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Abstract 

 

This paper discusses the concept and results of the BigDataOcean project, and specifically the anomaly 

detection pilot. While in the past, surveillance had suffered from a lack of data, current tracking 

technologies have transformed the problem into one of an overabundance of information, with needs 

which go well beyond the capabilities of traditional processing and algorithmic approaches. The major 

challenge faced today is developing the capacity to identify patterns emerging within huge amounts of 

data, fused from various sources and detecting outliers in a timely fashion, to act proactively and 

minimise the impact of possible threats. Within this context we first define an “anomaly”, before 

proceeding to present the BigDataOcean anomaly detection service; a service for the classification and 

early detection of anomalous vessel patterns. The service makes use of state-of-the-art big data 

technologies and novel algorithms which form the basis for a service capable of real time anomaly 

detection.  

 

1. Introduction 

 

Today numerous maritime systems track vessels during their voyages across the sea. Such is the 

Automatic Identification System, a collaborative, self-reporting system that allows efficient exchange 

of navigational data between ships and shore stations, intended to be used primarily for surveillance 

and safety of navigation purposes in ship to ship use, ship reporting and vessel traffic services (VTS) 

applications (ITU, 2014). Beyond simple collision detection, researchers and scientists are finding out 

that these data sets provide a new range of possibilities for improving our understanding of what is 

happening or could happen at sea. As such “anomaly detection” has been identified by 

operators/analysts of the operational community as an important aspect requiring further research and 

development (Martineau & Roy, 2011). Anomaly detection can be understood as a method that supports 

situational assessment to build models of normal data and then attempt to detect deviations from the 

normal behaviour in observed data that thus, may be of interest for further investigation (Riveiro et al. 

(2018), Laxhammar (2011), Brax (2011)).  

To date, the availability of a larger number of sensors does not guarantee a reduction of risk as promised, 

mostly due to the enormous volumes and the velocity of the data that these systems and operators are 

faced with. Forecasting complex maritime situations emerging, such as probable collisions or 

groundings, suspicious activities or vessels’ spoofing their identity has become a challenging task for 

surveillance system operators. They are now exploring complex and heterogeneous data; a situation 

that may lead to other undesired consequences for the system like uncertainty or time constraint 

violations in the decision making, or undesired effects for the operator such as fatigue and cognitive 

overload (Riveiro et al, 2018). Time critical computing systems are systems in which the correctness of 

the system is dependent not only on the accuracy of the result produced, but also on the time in which 



 

it was computed; such systems include avionics and marine navigation systems, defence systems, 

command and control systems, robotics and an ever-increasing number of Internet of Things (IoT) 

applications. For applications such as navigation, surveillance and others, timeliness is a top priority; 

making the right decision regarding a collision avoidance manoeuvre is only useful if it is a decision 

made in due time. 

Unfortunately, current state of the art techniques and technologies are incapable of dealing with these 

growing volumes of high-speed, loosely structured, spatiotemporal data streams that require real-time 

analysis in order to achieve rapid response times. In this paper we present an adaptation of the lambda 

architecture as developed in the context of the BigDataOcean, an EU-funded project aiming to improve 

data sharing and linking between enterprises and entities of the maritime domain and other domains. 

The project focus is to increase the integration of Big Data and Data Analytics frameworks in blue 

economy by exploiting the huge potential from cross-sectorial blue data applications and to deliver out-

of-the-box value-added Big Data services for maritime applications using advanced queries and 

analytics. In the following sections we first attempt to accurately define an “anomaly”, before 

proceeding to present the BigDataOcean anomaly detection service; a service for the classification and 

early detection of anomalous vessel patterns. The service makes use of state-of-the-art big data 

technologies and novel algorithms which form the basis for a service capable of real time anomaly 

detection. Preliminary results indicate the efficiency of the proposed methodology when detecting 

maritime incidents.   

 

2. Problem definition and related literature 

 

The International Maritime Organization (IMO) defines Maritime Domain Awareness (MDA) as “the 

effective understanding of anything associated with the maritime domain that could impact upon the 

security, safety, economy, or environment.” (IAMSAR, 2010). Situational awareness refers to the 

knowledge of the elements in the maritime space necessary to make well-informed decisions as well as 

processes involving knowledge and understanding of the environment that are critical to those who need 

to make decisions within the complex sea area. According to NATO (2007) Maritime Situational 

Awareness (MSA) is defined as “The understanding of military and non-military events, activities and 

circumstances within and associated with the maritime environment that are relevant for current and 

future NATO operations and exercises where the Maritime Environment (ME) is the oceans, seas, bays, 

estuaries, waterways, coastal regions and ports”. Nimmich and Goward (2007) give a pragmatic view 

of MDA importance for Maritime security, as well as its economic and social impact. 

The concept of anomaly is an important building block for developing situational awareness of the sea 

environment (Snidaro et al, 2015). An anomaly can be considered a critical event to which the system 

is generally called to react to. Usually, a threshold establishes if input data can be considered unexpected 

or anomalous, thus raising an exception. The concept of anomaly has a different meaning, depending 

on the context used as well as the requirements (Roy, 2008).  Roy and Davenport (2009) present a 

categorisation, based on a taxonomy of the maritime situational facts involved in anomaly detection 

identified and validated through knowledge acquisition sessions with experts. Over the last century, a 

large number of diverse maritime situation awareness systems have been developed with different 

objectives and characteristics depending on what “an anomaly” means for its stakeholder and what are 

the operational needs. Typical technological systems that are used for Maritime Domain Awareness 

include Automatic Identification System (AIS), satellites, long range radars and long range Unmanned 

Aerial Vehicles (UAV). Output data from these systems are being used to provide real-time status of 

the observed sea environment, early warnings as well as data analytics for decision and policy making. 

The availability of plethora of sensors, higher data storage capacity, cheaper devices and better database 

management systems have made it possible to access huge volumes of data related to the Maritime 

Domain Awareness (Riveiro and Pallotta, 2018). 

The exploitation of such volumes of data present new opportunities in a large number of applications, 

including safe vessel traffic management and collision prevention (Perera et al., 2012), coastal 

protection (Rabasa et al, 2012), environment protection and safety (Roarty et al., 2013), search and 

rescue missions (Breivik et al, 2013), anti-terrorism activities as well as the prevention of illegal 

activities such as smuggling and piracy (Axbard, 2016). 

The sheer amount of data that needs to be processed in order to provide real or near-real-time anomaly 



 

detection requires the combination of various steps including typical big data computational models 

with machine learning algorithms (Abielmona and Rami, 2013). For instance, Li et al. (2006) indicated 

four steps required to tackle the problem of anomaly detection for moving objects, including 

microclustering and Support Vector Machine for classification purposes.  

Laxhammar (2008) applied a Gaussian Mixture Model as the cluster model and the Expectation-

Maximization algorithm as the clustering algorithm, as an extension of the model suggested by Holst 

and Ekman (2003). The surveillance area was divided into grid cells and for each cell the points’ 

velocities were modelled by a two-dimensional Gaussian distribution. Korb and Nicholson (2004) 

applied the CaMML machine learning tool on the AIS data from the Australian Defence Science and 

Technology Organization (DSTO). Lee et al. (2007) proposed a trajectory clustering algorithm to find 

similar, or normal patterns. A trajectory was divided into a series of line segments in the partition step 

which were then clustered by applying the density-based clustering algorithm DBSCAN. 

Zhen et al. (2017) presented a similarity measurement method between vessel trajectories based on the 

spatial and directional characteristics of AIS data. Zhang et al. (2017) then applied the method of 

hierarchical and k-medoids clustering to model and learn the typical vessel sailing pattern within 

harbour waters. The Naïve Bayes classifier of vessel behaviour was built to classify and detect 

anomalous vessel behaviour. Jousselme el al. (2015) presented the development and implementation of 

fusion algorithms for maritime anomaly detection, and the definition of associated criteria and measures 

of performance. Jousselme et al. (2015) suggested that adequate uncertainty representation and 

processing is crucial for this higher-level task where the operator analyses information correlating with 

his background knowledge. 

Those systems are focused on specific scenarios (e.g., collision prevention) and are mostly applied in 

historical data, in which they attempt to discover vessels’ operational pattern. They do not focus on 

solution’s scalability or model’s adaptability to “new data”, making thus evident the need for more 

transparent, interpretable and explainable machine learning-based systems (Riveiro et al. 2018). In this 

paper we propose a novel architecture capable to overcome the impediments of huge amount of data 

arriving at the system with high velocity and detect in near real-time various types of anomalies. 

Furthermore, the proposed anomaly detection service is modular in the sense that the set of possible 

anomalies can be further extended without adding computation burden to the system. 

 

3. Approach and preliminary results 

 

In this section we present the design and implementation options selected for the proposed anomaly 

detection services and we provide the preliminary assessment of the efficiency of those services against 

specific maritime incidents. 

 

3.1. System architecture 

In our approach we have deployed a modified Lambda architecture shown in Fig. 1 below. This scheme 

allows the decoupling of batch processing (usually performed upon historical data) and real-time 

analysis, which typically exploits the knowledge extracted from the batch processing. Specifically, in 

our approach the BigDataOcean batch layer performs the analysis of historical positional data of vessels 

and extracts port-to-port routes. This is a long-running process which takes several hours to complete. 

Once completed, the extracted routes are fed into the real-time layer in order to accommodate detection 

of vessel anomalies in real-time. Upon detection those incidents are displayed to the end user through 

the service layer. Furthermore, historical data are sent from this layer back to the batch layer at specific 

time intervals defined from the seasonality of the data, thus replacing previous processed routes with 

new ones. 

 



 

 
Fig.1: Modified Lambda architecture for the Anomaly Detection service1 

 

3.1.1. Batch layer analysis 

 

The BDO batch layer undertakes the role to identify the “safe” route between two ports; a knowledge 

that can be used to detect vessels travelling out of this “safe” path. This is achieved through data analysis 

techniques performed upon a huge amount of historical data that have been collected through an AIS 

network. The batch layer calculates “safe” routes between each pair of ports globally by correlating 

vessels’ positional information (i.e., geographical coordinates broadcasted through AIS) with port 

geometries so as to link all the positions transmitted from the vessels with a specific port-to-port 

connection. A “safe” route is a set of convex hulls; each one is indicating an area with dense AIS data 

transmissions and is being produced through clustering of positional data of vessels travelling from the 

departure port towards the destination port. Specifically, in our approach we have used K-Means, a 

clustering algorithm which partitions the data points in groups according to their spatial proximity and 

density. A normal route is then created as the collection of the convex hulls formed when computing 

the minimum polygon that encloses all geographical positions in a group. The convex hulls represent 

the confidence interval, which means that if a vessel that performs the specific port-to-port voyage is 

travelling out of a convex hull, then an anomaly event is raised. Upon completion of calculation, these 

routes are fed to the real-time layer, which is then capable to detect possible anomalies in streaming 

data. The operation of convex hull calculation is executed in sparse time intervals in order to update the 

model when a significant amount of new data is gathered. 

 

3.1.2. Real Time Layer 

 

In this layer queries are performed on streaming and previously unseen data, thus enabling detection of 

security incidents in near-real time. More specifically, streaming positional and voyage-related AIS 

data are consumed and combined with static datasets and data mining models in near real-time to detect 

anomalous events. This layer includes an Apache Kafka distributed platform to which AIS messages 

are forwarded from the company’s station network. Then, those messages are processed and divided 

into multiple topics based on the nature of each AIS message (which is identified based on the message 

type), giving thus, separate topics for the position reports (i.e.  messages of type 1, 2 or 3), for the static 

and voyage related data (i.e., messages of type 5), etc. These topics are consumed by another component 
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responsible to perform distributed computing and identify the maritime security incident types 

mentioned afore. This component is based on Akka, a free open-source toolkit capable to build 

powerful, reactive and concurrent applications. It uses actors that evaluate whether the conditions that 

constitute a situation as “anomaly” exist, once a message is received.       

Our platform is currently able to detect in near real-time a collection of four distinct types of possible 

anomalies, namely route deviations, AIS switch-offs, imminent collisions and groundings. In the 

following section we define each event type and discuss the algorithms we used in more detail. 

• A route deviation happens every time a ship is found outside the normal route it is expected to 

follow, according to the departure and destination port. The model produced in the batch layer 

is loaded to the real-time service in order to be used for checking if a position coming from the 

stream of AIS is within the boundaries the convex hulls dictate. Thus, if a ship deviates at some 

part of its trajectory our service will detect it and provide it as an indicator that something might 

be wrong to the service layer. 

• An AIS switch off happens when the service stops receiving data from a ship whilst the ship is 

well within the coverage of AIS base stations. Even though ships (especially large ones) are 

required by IMO to have their AIS transmitter on, gaps in AIS data are a very frequent 

phenomenon and they could be a result of many factors, e.g. malfunction of the AIS receiver 

or of the vessel’s AIS transmitter, signal loss due to environmental noise, and intentional switch 

off. Intentional switch off usually indicates that the ship is about to engage in an illegal activity, 

except from cases where it passes through areas that have increased piracy, e.g. Somalia, and 

the switch off is used as a measure of protection. 

• We define an imminent collision as an unsafe proximity event between at least two vessels. To 

handle the complex and demanding computations of determining proximity events, we have 

followed a distributed approach by partitioning areas of the Earth into a set of identifiable grid 

cells and using separate Akka actors to monitor each grid cell. Each position message consumed 

from the Kafka stream is forwarded to the actor responsible to monitor the corresponding area. 

The actor stores previously received messages and uses the newly arrived message’s timestamp 

to forecast the position of the other vessels in the grid cell based on their past messages. This 

is achieved by projecting the most recent position of each vessel that the actor is monitoring at 

the exact time of the newly received message. Then, using the course over ground of those 

projected positions we determine whether their course is intersecting with the course of the 

vessel from which the new message was received and, in such case, a new imminent collision 

event is yielded.    

• Groundings occur when a vessel has travelled in swallow sea (i.e. the sea depth was less than 

the ship’s draught). In most cases this would also mean that the vessel has travelled out of the 

“safe route” and thus a route deviation event would be yielded before the grounding. To identify 

groundings the real-time layer considers vessel’s position and navigation behaviour. The vessel 

may report through the navigation status field of AIS messages that is not be under command, 

or its ability to manoeuvre is restricted, or even explicitly report it is aground. Similarly, rapid 

decrease in vessel’s speed, or frequent changes of course over ground in short time also indicate 

anomalous behaviour of the vessel. This information is correlated with bathymetry data and 

vessel’s draught reported through AIS to increase the accuracy of detected groundings. 

In the following subsection we present preliminary results of our approach for anomaly detection. The 

streams of data are simulated using historical tracks of verified incidents retrieved from the EMSA 

reported incidents2. Our experiments highlight the performance of our approach through examining 

characteristic examples of such security incidents. 

 

3.2. Preliminary results 

In this section we provide the preliminary assessment of the proposed architecture in terms of execution 

speed and present two indicative cases in which our algorithms achieved early detection of the vessels’ 

anomalous behaviour. The experimental evaluation was performed on a machine with 12 threads (6 

cores), an AMD Ryzen™ 5 2600 CPU @ 3.4 GHz and 16 GB of RAM, running Ubuntu 18.04 with 
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Java OpenJDK 8, Scala 2.12.8 and Akka 2.5.21.   Real-time architectures are evaluated in terms of data 

ingestion delay, CPU and memory usage. The number of actors created in our system is proportional to 

the number of vessels from which messages are received. This leads to the conclusion that the number 

of actors created is finite, and thus, increasing the memory and the processing power of the system will 

alleviate any stress. Thus, the only factor that may affect our system is the volume and the velocity of 

incoming data that the system should cope with. For our experiments we used a dataset which contains 

20M AIS messages received from 4599 vessels sailing in the Greek seas from February 2016 until July 

2017 to assess the system’s capability to ingest data. In order to test the system’s scalability against 

different volumes of incoming data, we created two more subsets from the dataset containing 1/3 and 

2/3 of the initial AIS messages respectively and these were streamed into our real-time layer. We tested 

multiple configurations of our system with 2 threads, 4 threads, 8 threads and 12 threads for each dataset 

and the results of our experiments are highlighted in Table I below. Preliminary results demonstrate 

that our approach achieves under second ingestion time even with 2 threads. In terms of velocity the 

data are streamed from files, having orders of magnitude higher speed compared to the actual system 

where the data will be fed into the real-time layer from the receivers through the Internet and thus will 

have much slower pace. 

Table I: Data ingestion results (total execution time in seconds) 

#threads 1/3 Subset (seconds) 2/3 Subset (seconds) Full Dataset (seconds) 

2 147 277 841 

4 86 159 550 

8 60 106 267 

12 51 101 161 

 

Besides the system’s performance we also evaluate the accuracy of our approach, against two case 

studies of maritime security incidents. Fig. 2 shows a visualization of a part of the trajectory of the 

tanker Ovit. This vessel is a Malta registered tanker built in 2011 that ran aground on the Varne Bank 

in the Dover Strait, England, in the early morning of 18 September 2013, while carrying vegetable oil 

from Rotterdam to Brindisi. The vessel was using ECDIS for navigation and its passage plan, which 

was prepared by an inexperienced junior officer, was unsafe as it passed directly over the Varne Bank. 

The lack of experience of the Officer Of the Watch (OOW) and the false configuration of the ECDIS 

safety settings resulted in a 19 minute delay till he understood that the vessel was aground and the 

inability to recover vessel’s historical track from the system. Furthermore, Dover coastguard watch 

officer that was operating the Channel Navigation Information Service was also not qualified and did 

not issue the warning to Ovit. Under those circumstances Ovit ran aground at 04:34 on 18 September 

2013 in the Dover Strait. Fig. 2 (a) below highlights the convex hulls that were produced through the 

batch-layer for this port-to-port connection (i.e. from Rotterdam to Brindisi) and the past track of the 

vessel. Black triangles are reported positions where the ship stopped, and white circles are the ones it 

was moving. It is evident from Fig. 2 (b) and (c) that the ship was either moving outside or on the edge 

of the normal route a few minutes before running aground. After that the vessel changed its course and 

headed to the port of Dover. 

 



 

 
(a) Zoom level 1 

 
(b) Zoom level 2 



 

 
(c) Zoom level 3 

Fig. 2: Grounding of oil/chemical tanker Ovit while travelling from Rotterdam to Brindisi3. 

 

In another example M/V Goodfaith, a bulk carrier sailing under the flag of Cyprus started its last voyage 

on the 10th of February 2015 from Elefsis, Greece heading to Odessa, Ukraine. The vessel was sailing 

in ballast condition and was in perfect shape as its special survey maintenance operations were 

successfully completed on the 9th of February. Its voyage plan included standard passages followed by 

vessels sailing in the Aegean, Marmaras and Black Sea, but bad weather conditions were prevailing in 

the area of South Evvoikos and Kafireas Strait. The vessel gradually lowered the engine speed to avoid 

main engine overspeed, but as the vessel was reaching Kafireas strait the weather conditions had 

significantly worsened with wind force 9Bfrs and high waves and by the time she was crossing the strait 

(i.e., at approximately 01:00), Goodfaith was heavily drifting towards the north-west coast of Andros 

island, where it ran aground at 01:28. Fig. 3 highlights part of the trajectory of the Goodfaith. It is 

evident from Fig. 3 (a) below that the vessel deviated from the convex hullsof this port-to-port 

connection much earlier than the grounding incident. Contrary to the Ovit case, this deviation was on 

purpose, to avoid bad weather conditions. Nevertheless, such deviation yielded early notification of 

possible anomaly in our system. Finally, Fig. 3 (c) shows the last part of the vessel’s route few minutes 

before running aground. 

 

                                                 
3 https://www.gov.uk/maib-reports/grounding-of-oil-chemical-tanker-ovit-on-the-varne-bank-in-the-dover-

strait-off-the-south-east-coast-of-england 



 

 
(a) Zoom level 1 

 
(b) Zoom level 2 

Fig. 3: Grounding of bulk carrier M/V Goodfaith while travelling from Elefsis, Greece to Odessa, 

Ukraine4. 

 

4. Conclusions 

 

In this work we presented the architectural approach to building a real time maritime anomaly detection 

service, as deployed in the context of the EU funded BigDataOcean project. We show how big data 

challenges can be overcome to increase our understanding of maritime traffic and improve our 

monitoring of vessel activities in real time. In addition, we demonstrate the capability of the proposed 

service to ingest data of high volume and velocity and present some example case studies regarding real 

                                                 
4 http://www.hbmci.gov.gr/js/investigation%20report/final/07-2015%20GOODFAITH.pdf 



 

world maritime anomalies and evaluate the ability of the presented service to detect these in due time.  
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