equ (36), not affecting the 
validity of the equations of this model. See [A1] as well.
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According to this model weak strong interaction for leptons is expected in scattering events since the effect
of strong interaction between particles is considered to be due to wave function overlap [11] depending on 

1) comparable size and energy of wave functions,
2)  sufficient  net  overlap:  If  regions  with  same and opposite  sign  balance  to  give  zero  net  overlap,  no
interaction occurs. 

From condition 1) it is obvious that the wave functions of neutrino and electron will not show effective
interaction with hadrons 22. In the case of the tauon the second rule is crucial. In this model the tauon is at the
end of the partial product series for y1

0  and should exhibit  a high, potentially infinite number of nodes,
separating densely spaced volume elements of alternating wave function sign prohibiting net overlap and
effective interaction with hadrons of higher symmetry, such as the proton. 

In the standard model mass of elementary particles is generated by the “Higgs mechanism”. In this model the
Higgs boson is a candidate for the highest energy state indicating some qualitative relationship with the
Higgs mechanism. A fundamental break of symmetry associated with the creation of a „localized photon" in
this model is the generation of +/- charge due to the persistent orientation of the E-vector towards the origin. 

4.2 Relation to General Relativity
The principles of GR 23 seem to fit particularly well to the concepts used:

- the basic equation of the model may be derived from the Einstein field equations,
- it provides an expression for the constant of gravitation using electromagnetic terms,
- it gives a mechanism for curvature of spacetime at a distance from a primary particle implying curvature to 
   be in general identical to (the presence of) energy and spatial coordinate and energy to be intertwined 
   inextricably,
- it suggests a close relationship of several mass/energy related phenomena - particle energy, elements of
  the Higgs mechanism, Planck energy - with GR.

As regarding to the last point, the interpretation of the 3 rd power relationships for particle energies given
above is not unambiguous.
One way to explain the concepts of this model is the “rotating E-vector”. According to the considerations
given above the state of maximum particle energy, that coincides with that of the Higgs boson, represents an
archetype for such a “rotating localized photon”. 
Defining  this  object  not  by  its  energy but  via  possessing  some  well  defined  “maximum  curvature  of
spacetime”  this  curvature  may be  spread  over  a  larger  volume  24 resulting  in  particles  of  less  average
curvature  and thus  less  energy.  In  complete  spherical  symmetry “curvature”  is  spread  out  most  evenly
corresponding to the lowest energy.  The coefficient |Γ-1/3|, attributed to integrals over Ψ(r) dr to yield lengths
should appear as term 4π|Γ-1/3|3 /3 in the expressions for a spherical symmetric object (see [A3]). Obviously
the state of the electron fits such a particle. 
Alternatively one may start  from assuming ec to be a distinguished natural unit for energy and the fine-
structure constant α-1, that represents a relationship between different spatial symmetries (O(2) and O(3)),
being a characteristic constant for “minimal curvature of spacetime”, referring to one dimension 25. The 3D
equivalent of such an object would be characterized by α-3. Spread over a volume 4π|Γ-1/3|3 /3 would give the
energy of the electron 26. WHiggs would represent the corresponding maximum of energy / curvature according
to (18).
Considering the electron to be equivalent to a spherical symmetric object “containing”  one Higgs boson
spreading out, one might ponder what the energy of a spherical object of “maximum curvature of spacetime”
is, i.e. a spherical symmetric electron-type object containing not one Higgs boson but being filled up with
Higgs boson-like curvature.  Such a hypothetical  object might be constructed by raising the energy ratio
Higgs / electron to a power of 3, i.e. filling the whole 3D volume with Higgs particles  27. The resulting

22 As for energy density ~ Wm/Wn
4

 : e/p ~ E-13, µ/p ~ 6E-4;  µ/π ~ 1/3, i.e. in case of µ/π  some measurable effect might
be expected; different symmetry may play an additional role. 
23 as well as concepts connecting GR with electromagnetism based on 5-dimensional Kaluza type theories [12]
24 as seen from flat space
25 since originating from integrals over dr
26 Exact with the relationships given above, in 1st approximation: (4π|Γ-1/3|3/3)-1 α-3 ec ≈ 0.35 We.
27 implying a 4th power relationship between WPl and We, compare (25);

9 OPZ190704



energy would be close to the Planck energy (≈1.8 WPl; Table 2 gives a corresponding estimate in terms of
powers of α),  implying both a Planck particle and a Higgs boson to represent some kind of “maximum
curvature of spacetime” though in different symmetry. 
This suggests to change the particle order in table 1 according to table 2:

Table 2: Table with particle energies, emphasizing a relationship between elementary charge and electron as
well as Higgs boson and Planck energy; α-coefficients only, minor terms omitted ;

Conclusion
Constructing a metric for localizing a photon requires the Ricci scalar in the Einstein field equations to be R
= -2/r2 . This yields the energy term for a point charge modified by an exponential function Ψ. Applying Ψ in
the energy expression of the photon as well gives the following results:
- the fine-structure constant, α, being defined by the product of the Γ-functions in the integrals over Ψ(r) 
  related to photon and point charge symmetry, 4π Γ+1/3 |Γ-1/3| ≈ α-1,
- a quantization of energy levels given by a partial product of terms α^(-1/3n)
- elementary charge and electron as lower limits and the Higgs boson and Planck energy as upper limits for 
  particle energy,
- additional information about particle properties e.g. the lepton character of the tauon, magnetic moments,
- a series expansion for particle energy, including terms for rest energy, electromagnetic interaction and a 3 rd

  term which at short range yields effects associated with strong interaction, applied to virtual particle states 
  gives a quantitative term for gravitational interaction.

The only parameters of the model are the values of the speed of light and the elementary charge.
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Appendix

[A1] Differential equation
The approximation Ψ(r<rn) of equation (  4  ) provides a solution to a differential equation of type

−
r
6

d2 Ψ (r)

dr2  +  
β n/2

2r3

dΨ (r)
dr

 −  
βn/2

r4 Ψ (r )  =  0  (38)

which corresponds approximately to the limit l -> ∞ while has to be amended by σ in the denominator of the last term
for the general case.  
With the 3rd term in (22) used for potential energy, V:

V(r) = b0 β0/(2 r4) = b0 [ σ* α0 (ec/εc)3 /(4π)2] /(2r4)     (39)

and a corresponding expansion by (ħc0)2α-2 /b0
2 for the first term, equ. (38) may be given as:

−
(ħc0)

2 r

α−2 b0

 
d2 Ψ (r)

dr2
 +  r V (r)  

dΨ (r)
dr

 −  
V (r)

σ
Ψ (r)  =  0 (40)

Equation (35) will produce a differential equation with non-vanishing terms of v' setting a=-i, b=4i, v = -ρ3/r3 : 

[+i v ' '  + 5 /2 v '2  + 5 i v '
r ]

00,11

 + [+5 i v '
r

 - 2
r2 ]

22,33

3 i ρ3

2r3
 = 0 (41)

giving 

[−12i ρ3

r5  + 45 ρ3

2r8  + 15i ρ3

r5 ]
00,11

 + [−45 ρ3

2r8  - 3 i
r5 ]

22,33

 = 0 (42)

[A2] Angular momentum 
A simple relation with angular momentum J for spherical symmetric states will be given by applying a semi-classical
approach using 

J  = r2 x p(r1)  = r2W n(r1)/c0 (43)

with  Wkin,n = 1/2 Wn  , using term 2b0 of (9) as constant factor, integrating over a circular path of radius  |r2| = |r1| and
setting the terms of (3), (8) as integration limits. This will give:

|J| = ∫
0

r n

∫
0

2π

J n(r)dφdr  = 4 π
b0

c0

 ∫
0

rn

Ψ n(r )
2r−1dr (44)

From (5) follows for m = 0:   

∫
0

r n

Ψ n(r)
2 r−1 dr = 1/3∫

8 /σ

∞

t -1 e -tdt ≈  5.45  ≈  α-1/8π (45)

Inserting (45) in (44) would provide:

 |J| = 4 π
b0

c0

 
α -1

8π
= 1/2 [ħ] (46)

[A3] Coefficient ~1.5
The value of 1.51 α-1 in rn, σ originates from the relationship with J through equ. (44) and is obviously close to the ratio
Wµ/We = 206.8 = 1.5088 α-1. The exact value of 1.5133 for ≈ 1.51 has been chosen due to :
1.  a possible geometrical interpretation (using(12)) of the term in σ:

1.51 α-1 |Γ-1/3| /3 ≈  |Γ-1/3| /Γ1/3  4π |Γ-1/3| Γ1/3/0.998   |Γ-1/3|/3  ≈
4 π|Γ -1/3|

3

3
=  (σ/8)1/3 (47)

providing a geometric definition for σ and giving 1.5133 as

1.5133  = 4 π Γ -1/3
2  α (48)

2. Factor 1.5088 of the ratio Wµ/We being subject to a 3rd power relationship of the same kind as the α coefficients:
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(1.5133
1.5088)  = (1.5133

1.5 )
1/3

(49)

indicating that the radial terms of Πn in βn and the angular components of σ are not correctly separated yet or may not be
separable even in the case of spherical symmetric states.

[A4] Particle parameter β
A more detailed expression for β than given in (17) will be attempted in the following.
The term (49) will be used  within the particle specific factor  (square brackets),  thus  coefficient 1.5133 of σ will be
placed there, giving for the general term (i.e. excluding the electron):

βn  = 
2

(2 π)3  (2
3 )

3

σ * 
1

(4 π)2(ec

εc
)

3

Π k=0
n [α3(1.5133

1.5 )]^( 3
3k )          n = {1,2,...}    28 (50)

for the electron:

βe  = σ * 1
(4 π)

2 (e c

εc)
3

 2
(2 π )

3  ( 2
3)

3

[  3
2

 α3(1.5133
1.5 )]

 3
 = α 0  σ

1.51333  1
(4 π)

2 (ec

εc )
3

         29 (51)

the particle specific factor is given in square brackets (α0 in bold). The other factors are due to
- factor 2: Ψ appearing squared in the integrals,
- factor 1/(2π)3 : representing 2π of the integral limit in (44),
- factor (2/3)3: due to anomalous factor 2/3 in We/Wµ,
- 1/(4π)2 : see 3.2 (35)ff.; b0 appearing squared in (40).
Using (51) We may be given as:

W e  = 2b0

Γ+1/3

3 (9 π5 /3α
|Γ -1/3| ( εc

ec)[
α−3

1.5133 ]) = 1.5 π 2/3

1.5133
Γ+1/3

|Γ-1/3|
ec

α2
=1.0001 We,exp (52)

[A5] Metric
gµν = (+exp(a v(r)), − exp(b v(r)), +r2,  +r2 sin2θ)   

gµν =  (+1/exp(av(r)), − 1/exp(bv(r)), + 1/r2,  +1/r2 sin2θ)

Γ01
0 = Γ10

0 = a v' /2 Γ00
1 = a v' e (a-b)v /2 Γ11

1 = b v' /2

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = 1/r Γ22
1 = + r e-bv Γ33

1 = Γ22
1 sin2θ 

Γ23
3 = Γ32

3 = cotθ Γ33
2 = − sinθ cosθ

R00 =  e(a-b)v [- a v''/2 - a2v'2/4 + ab v'2/4 - a v'/r] R11 = [+ a v''/2  + a2v'2/4 - ab v'2/4 - b v'/r] 

R22 = e-bv [(b-a) v'r /2 - 1] -1 R33 = R22 sin2θ 

g00R00 + g11R11 = e-bv [- a v'' - a2v'2/2 + ab v'2/2 - (a-b) v'/r]
g22R22 + g33R33 =  e-bv [(b-a) v'/r - 2/r2] -2/r2 

[A6] Magnetic moment 
Within  this  model  particles  are  treated  as  electromagnetic  objects  principally  enabling a  direct  calculation  of  the
magnetic moment M from the electromagnetic fields.
The magnetic moment Me of the electron is given as product of the anomalous g-factor, ga = 1,00116, Dirac-g-factor, gD

= 2, and the Bohr magneton, µB = e ħ/(2me), times the quantum number for angular momentum, J = 1/2: 

Me  = ga gDµB /2  = ga

2e c0
2

2W e

 ħ
2

 = ga 9.274E-24 [Am2]   30 (53)

The factor ga arises from the interaction of the electron with virtual photons as calculated in quantum electrodynamics
and should not be part of a calculation of the magnetic moment from the field of the electron itself. Within this model
the factor 2 of gD originates from the fact that particle energy is supposed to be equally divided into contributions of the
electric and magnetic field,  Wel =  Wmag = Wn/2 and only the magnetic field, i.e. Wmag contributes to the magnetic
moment.
Inserting the term for particle energy of (9) in (53) gives: 

28 limit n -> ∞ for partial product 1.5133 Πk=0
n  (1.5133/1.5)^1/3k = 1.506645 = (1.5*1.5133)0.5

29  Note: 2 (2/3)3 /(2π)3  ≈ (1.5133 α-1 2)-1;
30 Note: to allow for comparison with tabulated values of M in units of [Am2] the calculations in this chapter use          
e [C] not ec  [J], conversion factor: [m2C/s ] /[m2 J/s ] = e/ec = 1/19.4 [C/J]. 
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Me

ga

 = 
eħ c0

2

2W e

 = 
eħ c0

2

2
 

3 βe
1 /3

2b0 Γ +

 = e c0 βe
1 /3  (|Γ -1/3|

3
 

3
|Γ -1/3|) 

3 [ħc0/b0]

4 Γ+

 = e c0 β e
1/3|Γ -1/3|

3
 [ 9 [α−1

]

4 Γ 1/3|Γ -1/3|] (54)

The relation of the values of E and B in an electromagnetic wave is given by B = E/c0.  This gives as first approximation
for the value of Mn  :

Mn  ≈ 
1
μ
∫
0

r n

B(r )Ψ n(r )
2d 3r  = εc0∫

0

rn

E(r )Ψ n(r )
2d 3r  = ec0 β n

1/3|Γ -1/3|
3

 
1.5133

α
       (55)

Equation  (55)  neglects  contributions  to  B(r)  from  other  parts  of  the  standing  wave  and  requires  an  appropriate
integration of those. The term 1.5133/α and that in square brackets of (54) consist of integral terms over Ψ(r)2 indicating
that it might be possible to get the exact solutions from a more elaborate version of this model.

Table 3: Absolute values calculated for magnetic moment approximated with (55) compared to literature [6]
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|M|_Calc [Am2] |M|_Calc/|M|_Lit
-9.28E-24 6.81E-23 -7.335
-4.49E-26 3.31E-25 -7.371
1.41E-26 3.72E-26 2.638

n -9.66E-27 3.72E-26 -3.850
-3.10E-27 3.10E-26 -10.014

M_Lit [Am2]
e+-

µ+-

p+-

Λ0


