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Abstract— Network virtualisation and network slicing are 

the two essential innovations in the next generation of mobile 

networks also known as the 5G networks. Based on these 

innovations, multiple network slices with different 

requirements and objectives can share the same physical 

infrastructure. The techniques to efficiently allocate the 

available radio resources to different slices based on their 

requirements and their priority, also known as inter-slice 

radio resource management, has been the subject of many 

studies. The formerly proposed algorithms either assume the 

slices request maximum contracted data rates or they react 

passively as the demands arrive. This paper proposes to use 

Artificial Intelligence (AI) approaches to learn the pattern of 

the traffic demand of each network slices and predict the 

demands in the next decision interval. Based on the prediction 

of the slices’ demands, a novel model for elastic inter-slice 

radio resource management is proposed to increase the 

multiplexing gain while not compromising the quality of 

offered connectivity services to the slices. The proposed model 

is evaluated using a practical scenario. The numeric results 

show that while the performance of the model under full 

demand is similar to former models, its elastic resource 

management enables more efficient resource allocation when 

the traffic demands vary over time. 

I. INTRODUCTION 

The emergence of traffic-hungry smart-phones and the 
massive Internet of Things (mIoT) has hugely influenced 
the mobile networks. Operators need new solutions to face 
the rapid growth of mobile traffic demand [1] with a wide 
range of service Quality of Service (QoS) requirements. 
Hence, recent studies on the development of the fifth 
generation of mobile networks (5G) consider flexibility, 
scalability, and cost efficiency to be the essential design 
goals and proposed the concept of network virtualisation. 
The aim is to modernise the mobile network by changing 
how operators architect their networks using Software 
Defined Network (SDN) and Network Function 
Virtualisation (NFV) architectures [2]. 

The key idea in both SDN and NFV is network element 
abstraction, based on which different functionalities of 
nodes in a system can be implemented either as SDN 
applications or Virtual Network Functions (VNFs). These 
two architectural concepts propose to separate the physical 
network infrastructure from the nodes’ functionalities. This 
separation enables the implementation of network functions 
on Commercial Off-The-Shelf (COTS) instead of 
proprietary hardware [3]. The network virtualisation also 
allows the sharing of infrastructure among multiple network 
slices while offering isolation. The operators, hence, can 
share server farms, over which they deploy VNF chains to 
form their networks and reduce their CAPital EXpenditure 

(CAPEX)/Operational EXpenditure (OPEX) while 
increasing the flexibility of their systems. 

Also, these innovations are going to change business 
models and stakeholder models. One of these changes is the 
emergence of Small and Medium Enterprises (SMEs) as 
VNF providers to offer more diversity to the market, which 
is currently ruled by giant well-established mobile vendors. 
Hence, operators have more options to choose, and they can 
establish a multi-vendor network, which fits the best to their 
needs and business strategies. 

However, the realisation of a full-fledged virtual mobile 
network requires addressing essential challenges such as 
slice-aware resource management. Serving multiple 
network slices with different QoS requirements over the 
same physical infrastructure is a non-trivial task [4]. Each 
network slice requires a portion of available radio resources 
and sufficient computational resources to run the related 
VNF chains. The tight latency requirements in RAN 
imposes rigid design constraints on the processing delay 
budget, provisioning and allocation of computational 
resources. This task becomes even more laborious because 
different VNFs from different providers would have 
different computational performance. 

The formerly proposed inter-slice Radio Resource 
Management (RRM) algorithms either allocate resources in 
passive mode (i.e. adopt the allocation after observation of 
demand change) [5] or they allocate based on maximum 
demand assumption [6, 7]. Dynamic reservation of 
resources for the slices is also another approach to inter-slice 
radio resource management [8]. In [9], authors proposed a 
Q-learning approach to autonomous adjust the resource 
reservation. However, to enable elastic resource allocation 
to improve radio resource utilisation and increase the 
multiplexing gain, all these algorithms require to predict the 
slice’s traffic demand. This prediction is even more critical 
in computational resource orchestration and management 
since creating a new instance over virtual machines in the 
cloud environment can take up to several hundred 
milliseconds. Provisioning of the VNF chains for the high-
load leads to extra CAPEX and OPEX, on the one hand. On 
the other hand, the low-load provisioning may leads to 
computational resource shortage and service intruption. 

The novelty of this paper is to propose a new model for 
elastic slice-aware radio resource management. The novel 
model proposes to add Deep Neural Networks (DNNs) to 
resource manager algorithm to predict the slices demands 
and improve resource provisioning in mid-term (i.e. in the 
order of a couple of minutes to a couple of hours). The 
algorithm with a realistic estimation of future demands can 



elastically manage the resources and improve the quality of 
service offered to slices. Also, the elastic resource 
management improve the resource utilisation, and it leads to 
the cost reduction. 

The rest of this paper is organised as follows: Section II 
describes the slice traffic prediction, and Section III 
addresses the new elastic radio resource management. 
Section IV provides the scenario description and numerical 
results. Finally, Section V concludes the paper. 

II. PREDICTION OF SLICES’ DEMANDS 

Depending on the services of a slice, their traffic 
demands during the time interval as long as a day or week 
follows a similar pattern. It is common to observe a gradual 
increase of demands up to the rush hour (i.e. the busiest time 
interval of the day) followed by a slow decay till the next 
day. The demands pattern not only varies temporarily but 
also geographically. The commercial zone experiences 
higher demands during the working hours while the 
residential areas experience higher load in the afternoon.  

 The paper proposes to train DNNs with the slices’ 
traffic demand in a serving area based on long-term reports 
to predict the demand based on the N-previous observational 
intervals. Retraining of the neural network by the new 
reports (e.g. after a day or each couple of hours) enables it 
to cope with slow and long-term changes in the traffic 
pattern. Fig. 1 illustrates the DNN for demand predictor in 
this paper, which has 5-neuron input layer, followed by two 
16-neuron dense layers with ReLU activation function in 
addition to a sigmoid activation function for the output layer 
[10]. 

 

Fig. 1. The structure of the DNN. 

 Fig. 2 shows the predicted against the actual traffic. It is 
apparent from the graphs that the predictions are following 
the average of the traffic time in each interval. The inter-
slice model can use these predictions as the input to 
elastically allocate resources to each slice. It is worth noting 
that the neural network cannot predict the sudden variation 
of traffic, but its prediction is closer to the average demand 
in the next time interval. 

III. ELASTIC SLICE-AWARE RADIO RESOURCE 

MANAGEMENT MODEL 

The allocation of available radio resources to different 
network slices can be formulated as an optimisation 
problem to maximise the weighted network throughput 
subject to constraints including the Service Level 
Agreements (SLAs), the total network throughput, and 
fairness in addition to underprovisioning and violation 
penalties.  

(a)

(b) 

Fig. 2. Traffic demand prediction using the deep neural network. 

The proposed model in this paper is the extension of the 
model described in [7] to consider the traffic demand of 
each slice. The former models [7, 11, 12] assumed that the 
network slices always have higher demands than the 
allocated radio resources; Hence, they can always fully 
utilise the radio resources allocated to them. In the new 
model, the deep neural networks first predict the traffic 
demands and this prediction can be corrected with a 
confidence coefficient: 

𝑅𝑏𝑖[Mbps]
𝑃𝑟𝑒 = 𝛾𝑖𝑅𝑏𝑖[Mbps]

𝑃𝑟�̃�  (1) 

where: 

• 𝑅𝑏𝑖
𝑃𝑟𝑒: the confidence demand prediction for slice i, 

• 𝑅𝑏𝑖
𝑃𝑟𝑒 :̃ the demand predicted by the DNN for slice i, 

• 𝛾𝑖: the confidence factor for slice i, 𝛾𝑖 ≥ 0. 

In addition to traffic prediction, the inter-slice radio 
resource management model has two other essential parts: 
i) Estimation of the total network throughput, ii) Allocation 
of available resource to the network slices. 

Based on the probability functions of Signal to Noise-
Interference (SINR), the probability functions of the 
throughput of a single Physical Radio Block (PRB) is 
calculated. The total network throughput is the convolution 
of all PRBs probability density function as described in [13]. 

The model for allocation of available radio resources to 
different network slices is a multi-objective optimisation 
model. These objectives while related, they may be 
contradictive. The objectives are as follows: 

Slice Priority is the primary objective in the proposed 
model and aims to allocate more radio resources and higher 
throughput to the slices with higher priority. Hence, the 
related objective function in the model is the weighted 
throughput given by: 



𝑓𝑆𝑟𝑣(𝑹𝒃
𝑺𝒓𝒗) =∑𝑤𝑖

𝑆𝑟𝑣𝑅𝑏𝑖[Mbps]
𝑆𝑟𝑣  

𝑁𝑠

𝑖=0

 (2) 

where: 

• 𝑓𝑆𝑟𝑣: slice priority objective function, 

• 𝑹𝒃
𝑺𝒓𝒗: vector of serving throughputs, 

• 𝑅𝑏𝑖
𝑆𝑟𝑣: serving (allocated) throughput to slice i, 

• 𝑁𝑠: number of network slices, 

• 𝑤𝑖
𝑆𝑟𝑣: serving weight of slice i. 

The serving weights in the equation above define the 
priority of slices. The slice with relatively higher serving 
weight has relatively higher priority, and the model tends to 
allocate more resources to it comparing to the other slices. 
It is common practice to have the summation of the serving 
weights equal to unit.  

Understocking is the focus of the second objective 
function. It is ideal to allocate to each slice what they are 
going to demand. However, there are cases where there are 
not enough resources available to serve all the requested 
throughput from all the network slices. In these situations, 
the allocated throughput to each slice is going to be smaller 
than the predicted demand. The understocking, in the 
framework of this paper, is a non-negative value equal to the 
difference of the predicted demand of a slice and the serving 
throughput of the same slice. The model tries to minimise 
the summation of understocking throughput given by: 

𝑓𝑢𝑠(𝑹𝒃
𝒖𝒔) =  ∑𝑅𝑏𝑖[Mbps]

𝑢𝑠  

𝑁𝑠

𝑖=0

 (3) 

where: 

• 𝑓𝑢𝑠: the underprovioninb objective function, 

• 𝑹𝒃
𝒖𝒔: vector of underprovioninb throughputs, 

• 𝑅𝑏𝑖
𝑢𝑠: understocking throughput to slice i, given by: 

𝑅𝑏𝑖
𝑢𝑠 = min {0, 𝑅𝑏𝑖[Mbps]

𝑃𝑟𝑒 − 𝑅𝑏𝑖[Mbps]
𝑆𝑟𝑣 } (4) 

It is worth noting that the confidence factor introduced 
in (1) contains the overstocking (i.e. allocation of resources 
to a network slice more than the predicted demand.  

Violation of Service Level Agreements (SLAs) is the 
next objective in the inter-slice radio resource management 
model. The allocated resources to each network slice should 
meet the requirements dictated by the SLA of the slice. 
While slices may have different SLAs, as introduced in [7], 
the three main SLAs categories are as follows: 

1. Guaranteed Bitrate (GB): This type of SLA 
guarantees the network slice throughput to be 
higher than the minimum guaranteed data rate and 
less than maximum guaranteed data rate, given by 

𝑅𝑏𝑖[Mbps]
𝑚𝑖𝑛 ≤ 𝑅𝑏𝑖[Mbps]

𝑆𝑟𝑣 ≤ 𝑅𝑏𝑖[Mbps]
𝑚𝑎𝑥  (5) 

where: 

• 𝑅𝑏𝑖
𝑚𝑖𝑛: minimum guaranteed data rate, 

• 𝑅𝑏𝑖
𝑚𝑎𝑥: maximum guaranteed data rate. 

2. Best effort with minimum Guaranteed (BG): 
The minimum throughput for the network slice is 
guaranteed in this type of SLA. However, the 
allocation of more resources is subject to the 
availability of resources.  

𝑅𝑏𝑖[Mbps]
𝑚𝑖𝑛 ≤ 𝑅𝑏𝑖[Mbps]

𝑆𝑟𝑣  (6) 

3. Best Effort (BE): A network slice with the best 
effort SLA is only served when there are resources 
available, and no throughput is guaranteed. 

So, the model should not allow any violation of SLAs. 
Under circumstances where the violation of SLAs is 
unavoidable (e.g. when there are not enough resources) then 
the summation of violations has to be minimised. The SLAs 
violations, 𝑅𝑏

𝑣 , is the difference between the demanded 
guaranteed data rate, given by: 

𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]
𝑣 = min {𝑅𝑏𝑖[Mbps]

𝑃𝑟𝑒 , 𝑅𝑏𝑖[Mbps]
𝑚𝑖𝑛 } − 𝑅𝑏𝑖[Mbps]

𝑆𝑟𝑣   (7) 

Fairness is the final objective function of the new model 
for inter-slice radio resource management. Although it is 
desirable to serve the slice with relatively higher serving 
weights (i.e. high priority slices) with higher throughput, not 
serving the other slices is not an acceptable output. The final 
objective in the model ensures that the slices receive the 
predicted demand data rate when there are enough 
resources. However, the fairness objective in this model 
makes sure the violation of SLAs and understocking are 
distributed among all the slices based on their priority in the 
congestion situations.  

In the case of understocking, demands and serving 
weight are the two parameters, which the fairness considers. 
Regarding demands, it is only fair if the slices with high 
demands experienced higher. For example, 10 Mbps 
understocking for a slice with 100 Mbps demand as well as 
a slice with 10 Mbps is not fair. In the former case, the slice 
received 90% of what it has demands while in the latter case 
the slice is not served all. Now assume that both slices have 
the same amount of demand, but their serving weights are 
different. The fair allocation suggests the slice with higher 
serving weight (i.e. the slice with higher priority) experience 
less understocking.  

Hence, a fair resource allocation considering 
understocking is when the condition below is achieved: 

∀𝑖: |
𝑤𝑖
𝑆𝑟𝑣𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]

𝑢𝑠

𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]
𝑝𝑟𝑒 −

1

𝑁𝑠
∑

𝑤𝑗
𝑆𝑟𝑣𝑅𝑏𝑗[𝑀𝑏𝑝𝑠]

𝑢𝑠

𝑅𝑏𝑗[𝑀𝑏𝑝𝑠]
𝑝𝑟𝑒

𝑁𝑠

𝑗=0 

| = 0 (8) 

In the case of violations, the fairness only considers the 
violation weights, 𝑤𝑖

𝑣 . Thus, the fairness condition in this 
situation is: 

∀𝑖: |𝑤𝑖
𝑣𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]

𝑣 −
1

𝑁𝑠
∑𝑤𝑗

𝑣𝑅𝑏𝑗[𝑀𝑏𝑝𝑠]
𝑣

𝑁𝑠

𝑗=0 

| = 0 (9) 

However, it is always neither possible (i.e. the constraint 
imposed by SLA) nor desirable to satisfy the conditions 
stated in (8) and (9) but the goal is to minimise the diversion 
from these conditions. Hence, the objective function for 
fairness is: 

𝑓𝑓(𝑹𝒃
𝒇𝒖𝒔 , 𝑹𝒃

𝒇𝒗) =  ∑ 𝑅
𝑏𝑗[𝑀𝑏𝑝𝑠]

𝑓𝑣 + 𝑅
𝑏𝑗[𝑀𝑏𝑝𝑠]

𝑓𝑢𝑠

𝑁𝑠

𝑗=0 

 (10) 

where: 

• 𝑓𝑓: fairness objective function, 

• 𝑹𝒃
𝒇𝒖𝒔: vector of understocking fairness derivation, 

• 𝑅𝑏𝑖
𝑓𝑢𝑠: understocking fairness derivation for slice i,  

• 𝑹𝒃
𝒇𝒗: vector of violation fairness derivation, 

• 𝑅𝑏𝑖
𝑓𝑣: violation fairness derivation for slice i,  



Based on the objectives discussed above, a multi-
objective linear program optimisation problem as follows: 

max
Rb

𝑓𝑆𝑟𝑣(𝑹𝒃
𝑺𝒓𝒗) − 𝛼𝑓𝑓

𝑓(𝑅𝑏
𝑓𝑣 , 𝑅𝑏

𝑓𝑢𝑠) + 𝛼𝑣𝑓
𝑣(𝑅𝑏

𝑣) + 𝛼𝑢𝑠𝑓
𝑢𝑠(𝑅𝑏

𝑢𝑠) 

𝑠. 𝑡.

{
 
 
 
 
 
 

 
 
 
 
 
 

∑𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]
𝑆𝑟𝑣 ≤ 𝑅𝑏[𝑀𝑏𝑝𝑠]

𝑡𝑜𝑡  

𝑁𝑠

𝑖=0

|
𝑤𝑖
𝑆𝑟𝑣𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]

𝑢𝑠

𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]
𝑝𝑟𝑒 −

1

𝑁𝑠
∑

𝑤𝑗
𝑆𝑟𝑣𝑅𝑏𝑗[𝑀𝑏𝑝𝑠]

𝑢𝑠

𝑅𝑏𝑗[𝑀𝑏𝑝𝑠]
𝑝𝑟𝑒

𝑁𝑠

𝑗=0 

| ≤ 𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]
𝑓𝑠𝑟𝑣

|𝑤𝑖
𝑣𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]

𝑣 −
1

𝑁𝑠
∑𝑤𝑗

𝑣𝑅𝑏𝑗[𝑀𝑏𝑝𝑠]
𝑣

𝑁𝑠

𝑗=0 

| ≤ 𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]
𝑓𝑣

min {𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]
𝑃𝑟𝑒 , 𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]

𝑚𝑖𝑛 } − 𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]
𝑆𝑟𝑣  ≤ 𝑅𝑏𝑖[𝑀𝑏𝑝𝑠]

𝑣

𝑅𝑏𝑖[Mbps]
𝑆𝑟𝑣 ≤ 𝑅𝑏𝑖[Mbps]

𝑚𝑎𝑥

 (11) 

where: 

• 𝑅𝑏
𝑡𝑜𝑡: the total network throughput, 

• 𝛼𝑓: weight of fairness objective, 

• 𝛼𝑣: weight of voilation objective, 

• 𝛼𝑢𝑠: weight of understocking objective. 

It worth noting that the desired values for the fairness, 
violation, and understocking objective function are zero 
while as the total network throughput increases, the 
weighted sum of the slice data rate, i.e. the main objective 
function, increases. Hence, the weights of the other 
objective functions should be relative to the total network 
throughput. However, this paper considers comparative big 
weights (>10000 times of the total network’s throughput) as 
the objective weights. 

IV. NUMERICAL RESULTS 

The chosen scenario to evaluate the performance of the 
inter-slice radio resource management model is based on the 
scenarios described in [12]. The scenario considers a serving 
area, which contains 16 cells with a radius of 400 m each 
with 500 PRBs. The total network throughput estimated as 
described in Section III is 1.2 Gbps. 

The terminals in this scenario require the average 
throughput of 13 Mbps for each terminal [1] and the 
network slices contract data rates relative to their number of 
terminal. 

𝑅𝑏[Mbps]
𝐶𝑜𝑛𝑡 = 𝑁𝑢𝑒𝑅𝑏[Mbps]

𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (12) 

where: 

• 𝑅𝑏
𝐶𝑜𝑛𝑡: the contracted data rate of slice,  

• 𝑁𝑢𝑒: the number of User Equipment (UE), 

• 𝑅𝑏
𝑢𝑒̅̅ ̅̅ ̅: the average data rate per UE. 

Also, there are three network slices with three different 
SLAs. Slice GB has guaranteed data rate SLA, and the 
allocation of resources has to guaranteed throughput 
between 50% up to 100% of its contracted data rates. The 
BE slice has a minimum guaranteed data rate of 25% of its 
contracted data rate. Finally, the allocation of resources to 
slice BE is subject to availability or resources. All three 
slices have the same services and the same contracting data 
rate. Table I summaries the serving, understocking, and 
violation weight for different slices. 

In the first step, the performance of the inter-slice radio 
resource management proposed in this paper is evaluated 
under the full-demand mode (i.e. when the network slices 

demand all the contracted data rates). In this case study, the 
number of UEs per slice is swept from 10 active terminals 
up to 350 terminals. Fig. 2 illustrates the allocated 
throughput to each network slices as the function of the 
number of UEs per slice.  

TABLE I. WEIGHTS AND THE SLAS FOR THE SLICES. 

 𝒘𝒊
𝑺𝒓𝒗 𝒘𝒊

𝒗 𝑹𝒃𝒊[Mbps]
𝒎𝒊𝒏  𝑹𝒃𝒊[Mbps]

𝒎𝒂𝒙  

GB 0.07 0.63 0.5𝑅𝑏
𝐶𝑜𝑛𝑡 𝑅𝑏

𝐶𝑜𝑛𝑡 

BG 0.02 0.18 0.25𝑅𝑏
𝐶𝑜𝑛𝑡 N/A 

BE 0.01 0.09 0 N/A 

According to the figure, the total traffic demands per 
slice increases up to 1.5 Gbps. Given the 1.2 Gbps network 
capacity, it is not possible to serve all the slices when all off 
have the full demanded throughput. The graph shows that 
the understocking (i.e. not serving the demanded 
throughput) starts happening when the demand per slice 
reaches to 0.38 Gbps. As the demands per slice increases, 
slice GB with the highest serving weights comparatively 
receives higher throughput than the slice BE with lowest 
serving weights. The slice BE does not receive any more 
resources. The violation to the minimum guaranteed data 
rate of slice BG happens when the total number of UEs 
reach to 80 terminals and they demand the total throughput 
of 1.05 Gbps.  

 

Fig. 3. The allocated throughput to each network slice in full demand. 

In the next step, the number of UEs per slice is fixed to 
180 but they are not demanding all the contracted traffic. 
The traffic of slice BG is fixed on 45% of contracted data 
rates equal to 2.05 Gbps while the demand of the slice GB 
is increasing the demand for slice BE is decreasing. Fig. 3 
presents the predicted demand (shown by “Prec” prefix) 
versus the allocated throughput in 20 observation intervals. 

 

Fig. 4. Resource allocation to slices with demand prediction. 



It is apparent that the slice BE and BG have also received 
the full demanded throughput up to ninth observation 
interval, where the demand of the slice GB passed 
336.4 Mbps — comparing the numeric results from Fig. 2 
and Fig. 3 demonstrates the multiplexing gain using the 
throughput prediction. Using the former algorithms, the 
slice BE would not have received any throughput if the 
changes of other slices’ were not taken into account. The 
slice BG also is experiencing higher data rates since the 
most important slice, the slice GB, is not fully requesting its 
contracted data rates.  

It can be concluded through the second scenario, the new 
model increases the elasticity of resource allocations and the 
better quality of service to slices using the same physical 
infrastructure. 

V. CONCLUSIONS 

The network function virtualisation is an essential 
innovation in the 5G systems. It enables serving multiple 
network slices over the same physical cloud-based 
infrastructure to reduce CAPEX and OPEX and increase the 
flexibility of the system. 

Inter-slice radio resource management algorithm is in 
charge to allocate the available radio resources from the 
infrastructure resource pool to the slices. Serving different 
network slices with different SLAs and objective is a 
challenging task. The formerly proposed algorithms do not 
consider the variation of slices’ traffic demands and always 
assign them the maximum possible resources based on their 
serving priority and their SLAs. 

However, a slice-aware elastic radio resource 
management algorithm can improve the flexibility of 
network even more and avoid over-allocation of resources 
to the slices when they may not demand it. Hence, the 
network can allocate more resources to the slices with lower 
serving priority but higher traffic demands. It also enables 
the infrastructure providers to admit more network slices 
with the same resource pool and reduces their costs. 

This paper proposed a novel AI-based elastic slice-
aware radio resource management algorithm, which uses 
deep neural networks to learn the pattern of the slices traffic 
demand and use it to predict the future slices’ demand. The 
main design assumption for the neural network is based on 
the fact that the traffic demands in the networks change 
gradually. Hence, the expected traffic volume can be 
estimated by the changes in traffic during the last N 
observation intervals. 

The resource allocation model is also extended to 
allocate each slice only the required radio resources and 
avoid unnecessary overstocking. The model considers the 
serving weights and SLAs of the slices and allocates more 
resources to slice with higher priority. When there are not 
enough resources available, the model aims to minimise the 
violations to the slices’ SLAs and the understocking. The 
fairness objective functions ensure that both understocking 
and violations are fairly distributed among the slices. 

The performance of the proposed model is also 
evaluated through a series of practical scenarios. The 
numerical results suggest that the model allocates more 
resources to slices with higher priority when they are 
demanding their full contracted data rates. 

However, the results clearly present the elastic resource 
allocation when there are changes in the slice traffic 
demands. Comparing the allocated resources to the slices, it 
is apparent that there is a reduction of allocation to the slices 
resources when they have lower traffic demands. As the 
demands increases, the share of the slice from the resource 
pool relative increases. In the case study, the throughput of 
slice BE with the lowest serving priority has increased up to 
45.34 Mbps. 
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