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Abstract—Fifth generation mobile networks (5G) will enable
new use cases for industries and vertical markets via numerous
innovative approaches that overcome limitations of existing sys-
tems. Two concepts essential for the realization of 5G, are network
elasticity and slicing. The application of these concepts allows
the simultaneous hosting of more services that use a common
resource pool while reducing operation and capital expenses.
The realization of these benefits demands an efficient method to
scale the resources allocated between different slices often with
diverse demands. We apply a multi-objective approach, based
on evolutionary algorithms to accomplish optimized resource or-
chestration between cloud-based slices in a 5G network deployed
over a large European city. Numerical results are provided for the
proposed approach and are compared to other allocation schemes.

I. INTRODUCTION

5G networks promise to support higher speeds, a vast
increase of connected devices, denser networks, enhanced
connectivity even in high speed mobility scenarios, while
offering lower latency services and energy consumption com-
pared to current generation networks. They are expected to
be commercially deployed by 2020, enabling new and diverse
use cases and services to an extensive range of industries and
vertical markets [1].

These use cases can be clustered into three broad categories,
based on their demands and characteristics [1], [2]: Services
belonging to the enhanced Mobile Broadband (eMBB) category
will require very high data rates and seamless coverage.
Examples of eMBB services include virtual or augmented
reality applications (VR/AR) and streaming ultra high definition
(UHD) video. The second service type, is ultra-Reliable
and Low Latency Communications (URLLC) also reffered
as mission-critical communications which require very high
reliability combined with very low latency. Use cases include
self-driving vehicles, remote operation of heavy machinery or
industrial automation while some of these applications. Services
belonging in this category might also require high data rates,
for example performance of remote surgery. Finally massive
Machine Type Communications (mMTC) will supports dense
communications with small packet size and low throughput by
massive amount of Internet of Things (IoT) devices e.g. use
cases such as sensors monitoring environmental pollution in
a smart city environment or sensors used for smart shipment
tracking.

Through the research backed by various public and private

organizations and partnerships and the effort of standards
development organizations (SDOs), numerous concepts have
been established as the basis used to tackle the technical and
service requirements of 5G networks, e.g use of massive MIMO
antenna arrays for the radio frequency (RF) 5G interfaces or
the cloudification of radio access network (RAN).

Two innovations that are foundational for the realization
of 5G networks, are virtualized network functions (VNF) and
network slicing [3], [4]. Network function virtualization, aims
to the creation of networks functions that can be deployed in
general purpose hardware instead of using specialized hardware,
as was the case in legacy networks. These functions can
then be hosted in virtual machines or software containers
sharing common computation, storage or network resources.
The concept of network slicing, concerns a network architecture
that enables the network to create slices on a common physical
infrastructure that essentially are multiple, parallel independent
end-to-end (E2E) logical networks covering the entirety of the
network domains (core, transport and radio access networks).
Each network slice instance (NSI) contains all functionalities
and resources required to support the use case it was designed
to serve [5].

The combination of these concepts will allow multi-tenancy
and on-demand service and resource provisioning [6]. This
aspect of a 5G system refers to the network ability to adapt
load fluctuations as and when required efficiently matching
the resources available with the demand is termed as network
resource elasticity. 5G systems are elastic in three different
dimensions: Operations that concern adapting the size of
the VNFs to preserve their performance are referred to as
Computational Elasticity while flexibly placing and chaining
the various VNFs in an efficient manner is Orchestration-driven
lasticity. The final dimension is Slice-aware or Cross Slice
elasticity which leverages multiplexing gains by upscaling and
downscaling network slice sizes as required. Employing cross-
slice resource provisioning mechanisms, allows hosting more
slices in the same infrastructure or serving the existing ones
in a more efficient manner compared to networks without this
mechanism [4].

The rest of the paper is organized as follows. In section II
we review relevant works from the available literature, while
in section III we briefly describe of evolutionary algorithms
and present a cursory overview of our contributions. In section
IV we present and formulate the resource allocation problem ,
whereas section V contains the setup of our simulation along



with the numerical results of the approach we suggest in
comparison with other methods.

II. RELATED WORKS AND KEY CONTRIBUTIONS

Most real-world optimization problems have multiple objec-
tives which are sometime conflicting. To address this class
of problems, various multi-objective optimization (MOOP)
methods that can simultaneously handle multiple objective
functions have been developed. These methods have produced
efficient solutions for problems in fields ranging from engineer-
ing and medicine to economics [7], [8]. MOOP approaches have
been used in the context of 5G networks to handle problems
concerning network dimensioning [9], optimization of network
energy use [10], and computational and orchestration driven
elasticity [11]–[14] or the orchestration of networks without
elasticity [15], [16].

While these results indicate that the problem of cross-
slice resource allocation in a 5G system can be effectively
handled by using MOOP techniques, existing approaches are
based single or double-objectives e.g. [3] and cases of more
objectives are solved in stages [18]. Another gap in the existing
literature, is the method of handling the allocation of the
computational resources used by the virtual machines hosting
the VNFs. Existing research focuses in the optimization of
throughput, Signal-to-Interference-plus-Noise-Ratio, physical
resource blocks (PRBs) i.e. radio resources while not taking
into account resources such as CPU, Memory etc. A theoretical
model that describes computational resource allocation in 5G
network is available in [19]. Finally, another benefit gained
by using multi-objective algorithms is that in contrast with
tools from game theory , e.g. [17], no prior assumptions such
as loss/revenue margins or user network traffic patterns are
required.

In our study we implemented a resource allocation method
for the different slices with diverse resource demands of a 5G
system. To the best of our knowledge, an approach that uses
MO evolutionary algorithms to optimize the resources shared
between slices has not been yet examined.

Using a multi-objective optimization approach we propose
a scheme that takes into account both the virtualized and the
radio parts of the network and produces multiple solutions
that can represent optimal decisions for the inter-slice resource
orchestration based on various trade-offs for the various metrics
used to evaluate the network performance. Additionally, the
method is easily extendable in terms of resource types and
objective functions modeled.

III. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms are a subset of evolutionary com-
putation. Along with other techniques and methods such as
artificial neural networks, fuzzy logic or swarm intelligence
they belong to the Computational Intelligence field of study,
also known as soft computing, a sub-discipline of the Artificial
Intelligence field. These approaches can easily adapt to changes
of the input data, effectively represent numerical knowledge and
efficiently produce solutions in computationally hard problems
using robust approximation models [20].

The basic process of an evolutionary algorithms involves
the evolution of a population that represents a set of solutions

using predefined objective functions. The optimization process
is iterative and such each iteration is called a generation. In each
generation a number of operators called genetic or evolutionary
are applied to the population to evolve it towards optimized
solutions. A detailed description of various MOOP related
methods is available in [7]. Since the objective functions of
a MO problem can often be conflicting, improving the value
of one can cause the deterioration of the results of one or
more of the rest of the objective functions. Such a problem
has no unique optimal solution, instead the solution is a set
consisting optimal trade-off solutions, called Pareto-optimal.
These solutions are said to be non-dominated i.e. for each of
them the improvement of any objective function value comes
at the expense of one or more objective function results.

In our experiments we use the Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) [21]. Decom-
position using weights is a classic method for solving MOOP:
the weights represent the significance of the objectives and
are used to transform the initial problem to one with a single
objective. Utilizing decomposition, MOEA/D finds optimal
solutions for each objective and then based on these solutions
uses operators to evolve the initial population. Decomposition
can be performed by other methods than weighting such as the
Tchebyscheff scalarization method [21].

IV. PROPOSED MODEL

The purpose of our model is to optimize a number of
slices S = {s1, .., si}, during a number of time points T =
{t1, .., t|T |}. Each slice has a number of user requests Uqsi =
{u1si , u2si , ..., u|U |si}. At any given time point tk we denote
as Dtk

si = [um, ..., un] the ordered set of requests at the waiting
list of a slice si.

Each network slice instance corresponds to a service offered
by the network, e.g., a virtual reality (VR) application or mobile
browsing. The total demand per slice is defined as follows.
Given the set of slices S = {s1, .., si}, the set of time periods
T = {t1, .., t|T |}, and the set of user service requests Uqsi =
{u1si , u2si , ..., u|U |si}, define as Dtk

si the vector that represents
the list of requests that wait in the execution queue of slice si at
time tk. Next, we need to define the resources needed to serve
the requests for the slices E = {e1s|S| , e2s|S| , ..., e|E|s|S|}. E
is a subset of the set P describing the entire network resource
pool, E ⊆ P .

The objective functions Objj = {Obj1, .., Obj|J|} form the
basis of the evolutionary algorithms which in the case of the
5G networks can be KPIs such as user data rate or resource
utilization.

The desired result of the algorithm is the definition of a
mapping function f : P × Dti

sjP(P ), for all ti ∈ T, sj ∈ S,
and P(P ) which is the power set of P.

In other words, given the demand Dti
sj and the available

resources P, function f returns a list of resources allocated to
slice sj at time ti, while also minimizing the list of objectives
J.

The final decision on resource allocation is done by using
the evolutionary algorithm to minimize the following:

argminf J(f)



subject to Objmin
j 6 Objj 6 Objmax

j

Forming the problem in such a manner, allows adding
additional bounds based on service level agreements (SLA),
e.g. a slice hosting a virtual reality application might require
high data rates to function but allocation of resource amounts
higher than needed raises the operational costs for the MNO.
In this scenario, adding throughput as objective would lead to
the following constraint:
Objmin

throughput(si) 6 Objthroughput(si) 6 Objmax
throughput(si).

Additional constraints can easily be added based on different
scenarios and needs of network use.

A. Application of the proposed model

The model proposed in the previous section, is used to
simulate a resource allocation problem in a network with slice-
aware elasticity enabled, where some the base stations face
traffic congestion. The binary function XSij is used to describe
the request admission result:

XUj ,Si
=

{
1, if slice Si request uj can be served,
0, if request cannot be served.

Before the definition of the objective functions that will be
used for the network optimization and the evaluation of its
performance, the amount of the required resources and their
cost for each network slice has to be determined. The demand
of radio resources, throughput and power consumption per slice
si for each cell is:

Throughput demand per slice si : e1Si
(ujsi) =∑j

1 Throughput demand ∗ xuj ,si

Power demand per slice si : e2Si(ujsi) =∑j
1 Power demand ∗ xuj ,si

Concerning computational resource use per Cell, the CPU
demand for slice si for each cell is:

e3Si
(ujsi) =

∑j
1 CPU required ∗ xuj ,si

And the summed total cost of the resources demanded per
slice si is:

CSi
(ujsi) =

∑j
1 Cost demanded resources ∗ xuj ,si

The amount of network resources consumed by all slices
is: a) Throughput consumption e1tot =

∑j
1 e1Sj

, b) Cell
power consumption e2tot =

∑j
1 e2Sj

and c) CPU consumption
e3tot =

∑j
1 e3Sj

.

The resource pool of the network i.e. maximum
Throughput, Power and CPU amount available is P=(r1, r2,r3).
The objective functions can now be defined :
Total throughput consumed, Obj1: Total throughput
consumed to service all accepted requests :
argminesSi∈E

∑i=n,j=m
i=1,j=1

xuj,si
∗e1Sij

A

Mean throughput consumed by user, Obj2:
Average throughput consumed by an accepted request:

argminesSi∈E
∑i=n,j=m

i=1,j=1

e1Sij

n

Cost efficiency, Obj3: average cost of accepted requests:
min

∑i=n,j=m
i=1,j=1

CSij

n

Resource utilization, Obj4: Total resources
allocated as a fraction of all available resources:

argmaxesSi∈E
∑i=n,j=m

i=1,j=1
r1

e1tot
+ r2

e2tot
+ r3

e3tot
The process of minimizing the KPI values is subject to
a number of constrains. It follows reason that resource

consumption cannot exceed available resources:
e1tot 6 r1, e2tot 6 r2, e3tot 6 r3 .

Using the constrains and the objective functions given above,
the following problem can be solved by the MOEA/D algorithm:
argminf J = argminf [−obj1,−obj2, obj3,−obj4].

The step-by-step outline of the process used for the multi-
objective optimization based resource allocation is given in
Algorithm 1.

Algorithm 1 Pseudo-Code for slice-aware resource allocation
using multi-objective optimization

1: Initialization:
∀ cell , ∀ slice:
- Determine available resource pool, number of traffic
requests and aggregate resource demand

2: Problem formulation:
- Define objective functions and constrains
- Set population size and number of generations

3: Optimization using MOEA/D:
- Generate starting random population
- Calculate reference point for the Tchebyscheff decompo-
sition
- Evaluate the values of objective function
- Evolve population using genetic operators and calculate
new objective functions
- Repair population, taking into account any constraint
violations
- Update population with evolved solution

4: While iteration ≤ generations size:
- repeat step 3

5: Perform selection from the Pareto solution set and allocate
resources

6: If number of traffic requests served < number of traffic
requests served:
- determine number of requests not served
- assign requests to closest cell with resources available
- Go to step 1

V. PERFORMANCE EVALUATION

A. Experiment setup

o test the proposed approach, a network s situated in
the Hamburg city and Port with 85 sites microsites with 1
remote radio heads(RRH) per site and 7 Macro-sites with 3
RRH was simulated, shown in figure 1. The data concerning
traffic distribution, throughput and CPU requirements was
produced using the Mx-Art network level simulator [22]. The
methodology for the calculation of CPU requirements of each



Fig. 1. Map of base station locations used in the simulation. Blue dots show
the macro-sites and red the micro-sites.

TABLE I. ASSUMPTIONS USED IN THE SIMULATION

Simulation Parameters
Antenna system : Single-Input, Single-Output (SISO)

Bandwidth capacity per cell: 20 MHz
Modulation: 64QAM, Modulation scheme (MCS) : 18, TBS Index: 26

Cost per GB: 72.34 e, Max Throughput per cell: 75.376 Mbps
Max CPU per cell: 10 CPUs, Max Power per cell: 120 kW
Simulation Duration: 230 time points with duration of 100 s

For each slice, min,max,mean number of requests per cell and
mean Throughput per request :

URLLC Slice : [2,180,36,0.528], eMBB Slice : [2,18, 11, 5.167]
IoT Slice : [3,137,21,0.4428]

service can be found in [23]. Power consumption of the cells
was computed using the models proposed in [24]. The average
cost per GB was calculated using the Capische analytical tool
[25]. Various assumptions used in the simulation are available
in V-A The simulation uses the PYGMO 2 [26] optimization
toolbox and was performed using Python.

The scenario assumes three slice types: an eMBB service
with high resource demands, an URLLC with a lower re-
source demands and an IoT slice with the lowest resource
demand.Traffic requests are gradually increased to a peak in
the period between time points 140 and 220.

To simplify the process, we presume no interference, no path
loss propagation etc. when a request is redirected to another
cell. To offset for these simplifications we impose a penalty
in all cases where a request cannot be served by the cell it
was originally made. If a request originally required er original

radio resources (Throughput, Power), it needs er updated =
er original + 0.2 ∗ d ∗ er original if it is served by another cell
with distance d from the original cell.

In order to better showcase our results, results for four
additional allocation schemes where produced: a) A scheme
that uses the proposed method but employs the NSGA-II
algorithm,commonly used as a benchmark in MOOP problems
[27] b) a case where we assume that there is the network is
not elastic and the resource allocation is fixed (eMBB slice:
60%, URLLC slice: 30% and IoT slice: 10% of total available
resources) c) a scheme where the most resource-demanding
user requests have priority i.e first eMBB requests are served
then URLLC requests and finally IoT and d) a scheme where
the least resource-demanding user requests have priority (IoT
then URLLC and lastly eMBB).

Fig. 2. Averaged values of the objective functions throughout the simulation
(lines smoothed using LOESS with smoothing parameter a=0.1).

A population size of 36 was used for the MOEA/D algorithm
and a population size of 35 for the NSGA-II algorithm. Both
populations where evolved for 300 generations.

B. Simulation results

MO algorithms produce a set of trade-off solutions as
discussed in section III. The values of the Pareto set were
decomposed using decomposition with equivalent weights (w =
0.2) to select a solution that is equally balanced for all objective
functions.

As shown in table II, the solution that uses the MOEA/D
requires on average less resources and has less cost while
serving the same number of requests compared to the other
allocation schemes. The NSGA-II benchmark method performs
very close to the proposed solution, with the objective functions
results being approximately 1% less than those of the the
MOEA/D method. The results of the best performing naive
scheme i.e. the one prioritizing the eMBB slice requests, are
between 4% to 5% less than the MOEA/D solutions.

To showcase the performance of the proposed scheme
its’ results are plotted, along with the results of the two
best performing naive methods, Unelastic and eMBB-priority:



TABLE II. AVERAGED EVALUATION RESULTS FOR THE DIFFERENT
RESOURCE ALLOCATION METHOD.

Method
Metric Throughput

per Cell
Throughput per
user request

Resource
Utilization

Cost

MOEA/D 71.2343 1.3421 1.7023 0.0903
NSGA-2 71.6286 1.3533 1.7193 0.0910
eMBB
priority

73.25592 1.3989 1.7829 0.094

IoT
priority

73.22250 2.1724 1.7833 0.1134

Unelastic
network

74.43534 1.3993 1.8493 0.0941

The MOEA/D method steadily outperforms both of the naive
methods throughout the simulation period, as shown in figure
2. It should be also noted that in the peak traffic period the
average cost of the scheme that prioritizes the eMBB slice is
larger that the cost of the unelastic scheme.

VI. CONCLUSIONS

In this paper,a resource allocation method between network
slices is proposed, based on multi-objective optimization and
implemented on a 5G network. The simulations show that the
method proposed produces better results compared to another
MO algorithm and three naive resource allocation schemes,
serving the same number of user requests with a lower cost and
resource consumption. As follow-up work, we intent to further
develop our approach, so it uses variable modulation schemes
and propagation path loss models. We plan to experiment
with in scenarios that involve more slices with different owners,
taking into account cell switch off to achieve further operational
cost reduction and using more evaluation metrics, especially
metrics related to latency.
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