Decadal-scale predictive skill of North Atlantic upper-ocean salt content and its attribution to the initialization of the North Atlantic Ocean circulation

Katja Lohmann, **Daniela Matei**, Manfred Bersch, Johann Jungclaus, Holger Pohlmann, Jürgen Kröger, Kameswarrao Modali and Wolfgang Müller

BCPU Predictability Workshop&2nd Modeling Cluster WS, May 2019, Bergen

Motivation

- Predictive skill of North Atlantic upper-ocean salinity has, in contrast to upper-ocean temperature, so far not received much attention in the literature
- Upper-ocean salinity in the western subpolar North Atlantic and the Nordic Seas is crucial for the preconditioning of deep water formation
- Upper-ocean salinity variability in the North Atlantic correlates well with changes in the distribution and abundance of marine ecosystem species from various trophic levels

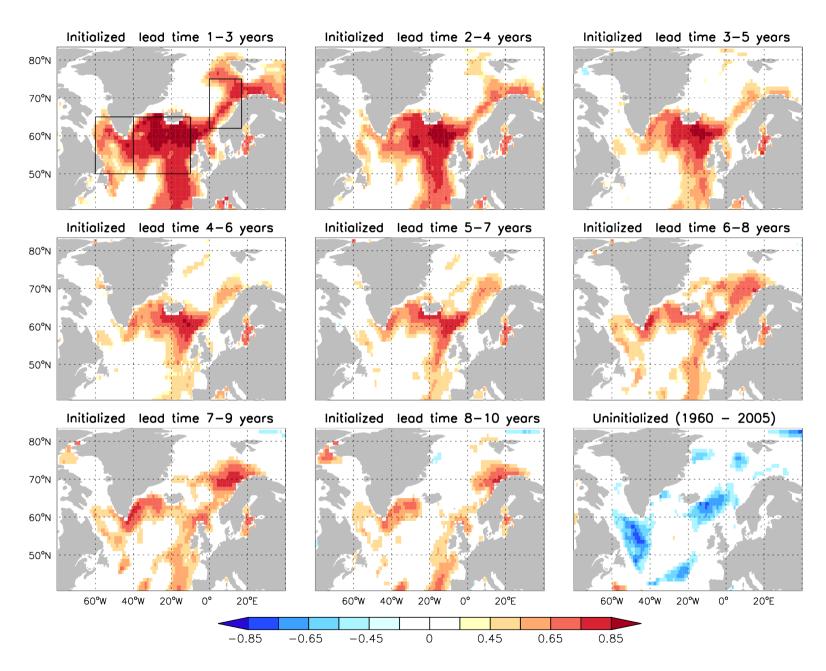
Data

Initialized hindcast prediction experiments (initialized every year between 1960 and 2005) and 20C simulations (uninitialized prediction) from CMIP5

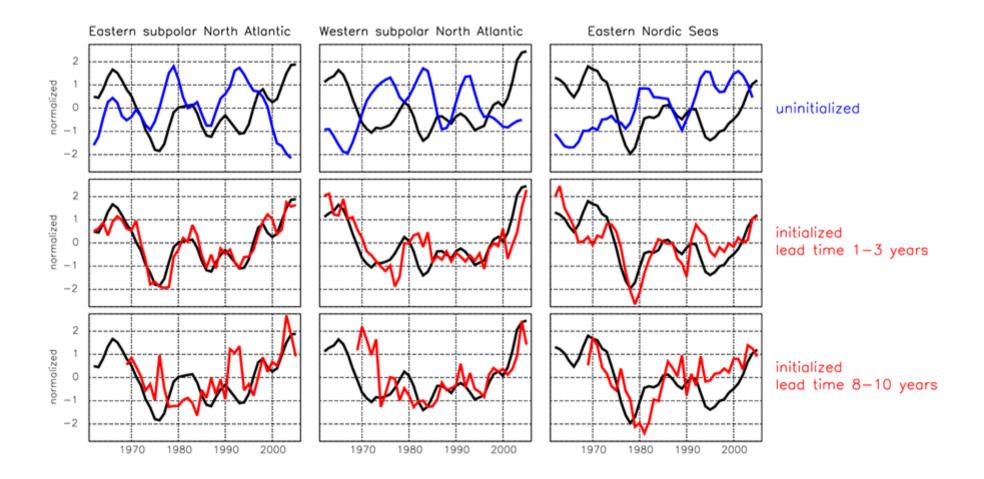
	Ensemble members	T, S Initialization
MPI-ESM-LR *	3 (10 every 5th year)	ORAS4 reanalysis
EC Earth	10	NEMOVAR ocean reanalysis
HadCM3	10	Ocean reanalysis
GFDL-CM2.1	10	Coupled assimilation run, assimilates T, S observations
CanCM4	10	SODA ocean reanalysis
MIROC5	6	Observation-based T, S dataset

* version baseline1 from the German MiKliP project

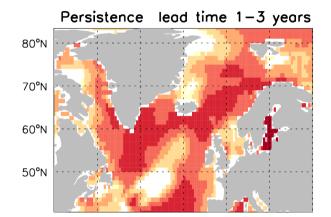
Data

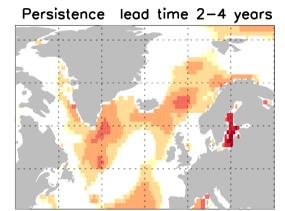

- Resolution ~1°, in subpolar North Atlantic/Nordic Seas 20 110 km
- Upper-ocean salt content (0 500m) with 3 year running mean applied
- Multi-model ensemble mean on 1°x1° grid, based on normalized anomalies
- Observation based dataset against which skill is assessed: ISHII dataset * (Japan Marine Science and Technology Center)

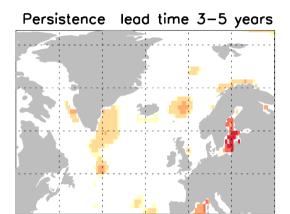
* Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of SST and marine meteorological variables for the 20th century using COADS and the Kobe Collection. Int. J. Climatol., 25, 865-879

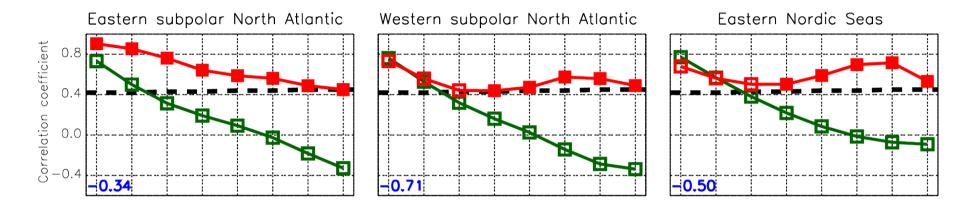

Ishii, M., M. Kimoto, K. Sakamoto, and S. I. Iwasaki, 2006: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanography, 62, 155-170

Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanography, 65, 287-299

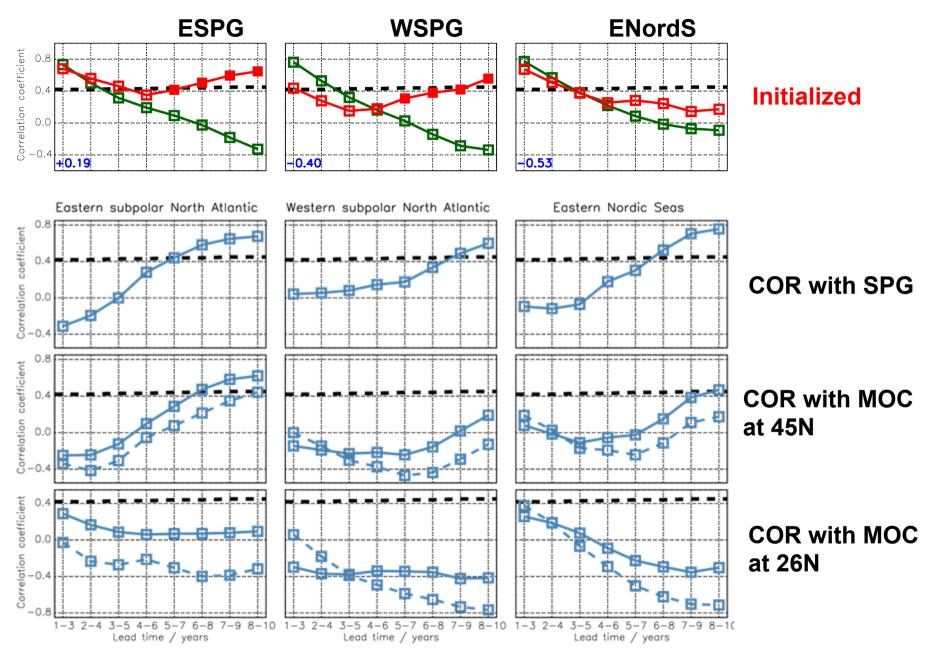

Correlation skill of multi-model ensemble mean




Upper-ocean salt content evolution


Correlation skill of persistence based on ISHII dataset

Correlation skill of multi-model ensemble mean



Initialized, Persistence, 20C

ESPG WSPG ENordS 0.8 0.4 MPI-ESM-LR baseline1 0.0 8-0.4 -0.40 -0.53 +0.19 0.8 Ö. _ HadCM3 0.0 8 -0. +0.15 +0.05 +0.08 0.8 0.4 EC Earth 0.0 S -0. +0.26 -0.14 -0.07 0.8 G -0.4 GFDL-CM2.1 0.0 Š -0.4 -0.36 -0.60 -0.54 0.8 **F** Ē. Б 0.4 CanCM4 0.0 m 3 -0.15 -0.48 -0.49 0.8 Ĥ 0. MIROC5 0.0 Š−0.4 -0.47 -0.51 -0.64 1-3 2-4 3-5 4-6 5-7 6-8 7-9 8-10 Lead time / years 1-3 2-4 3-5 4-6 5-7 6-8 7-9 8-10 1-3 2-4 3-5 4-6 5-7 6-8 7-9 8-10 Lead time / years

Correlation skill of individual models

Skill attribution based on MPI-ESM-LR

Conclusions

- Based on the multi-model ensemble mean hindcasts, decadal-scale predictive skill of upper-ocean salt content is found in the entire subpolar North Atlantic and the eastern part of the Nordic Seas
- Based on MPI-ESM-LR, we attribute the skill beyond the persistence forecast to a delayed response to the initialization of the North Atlantic gyre and overturning circulation
- The skill based on the individual models is partly much lower than the skill based on the multi-model ensemble mean, underlining the importance of a multi-model approach for predictability studies

<u>Outlook:</u> Extend skill attribution to all models <u>Challenge:</u> Very limited availability of streamfunctions through ESGF nodes

Project Coordinators: Steffen M. Olsen, Danish Meteorological Institute, smo@dmi.dk and Daniela Matei, Max Planck Institute for Meteorology, daniela.matei@mpimet.mpg.de Project Office: Chiara Bearzotti, Danish Meteorological Institute, chb@dmi.org

Project Office: Chiara Bearzotti, Danish Meteorological Institute, chb@dmi.dk **Communication, Dissemination, Engagement, and Exploitation officer:** Raeanne Miller, SRSL, Raeanne.Miller@sams.ac.uk

www.blue-action.eu

@BG10Blueaction

The Blue-Action project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727852