
Dynamic Reconfiguration of Business Processes

Leandro Nahabedian1, Victor Braberman1, Nicolás D’ippolito1, Jeff Kramer2,
and Sebastián Uchitel1,2

1 Universidad de Buenos Aires / CONICET, Argentina
{lnahabedian | vbraber | ndippolito | suchitel}@dc.uba.ar

2 Department of Computing, Imperial College, London, UK
j.kramer@imperial.ac.uk

Abstract. Organisations require that their business processes reflect
their evolving practices by maintaining compliance with their policies,
strategies and regulations. Designing workflows which satisfy these re-
quirements is complex and error-prone. Business process reconfiguration
is even more challenging as not only a new workflow must be devised
but also an understanding of how the transition between the old and
new workflow must be managed. Transition requirements can include
both domain independent, such as delayed and immediate change, or
user-defined domain specific requirements. In this paper we present a
fully automated technique which uses control synthesis to not only pro-
duce correct-by-construction workflows from business process require-
ments but also to compute a reconfiguration process that guarantees the
evolution from an old workflow to a new one while satisfying any user-
defined transition requirements. The approach is validated using three
examples from the BPM Academic Initiative described as Dynamic Con-
dition Response Graphs which we reconfigured for a variety of transitions
requirements.

Keywords: Dynamic Reconfiguration, Controller Synthesis, DCR Graph

1 Introduction

Business processes are invaluable for ensuring that task and activity execution
achieves business objectives. Workflows, operational representations of business
processes, are typically derived from requirements in a manual process that is
complex and error-prone. Organisations require that their business processes re-
flect their evolving practices maintaining compliance with their policies, strate-
gies and regulations (e.g., [27]). Workflows must be evolved accordingly too.
Business process reconfiguration involves not only devising the new workflow
but also dynamically changing the old workflow with the new one.

Key to reconfiguration is understanding how the transition between the old
and new workflow should be managed. Domain independent transition require-
ments have been studied extensively. For instance, [9] discusses “immediate” re-
configuration requirements that assert that reconfiguration must occur as soon as

2

possible but only at a state in which the new workflow prescribes behaviour con-
sistent with the old one. “Delayed” reconfiguration asserts that living instances
must finish using the old workflow, while fresh instances are created using the
new one. In some cases, domain specific transition requirements are required.
For instance, reconfiguration may be required as soon as possible yet for some
live instances in particular states an exceptional treatment may be required,
including repeating or roll-backing an activity.

Indeed, business process reconfiguration can be extremely challenging and
can greatly benefit from automated techniques that support i) analysing business
process requirements and transition requirements, and ii) constructing workflows
and reconfiguration strategies satisfying these requirements.

One approach to automation is build and verify, in which formal verification
techniques provide a sound basis for workflow analysis and can be used to ensure
workflow requirement satisfaction. However, post-hoc verification requires prior
construction of the workflow, and modification entails re-verification. An alter-
native approach is to automatically produce correct-by-construction workflows
and reconfiguration strategies directly from requirements.

Although automatic construction of workflows from requirements has been
studied (e.g., [20,11]), the synthesis of reconfiguration strategies for domain spe-
cific user defined transition requirements has not received attention so far.

In this paper we present a fully automated technique for business process
reconfiguration based on discrete event controller synthesis. We use synthesis
to not only produce correct-by-construction workflows from business process
requirements but also to compute a reconfiguration strategy that guarantees
progress from an old workflow towards the a new one while satisfying any user-
defined transition requirements. We discuss a translation of Dynamic Condition
Response (DCR) graphs [11], a declarative language for business process re-
quirements, into a formalism based on Labelled Transition Systems and Linear
Temporal Logic [21] which is suitable for controller synthesis [7] and build upon
recent work on dynamic controller update [19]. We validate the approach using
three examples from the BPM Academic Initiative [1] described as DCR graphs
which we reconfigured for a variety of transitions requirements.

The rest of the paper is structured as follows. Sec. 2 presents an illustrative
example. Formal definitions are presented in Sec. 3. In Sec. 4 we present problems
setting out how to frame it as a synthesis problem. An analysis of our technique
is presented in Sec. 5. Finally, we present a discussion on related work.

2 Motivating Example

Consider a hospital process taken from a real-life study on a oncology workflow at
Danish hospitals [11]. This workflow has prescribe medicine and sign activities,
representing a doctor adding and signing a prescription to the patient record.
In addition, a nurse, is capable of doing give medicine in response to the doc-
tor prescription, or, in contrast, the nurse may indicate that they do not trust
the prescription or signature by performing the don’t trust activity. Workflow

3

Fig. 1. DCR graph for a hospital process
Fig. 2. DCR graph model for new hospi-
tal process.

Fig. 3. Workflow for a hospi-
tal process

Fig. 4. Workflow for new hospital process.

requirements include that i) the doctor must perform prescribe medicine to a
patient before sign, ii) the nurse can not do give medicine nor don’t trust if the
doctor has not done sign, and iii) the nurse can not perform both give medicine
and don’t trust , only one is allowed.

Fig. 1 shows these requirements modelled using Dynamic Condition Response
(DCR) graphs as originally presented in [11]. A workflow that satisfies these re-
quirements is depicted in Fig. 3 where pm, s, gm and dt labels refer to activities
prescribe medicine, sign, give medicine and don’t trust , respectively. The work-
flow is the underlying semantics of the model in Fig. 1 and can be constructed
automatically using controller synthesis as described in Sec. 4.

Consider a scenario in which while patients are being treated the workflow
must be changed (taken from [18]). For instance, suppose that a new internal reg-
ulation is to be put in place stating that doctors must not do prescribe medicine
if new tests have arrived (receive tests) but have not been examined (examine
tests). Also, as expected, receive tests must happen before examine tests. This
change involves two new activities and extra rules as depicted in Fig. 2 which de-
scribes a significantly more complicated workflow (Fig. 4 where rt and et labels
refer to receive tests and examine tests) that can be automatically synthesised.

A crucial decision to make is how to reconfigure a live instance running the
old workflow to the new one. A naive approach would be to require an immedi-
ate [9] reconfiguration regardless of the living instance’s state. Thus, if the living
instance is in state 2 of Fig. 3 it should evolve to being in state 2 of Fig. 4 (i.e.,

4

2 2). However, this puts the patient at risk: The old workflow does not track
the occurrence of receive tests, yet new tests may actually have been received
and new prescriptions should not be done without examining them. It is safer to
assume, at reconfiguration time, that tests may exist and to require be examin-
ing them (should they be available) rather than ignoring them. Consequently, it
is more appropriate to update the old workflow to the new workflow according
to the following mapping: (0 5), (1 7), (2 9), (3 11), (4 12).

The provision of a mapping between workflow states ensuring that a transi-
tion requirement holds can be very difficult for complex workflows. An alternative
is to allow a declarative description of transition requirements and to compute
a mapping automatically. For our example, what is needed is to force examine
tests when reconfiguring. Note that is inconsistent with both the old and new
workflow requirements. In the old workflow, there is no examine tests activity
and in the new workflow requirements examine tests is required after receive
tests. Thus, what we need to express is that there is a period during the re-
configuration where neither workflow requirements hold and in which examine
tests (and nothing else) must occur. In this paper we show how domain specific
transition requirements such as these can be modelled and how to automatically
build a strategy for taking a live instance running a workflow to a new workflow
guaranteeing all transition requirements.

3 Preliminaries

In this work we use Dynamic Condition Response Graphs [12] to specify business
processes. To simplify presentation we use a reduced version that does not include
nesting, roles, principals and roles assignments.

Definition 1. (Dynamic Condition Response Graph) A Dynamic Condition
Response Graph (DCR Graph) is a tuple DG = (A,R,M) where A is a fi-
nite set of activities, the nodes of the graph. R is a set of graph edges. Edges
are partitioned into five kinds, named and drawn as follows: conditions (→•),
responses (•→), inclusions (→+), exclusions (→%) and milestones (→3). M is
the marking of the graph. This is a triple of sets of activities (Ex,Re, In), where
Ex are the previously executed, Re the currently pending and In the currently
included. For all (e, e′) ∈ E×E, e→+e

′ or e→%e
′ or neither of them. We denote

(•→ e) = {e′ ∈ A | e′•→ e}, (e•→) = {e′ ∈ A | e•→ e′}, and similarly for →•,
→+, →% and →3.

Definition 2. (Enable activity of a DCR Graph) Let DG = (A,R,M) be a
DCR graph, with M = (Ex,Re, In). An activity e ∈ A is enabled if and only if
(a) e ∈ In, (b) (In ∩ (→•e)) ⊆ Ex, and (c) Re ∩ In ∩ (→ 3e) = ∅.

Definition 3. (Executing DCR Graph) Let DG = (A,R,M) be a DCR graph,
with marking M = (Ex,Re, In) and e is enabled. The result of executing e is a
DCR Graph DG′ = (A,R,M ′) with M ′ = (Ex′, Re′, In′) such that (a) Ex′ =
Ex ∪ {e}, (b) Re′ = (Re \ {e}) ∪ (e•→), and (c) In′ = (In ∪ (e→+)) \ (e→%).
We assume that initially In = A and Re = Ex = ∅.

5

To capture the underlying semantics of DCR graphs we use Labelled Transi-
tion Systems [14]. They are a canonical, compositional, representation of events
structures ideally suited to model checking of business processes and synthesis
of discrete event controllers.

Definition 4. (Labelled Transition System) A Labelled Transition System (LTS)
E is a tuple (SE , LE , ∆E , e0), where SE is a finite set of states, LE ⊆ L is
its communicating alphabet, L is the universe of all observable events, ∆E ⊆
(SE × LE × SE) is a transition relation, and s0 ∈ SE is the initial state. A
path of E is a sequence π = s0, `0, s1, `1, s2, . . . where for every i ≥ 0 we have
(si, `i, si+1) ∈ ∆E. A trace w is a sequence obtained by removing states from π.

Definition 5. (Parallel Composition) The parallel composition E‖C of LTS
E = (SE , LE , ∆E , e0) and C = (SC , LC , ∆C , c0) is an LTS (SE × SC , LE ∪
AC , ∆‖, (e0, c0)) such that ∆‖ is the smallest relation that satisfies the rules:

(e, `, e′) ∈ ∆E ∧ ` /∈ LC

((e, c), `, (e′, c)) ∈ ∆‖
(c, `, c′) ∈ ∆C ∧ ` /∈ LE

((e, c), `, (e, c′)) ∈ ∆‖

(e, `, e′) ∈ ∆E ∧ (c, `, c′) ∈ ∆C

` ∈ LE ∩ LC

((e, c), `, (e′, c′)) ∈ ∆‖

We use a linear temporal logic of fluents to provide a uniform framework for
specifying state-based temporal properties in event-based models [10]. FLTL [10]
is a linear-time temporal logic for reasoning about fluents. A fluent is defined
by a pair of sets and a Boolean value: f = 〈I, T, Init〉, where f.I is the set of
initiating events, f.T is a set of terminating events and f.I ∩ f.T = ∅. A fluent
may be initially true or false as indicated by f.Init.

Let F be the set of all possible fluents. An FLTL formula is defined induc-
tively using the standard Boolean connectives and temporal operators X (next),
U (strong until) as follows: ϕ ::= f | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ, where f ∈ F . We
define ϕ ∧ ψ as ¬ϕ ∨ ¬ψ, 3ϕ (eventually) as >Uϕ, 2ϕ (always) as ¬3¬ϕ, and
ϕWψ (weak until) as ϕUψ ∨2ϕ.

The trace π = `0, `1, . . . satisfies a fluent f at position i, denoted π, i |= f , if
and only if, one of the following conditions holds: (a) f.Init ∧ (∀j ∈ N · 0 ≤ j ≤
i⇒ `j /∈ f.T), and (b) ∃j ∈ N·(j ≤ i∧`j ∈ f.I) ∧ (∀k ∈ N·j < k ≤ i⇒ `k /∈ f.T)
In other words, a fluent holds at position i if and only if it holds initially or some
initiating event has occurred, but no terminating event has yet occurred.

We say ϕ is a safety formula if there is a finite trace π such that:

π, i |= ¬ϕ , ¬(π, i |= ϕ)

π, i |= ϕ ∨ ψ , (π, i |= ϕ) ∨ (π, i |= ψ)

π, i |= Xϕ , π, i+ 1 |= ϕ

π, i |= ϕUψ , ∃j ≥ i · π, j |= ψ ∧ ∀ i ≤ k < j · π, k |= ϕ

We use π |= ϕ, instead of π, 0 |= ϕ.
Control problems aim to build an LTS that satisfies a given set of declarative

requirements under certain environment conditions by having control of only a
subset of the events of the environment.

6

Definition 6 (LTS Control [7]). Let E = (SE , LE , ∆E , e0) be an environment
model in the form of an LTS, Lc ⊆ LE be a set of controllable events, and G
be a controller goal in the form of an FLTL property. A solution for the LTS
control problem with specification E = (E,G,Lc) is an LTS C such that C only
blocks events in Lc, E‖C is deadlock free, and E‖C |= G.

Definition 7 (DCU Problem [19]). Let E = (E,G,Lc) be an old specification,
E ′ = (E′, G′, L′c) be a new specification, T be a safety FLTL formula, R ⊆
(SE × SE′) be a mapping relation of states and, stopOldReq and startNewReq
are special events denoting the ending of old and start of new requirements,
respectively. A solution for the DCU Synthesis Problem is a controller Cu such
that: (a) Cu |= GW stopOldReq, (b) Cu |= T , (c) Cu |= 2(startNewReq → G′),
and (d) Cu |= 2(beginReconf → (3 stopOldReq ∧ 3 startNewReq))

The output of a DCU problem is an LTS Cu where every trace satisfies that
(a) the old requirements hold G until stopOldReq is triggered, (b) the transition
requirements hold, (c) the new specification G′ must be valid from startNewReq
is onwards, and (d) the update eventually happens.

4 Dynamic Reconfiguration of Business Processes

In this section we first show how to synthesize a workflow from a DCR graph
using controller synthesis Def. 6) and then show how to use dynamic controller
update (Def. 7) for workflow reconfiguration.

4.1 Workflow Synthesis as a Control Problem

We now show how to extract from a DCR graph a set of controllable events
LC , an LTS E, and a FLTL formula G such that controller synthesis (Def. 6)
results in a controller that enables and disables activities in such a way that its
environment, as long as it only executes enabled activities, satisfies the business
process requirements as described in the DCR graph. Thus LC will contain
activity enabling and disabling events, while events modelling the execution of
activities will be monitorable but not controllable. The LTS E will model the
assumptions the controller can rely upon to guarantee workflow requirements.
Finally, the formula G encodes the domain specific aspects of the DCR graph,
namely the arrows that establish dependencies between activities.

Controllable and Monitorable Events The set of events that describe the
control problem are defined by the activities that appear in the DCR graph
(i.e., the set A). We introduce two events for each activity a ∈ A: a.disable and
a.happened. The first is an event controlled by the controller. The second, is an
event that will be selected by the environment (e.g., the nurse and the doctor) to
indicate that the activity was executed. We say that a.happened is monitorable
or uncontrolled. Note that we do not introduce a.enabled, rather we assume an

7

Fig. 5. Happens(s) LTS constraining
the occurrence of s.happened.

Fig. 6. Turns LTS constraining con-
troller and environment turns.

event enableAll to reduce the number of events and states of the control problem.
The controller will enableAll activities then select which ones to disable in such
a way that if the environment executes an enabled activity, it will be consistent
with the business process requirements.

We introduce one extra event, menu, to model the turn based interaction
where the controller offers to its environment a menu of activities to perform.
First, the controller will select what activities to disable then it indicates using
menu that it is the environment’s turn to decide what activity to execute.

In conclusion, the set of controllable and uncontrollable events are LC =
{a.disable |a ∈ A} ∪ {menu, enableAll} and LC = {a.happened |a ∈ A}

Environment Model The LTS E models the two assumptions that the con-
troller can rely upon to guarantee workflow requirements.

The first assumption is that activities can only happen when they are enabled.
This can be modelled using one LTS model for each activity and composing
them all in parallel. In Fig. 5 we show an LTS, Happens(s), modelling the
assumption for activity sign. State 0 models that sign is enabled (thus, the
outgoing transition s.happened) while state 1models that the activity is disabled
(i.e., there is no outgoing s.happened transition). Events enableAll and s.disable
toggle between state 0 and 1. We assume the activity is initially enabled.

The second assumption is that the environment will play in turns with the
controller. The controller chooses what activities may be executed without vi-
olating workflow requirements, and then, the environment picks which of the
enabled activities is to be executed. We use only one LTS, Turns depicted in
Fig. 6, to model this assumption. The initial state (0) models the turn of the
controller where any activity in A can be disabled. Event menu models when
the controller relinquishes its turn offering a menu of activities to perform. State
1 is the environment’s turn in which it can select only one activity in A to be
executed, going to state 2. Here, all activities are enabled with enableAll event
to start again with controller’s turn at state 0.

The assumptions reflect the operation of the workflow engine that will be
controlled. In the hospital example, the controller first decides which activities
should be enabled (enableAll and a.disabled) and then presents them to hos-
pital staff (menu). It is assumed that nurses and doctor will only perform an
activity if the activity is displayed by the engine, and that once performed they
will report back through the engine (a.happened). At this point, the controller

8

will decide again what activities to enable and update the engine display. Obvi-
ously, the menu event must only occur when the controller has enabled exactly
all activities that if executed would not violate workflow requirements. This
controller behaviour is synthesised automatically based on the formalisation of
goals described next. In conclusion the LTS environment E is defined as follows
E = Turns ‖ Happens(a1) ‖ . . . ‖ Happens(an) with A = {a1, . . . , an}.

Controller Goals Goal G must model the constraints between activities that
are expressed in DCR Graphs with arrows between activities. Our encoding re-
sembles that of [20] where LTL formulas are used to formalise activity constraints
of similar nature to those of DCR graphs.

We introduce three fluents for each activity a ∈ A modelling if a belongs
to sets Ex, Re, and In according to Def. 3. For simplicity, we assume that the
initial marking of the DCR graph is such that In = A and Re = Ex = ∅.
– a.Executed models if a ∈ Ex and is defined as 〈{a.happened}, ∅,⊥}〉. In

other words, initially no activity is in Ex and once in Ex it is never removed
(see Def. 3a).

– a.Required models if a ∈ Re and is defined as 〈{a′.happened | a′ ∈ (•→
a)}, a.happened,⊥〉. That is, all activities are initially not required and the
execution of a activity makes it no longer required, and any activity in a
response relation with a makes it a required (see Def. 3b). In the hospi-
tal example, fluent s.Required is defined as 〈{pm.happened, dt.happened},
s.happened,⊥〉 because activity sign is a response to don’t trust and prescribe
medicine according to Fig. 1. Note that for cases where a•→ a, we define
a.Required as 〈{a′.happened | a′ ∈ (•→ a)}, ∅,⊥〉 because the execution of
a does not turn false the fluent.

– a.In models if a ∈ In and is defined as a.In = 〈{a′.happened | a′ ∈
(→+a)}, {a′.happened | a′ ∈ (→%a)},>〉, which mimics Def. 3c. Based on
the relations modelled in Fig. 1, the fluent gm.In is defined as 〈{s.happened},
{dt.happened}, >〉.

We introduce FLTL formulas to preserve the rules that govern when an ac-
tivity can be executed (i.e., is enabled) according to Def. 2. In other words,
the formulas will relate the occurrence of a.happened with fluents a′.Executed,
a′.Required, and a′.In for all a′ ∈ A.
– For rule (a) of Def. 2 we introduce for every activity a ∈ A a formula αa =

2(a.happened→ a.In).
– For rule (b) of Def. 2 we introduce for all a ∈ A: βa = 2(a.happened →∧

a′∈(→•a)(a
′.In→ a′.Executed)). For instance, for sign, according to Fig. 1

we have βs = 2(s.happened→ (pm.In→ pm.Executed)).
– For rule (c) of Def. 2 we introduce for each a ∈ A: κa = 2(a.happened →∧

a′∈(→3a)(¬a′.Required ∨ ¬a′.In)). For instance, κpm = 2(pm.happened→
(¬et.Required ∨ ¬et.In)) for Fig 2.

In summary, G is defined as
∧

a∈A αa ∧ βa ∧ κa.

9

Workflow Synthesis Above we have described how to build from a DCR
graph model D, the set of controllable events Lc, the LTS environment E, and
the FLTL formula G that can be used to define a control problem E = (E,G,Lc).
A solution to this problem is a controller LTS C that decides when to enable
and disable activities (which correspond to events in Lc) such that when running
with an environment that plays in turns and only executes enabled activities (as
described in E) satisfies all business process requirements (as captured in G). In
other words: E‖C |= G (Def. 6).

Note that E‖C |= G is not enough. We need the controller to be maximal
in the sense of that at any menu, the maximal set of activities should be en-
abled that do not violate G. Consider a workflow for the hospital in which after
sign only give medicine is enabled. The sequence sign, give medicine does not
violate G, but sign followed by don’t trust should also be possible. To ensure
maximality we exploit a characteristic of the synthesis algorithm implemented
in the MTSA tool [6] that we use for synthesis: MTSA builds eager components
in the sense that they take the shortest route to satisfying their requirements.
As the controller is forced to do enableAll, the synthesis algorithm will try to do
as few disable actions as possible while still ensuring G, thus a maximal number
of activities will always be enabled.

The controllers for the DCR graphs depicted in Fig. 1 and 2 have 188 and
2291 states respectively and are too large to depict in this paper. Instead we
show abstract versions of these controllers (Fig 3 and 4) in which enableAll,
disable and menu events are hidden. This provides a view similar to what the
Nurse and Doctor would see, only the activities that are enabled and not the
controllers incremental decisions of enabling and disabling activities. Note that
the abstract controllers are built automatically by MTSA tool using a hiding
operator and weak bisimilarity minimisation [17].

4.2 Workflow Reconfiguration as a Dynamic Controller Update

This section is organised as follows. We first discuss how domain specific transi-
tion requirements for a workflow reconfiguration can be described using FLTL.
This involves introducing two new events. We then discuss what a solution to
a reconfiguration problem may look like and finally how such solutions can be
built automatically solving a Dynamic Controller Update problem.

Specification of Transition Requirements Recall the Hospital workflow
example discussed in Sec. 2 where a transition requirement stating that activity
examine tests should be forced when reconfiguring. More precisely, just before
the moment the new business process requirements should be enforced, examine
tests is required. The reason for requiring “just before” is that executing examine
tests without a previous receive tests is not allowed in the new business process.

To formalise this transition requirement we need to refer to the moment in
which the old business requirements are to be dropped (stopOldReq) and the
moment in which the new business requirements come into force (startNewReq).

10

With these two new events the transition requirement can be formulated as
follows Th = 2(stopOldReq → ((

∧
a∈A\{et} ¬a.happened) W (et.Executed ∧

startNewReq))). Note that guaranteeing this formula requires enabling and dis-
abling activities such that the uncontrolled events a.happened occur or not as
required by Th. A standard domain independent transition requirement that
states that at any point one of the two business process must be adhered to (i.e.,
there is no transition period) can be stated as follows: T∅ = 2((StopOldReq∧
¬StartNewReq) →

∧
a∈A ¬a.happened).

Reconfiguration Workflows Returning to Th, what would a solution to this
reconfiguration problem be? Assume the workflow in Fig. 3 is in state 2, a so-
lution to the reconfiguration is to deploy a workflow that does forces examine
tests and then reaches a state 10 in Fig. 4. In other words, we need to build a
workflow that manages the transition from the old to the new workflow, we call
this workflow the reconfiguration workflow.

This reconfiguration workflow that assumes that the old workflow is in state
2 is inadequate as, before it takes control, a new activity (e.g., give medicine)
may be executed taking the old workflow (Fig. 3) in state 2 to state 3. Should
this happen then the reconfiguration should force examine tests and then move
to state 13 in Fig. 4 instead of 10. Thus, the goal is to build a reconfiguration
workflow that can manage the transition from any state in the old workflow.

Conceptually, our solution builds one reconfiguration workflow that consists
of three phases. The first is structurally equivalent to the old workflow (modulo
a new event beginReconf). This allows hot-swapping the old workflow with the
reconfiguration workflow, and setting the initial state of the latter according
to the current state of the former. The second phase is triggered by an event
beginReconf. At this point, the reconfiguration workflow may start to deviate
from the behaviour of the old workflow to ensure transition requirements. At
the point it does so, it must first signal stopOldReq. The third phase is one in
which the new workflow requirements are satisfied. Entering this third phase is
signalled with startNewReq.

In Fig. 7 we depict an abstract reconfiguration workflow (enabling, disabling
and menu events are hidden) that implements the reconfiguration from business
process requirements of Fig. 1 to those of Fig. 2 under transition requirement Th.
The blue rectangle on the left represents the first phase of the reconfiguration
workflow. Note that the structure of states and transitions is that of the workflow
to be replaced (Fig. 3), thus hotswapping this workflow in is trivial. Note that all
states in the blue region have an outgoing transition labelled beginReconf. When
beginReconf is triggered, no matter what the current state is, there is a path to
the yellow region on the right. The yellow region represents the new workflow
as in Fig. 4. The transition from the old requirements to new ones, while satis-
fying the transition requirements is represented by between both rectangles. Is
noteworthy that there are no loops during the transition phase which guarantees
that eventually the new business process requirements will be enforced.

11

Fig. 7. Reconfiguration workflow with transition requirement Th.

Automatic Construction of Reconfiguration Workflows Summarising,
Fig. 7 represents a solution to the problem of reconfiguring business process
requirements in Fig. 1 to those of Fig. 2 under transition requirement Th. We
now discuss how such solution can be built by solving a DCU problem Def. 7. The
DCU problem requires two control problems E = (E,G,Lc) and E ′ = (E′, G′, L′c)
which represent in this case the old and new business process synthesis problems
as described in Sec. 4.1. DCU also requires a transition requirement T and a
state mapping R from the states of E to those of E′. We have discussed T , we
now discuss R.

The purpose of relation R is to explain the relationship between the assump-
tions modelled in each control problem. The issue is that E tracks assumptions
for a controller synthesised from C, when a reconfiguration is deployed it is not
possible to know what the state of the assumption E′ is. R must be provided
by a user to address this problem. In this setting, the mapping can be trivially
defined as the only differences between E and E′ are the LTSs (like the one in
Fig.5) representing activities that are present in one business process and not the
other. Furthermore, we know that for any new activity, this one can never have
been enabled by the controller of the old workflow. In consequence, R can be
defined as the state identity relation for all LTS that are in E and E′ and as the
constant relation 0 (i.e., the initial state) for LTSs representing new activities.

Thus, given two DCR graphs D and D′ describing the old and new business
process requirements and a transition requirement T we can automatically build
control problems E = (E,G,Lc) and E ′ = (E′, G′, L′c) as described in Sec. 4.1
and R to describe and solve a DCU problem. An abstraction of the solution to
the DCU problem for the Hospital reconfiguration problem with Th described
above is depicted in Fig. 7 and was built automatically using MTSA.

An important methodological note is that not every DCU problem has a
solution. It is possible to provide two control problems E and E ′ that are indi-

12

Case Study # Activities # Arrows
Transition

Requirement
Reconfiguration

Workflow (# States)
Minimised Reconf.
Workflow (# States)

Oncology Hospital 6 13

T> 18667 54
T∅ 9817 34
Th 11155 39
T ′
h 15094 54

Doctor Assessment
Process

10 25
T∅ 22448 39
TD 27512 42

Insurance
Process

11 25
T∅ 15484 51
TI 14233 48

Computer Repair
Process

18 26
T∅ 43307 59
TC 52652 63

Table 1. Case Study Summary

vidually realisable yet for certain transition requirements, the update is impos-
sible. In terms of business process reconfiguration this means that it is possible
to start with two sets of business process requirements that are consistent yet
to propose a transition requirement that is too stringent to allow for a cor-
rect reconfiguration. An example of this, for the Hospital example, is to require
T = 2(startNewReq → ¬pm.Executed). There is no reconfiguration strategy
that can guarantee that the new business process requirements will be put in
force independently of the current state of the live instances of the old workflow:
There is no reconfiguration strategy for a live instance in which activity prescribe
medicine has been executed.

5 Validation

The purpose of this section is to show applicability of the approach by using,
in addition to motivational example, three business processes taken from BPM
Academic Initiative [1] that were also modelled in the DCR Graph Tool [15]. We
chose these to avoid bias in producing our own DCR graphs from workflows.

Each case study requires two DCR graphs, a source and a target for recon-
figuration. We manually produced variants for each case study and used domain
independent transition requirement such as T∅ (see Sec. 4.2) in addition to do-
main specific ones. All examples were run using an extension of the MTSA
tool [6] and can be found at [2]. Overall, 10 reconfigurations were defined and
solved, corresponding to different choices of transition requirements for each case
study. In Table 1 we report on examples, the number of distinct activities and
constraints they involve, the size of the resulting reconfiguration workflow and of
its minimised version (this involves hiding all enable, disable, and menu events).

5.1 Oncology Hospital

This case study already discussed above is the only one for which both reconfig-
uration source and target DCR graphs existed. Both were taken from [18]. We

13

modelled various alternative transition requirements and built business process
reconfiguration for each of them.

We first used a trivial transition requirement (T> = >) to confirm that a
reconfiguration strategy exists but it allows undesired behaviour. Indeed the
reconfiguration process allowed: beginReconf, stopOldReq, give medicine, start-
NewReq . . . The trace is one in which a live instance for which no activities
have occurred start to be reconfigured, the old business process requirements
are dropped and before the new ones are enforced the patient is given medicine
(without a signed prescription by a doctor!). This problem arises because T> al-
lows any activity during reconfiguration. Using a stronger domain independent
transition requirement, T∅, the reconfiguration behaviour obtained is exactly
that of an immediate reconfiguration es defined by [9].

We considered two domain specific transition requirements, Th as discussed in
Sec. 4.2 and one that delays reconfiguration when a nurse has indicated distrust
regarding a patient’s record: T ′h = T∅ ∧ 2((dt.Executed ∧ ¬gm.Executed) →
¬stopOldReq). As expected the resulting reconfiguration behaviour is like that of
T∅ except that stopOldReq is delayed when between don’t trust and give medicine.

5.2 Doctor Assessment Process

An assessment process for doctors in a hospital involves a manager asking an
expert to evaluate each doctor. We used the original DCR graph as the target
for reconfiguration and removed one activity to produce the source DCR graph.
We considered a process that initially does not pay experts for their evaluation
and that is to be reconfigured to support paying expert revision fees.

Using the transition requirement T∅ we obtain a reconfiguration that can be
performed immediately at any point of the execution of the first process. This
is because the activity of paying experts simply adds to the end of the current
process an additional activity. However, immediate reconfiguration may result
in paying experts that had agreed to do a review for free in the old process.
to avoid this scenario we specified the transition requirement TD stating that if
reconfiguration is requested after receiving expert review, the expert must not
be paid:TD = T∅ ∧ (2(startNewReq ∧ recExp.Executed) → 2¬pay.Executed)
where recExp is the activity representing the reception of expert review.

5.3 Insurance Process

The business process for an insurance company includes two roles: agents and
clerks. Originally, the clerk must, upon receiving a new customer claim, call the
agent to check the claim and create a new customer case.The new requirement
to be put in place states that create a new case must happen before call the
agent (this corresponds to the classic parallel to sequential reconfiguration [27]).
We solved the reconfiguration for two different transition requirements.

We used T∅ to compute a reconfiguration workflow which delays reconfigu-
ration when call the agent has been executed but create a new case has not. For
all other scenarios, the reconfiguration workflow do an immediate change. An

14

alternative is to modify the target DCR graph with a kill activity that excludes
all other activities, modelling the killing of an instance. Then a transition re-
quirement that forces kill when call the agent has been executed before create a
new case can be specified as TI = T∅ ∧ 2((call.Executed ∧ ¬create.Executed ∧
startNewReq) → (¬ED W kill.Executed)), where ED is the disjunction of
disable events for all activities except kill plus enableAll.

5.4 Computer Repair Process

A computer repair service starts when a customer brings a defective computer.
If service provider and customer agree on a budget, then hardware and software
repair activities are performed. We added a new role, that of a supervisor, that
must approve a budget before it is sent to the customer. We used three activities
for this: send to supervisor, approve, and reject.

Initially, we solved this reconfiguration problem with the transition require-
ment T∅. As expected, executions in which the reconfiguration is requested after
the budget is sent to the customer, the reconfiguration is delayed so as to not
contradict the requirement of supervisor approval.

An alternative we modelled is one in which we force asking for approval
for any instance in which the customer has received the budget but repair has
not started. If the supervisor rejects the budget, then the customer must be
contacted and apologies must be offered. The following formula (where sup
is the activity send to supervisor) captures this reconfiguration requirement:
TC = 2((stopOldReq ∧ ¬RepairStart) → (¬Happens W (sup.Executed ∧
startNewReq))) where Happens is the disjunction of disable events for all activ-
ities except yes, no, and sup plus enableAll.

6 Discussion and Related Work

The problem of business process reconfiguration has been studied extensively
for some time [9]. [27] provides a classification of potential errors resulting from
process changes. A survey of correctness criteria guaranteed by dynamic change
techniques is presented in [24]. A taxonomy of reasons for reconfiguration is
presented in [25] Methodological and automated support for reconfiguration has
also been studied previously. Work such as [9,3,4] approach reconfiguration as
a problem of defining dynamic transitions from one state of current workflow
to another one in the new one. Without transition periods, changes can be
partitioned into immediate or delayed [9]. A different take on reconfiguration
is workflow versioning (e.g., [13,29]) where multiple workflow versions such are
running simultaneously. In all cases, and in contrast to our work, the notion of
a transition period in which remedial activities need to be implemented that
are not compliant with the current and new workflow is not considered. The
notion of reconfiguration is related to that of dynamic software updates. These
have also been studied in terms of the different properties that may be expected
during the update (e.g. [28]).

15

To reason about reconfiguration, our approach assumes a declarative specifi-
cation of business process requirements (rather than an operational description
in the form of a workflow). Declarative modelling approaches for business pro-
cesses have been studied before. The ConDec [20] language was introduced for
modelling business process based on linear temporal logic (LTL [21]). In [11], an
operational semantics for a declarative graph based language is proposed and a
tool [15] for enacting the underlying workflow is available. Rule based descrip-
tions of business process requirements have also been proposed (e.g., [16,26]).
Such descriptions are naturally executable. Both support changing rules during
the execution of a workflow, however there is no support for understanding or
guaranteeing properties of the reconfiguration. Thus, understanding if a delayed
or a immediate change is needed must be done before introducing a new rule.
Our approach requires a declarative description of business process requirements
in a rather general language (FLTL) and provides guarantees over the reconfig-
uration process. The choice of DCR graphs as a starting point is accidental, we
could apply a similar translation for other declarative languages.

Automatic construction of operational or executable models from declarative
requirements has also been studies extensively, including work on supervisory
control [23], synthesis of reactive designs [22] and automated planning [5]. This
paper builds on the synthesis of discrete event controllers and in particular the
work presented in [8] that uses LTS and FLTL as the input for synthesis. We
strongly build on the result presented in [19] where a general technique for
updating at runtime a controller. In this paper we adapt and apply this technique
in the context of business process reconfiguration for DCR graph specifications.

7 Conclusions

We address the problem of business process reconfiguration by providing an au-
tomatic technique that builds a reconfiguration workflow that is guaranteed to
preserve any reconfiguration transition requirements provided by a user. The
technique requires a declarative description of the current and new business pro-
cess requirements: in this paper we start from DCR graphs, and an LTL property
that describes the properties that must hold during the reconfiguration. The ap-
proach allows immediate and delayed changes, and also reconfigurations in which
there is a period between business processes in which additional domain specific
preparatory or remedial activities can be executed. The result is a workflow that
can be hotswapped with the current one and actively manages the transition to
the new business process requirements ensuring correctness.

Acknowledgement This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 778233

16

References

1. Business process management academic initiative. https://bpmai.org/
2. MTSA synthesis tool and examples, http://mtsa.dc.uba.ar
3. van der Aalst, W.M.: Exterminating the dynamic change bug: A concrete approach

to support workflow change. Information Systems Frontiers 3(3), 297–317 (2001)
4. Badouel, E., Oliver, J.: Reconfigurable nets, a class of high level Petri nets sup-

porting dynamic changes within workflow systems. Ph.D. thesis, INRIA (1998)
5. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, Strong, and Strong Cyclic

Planning via Symbolic Model Checking. Artificial Intelligence 147 (2003)
6. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: Mtsa: The modal transition

system analyser. In: ASE’08. pp. 475–476
7. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesising non-

anomalous event-based controllers for liveness goals. ACM TOSEM’13
8. D’Ippolito, N.R., Braberman, V., Piterman, N., Uchitel, S.: Synthesis of live be-

haviour models. In: FSE’10. pp. 77–86. ACM, New York, NY, USA
9. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.

In: COOCS’95. pp. 10–21. ACM
10. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.

In: ESEC/SIGSOFT FSE’03. pp. 257–266. ACM, New York, NY, USA
11. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as dis-

tributed dynamic condition response graphs. PLACES’10, vol. 69, pp. 59-73
12. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response

graphs. In: International conference on fundamentals of software engineering. pp.
343–350. Springer (2011)

13. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In: Int. J. Coop. Info. Syst. 1999

14. Magee, J., Kramer, J.: State models and java programs. wiley Hoboken (1999)
15. Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and collaborative

simulation of declarative processes. In: International Conference on Business Pro-
cess Management. pp. 209–225. Springer (2016)

16. Mejia Bernal, J.F., Falcarin, P., Morisio, M., Dai, J.: Dynamic context-aware
business process: a rule-based approach supported by pattern identification. In:
SAC’10. pp. 470–474

17. Milner, R.: A calculus of communicating systems. LNCS 92 (1980)
18. Mukkamala, R.R.: A Formal Model For Declarative Workflows. Ph.D. thesis, IT

University of Copenhagen (2012)
19. Nahabedian, L., Braberman, V., D’Ippolito, N., Honiden, S., Kramer, J., Tei, K.,

Uchitel, S.: Dynamic update of discrete event controllers. IEEE TSE’18 pp. 1–1
20. Pesic, M., Van der Aalst, W.M.: A declarative approach for flexible business pro-

cesses management. In: BPM’06. pp. 169–180
21. Pnueli, A.: The temporal logic of programs. In: FOCS’77. pp. 46–57
22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL’89
23. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proc. of

the IEEE 77(1), 81–98 (1989)
24. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in

workflow systems—-a survey. Data & Knowledge Engineering 50(1), 9–34 (2004)
25. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.: Towards

a taxonomy of process flexibility. In: CAiSE’08. vol. 344, pp. 81–84

https://bpmai.org/
http://mtsa.dc.uba.ar

17

26. Vasilecas, O., Kalibatiene, D., Lavbič, D.: Rule-and context-based dynamic busi-
ness process modelling and simulation. Journal of Systems and Software 2016

27. V.D Aalst, W.M., Stefan, J.: Dealing with workflow change: identification of issues
and solutions. CSSE’00 15(5), 267–276

28. Zhang, J., Cheng, B.H.: Model-based development of dynamically adaptive soft-
ware. In: ICSE’06. pp. 371–380

29. Zhao, X., Liu, C.: Version management in the business process change context. In:
BPM’07. pp. 198–213

