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Abstract. Bike-sharing transportation systems have been well studied
from a top-down viewpoint, either for an optimal conception of the sys-
tem, or for a better statistical understanding of their working mecha-
nisms in the aim of the optimization of the management strategy. Yet
bottom-up approaches that could include behavior of users have not been
well studied so far. We propose an agent-based model for the short time
evolution of a bike-sharing system, with a focus on two strategical pa-
rameters that are the role of the quantity of information users have on
the all system and the propensity of user to walk after having dropped
their bike. We implement the model in a general way so it is applicable to
every system as soon as data are available in a certain format. The model
of simulation is parametrized and calibrated on processed real time-series
of bike movements for the system of Paris. After showing the robustness
of the simulations by validating internally and externally the model, we
are able to test different user-based strategies for an increase of the level
of service. In particular, we show that an increase of user information
can have significant impact on the homogeneity of repartition of bikes
in docking stations, and, what is important for a future implementation
of the strategy, that an action on only 30% of regular users is enough to
obtain most of the possible amelioration.

Keywords: bike-sharing transportation system, agent-based modeling,
bottom-up complex system management

1 Introduction

Bike-sharing transportation systems have been presented as an ecological and
user-friendly transportation mode, which appears to be well complementary to
classic public transportation systems ([1]). The quick propagation of many im-
plementations of such systems across the world confirms the interesting poten-
tialities that bike-sharing can offer [2]. O’Brien & al. propose in [3] a review
on the current state of bike-sharing across the world. Inspired by the relatively
good success of such systems in Europe, possible key factors for their quality
have been questioned and transposed to different potential countries such as
China ([4, 5]) or the United States ([6]).
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The understanding of system mechanisms is essential for its optimal exploita-
tion. That can be done through statistical analysis with predictive statistical
models ([7–10]) or data-mining techniques ([3, 11]), and can give broader results
such as structure of urban mobility patterns. Concerning the implementation, a
crucial point in the design of the system is an optimal location of stations. That
problem have been extensively studied from an Operational Research point of
view ([12, 13] for example). The next step is a good exploitation of the system.
By nature, strong asymmetries appear in the distribution of bikes: docking sta-
tions in residential areas are emptied during the day contrary to working areas.
That causes in most cases a strong decrease in the level of service (no parking
places or no available bikes for example). To counter such phenomena, operators
have redistribution strategies that have also been well studied and for which
optimal plans have been proposed ([14–16]).

However, all these studies always approach the problem from a top-down
point of view, in the sense of a centralized and global approach of the issues,
whereas bottom-up strategies (i. e. local actions that would allow the emergence
of desired patterns) have been to our knowledge not much considered in the
literature. User-based methods have been considered in [17, 18] in the case of a
car-sharing system, but the problem stays quite far from a behavioral model of
the agents using the system, since it explores the possibility of implication of
users in the redistribution process, or of shared travels what is not relevant in
the case of bikes. Indeed the question of a precise determination of the influ-
ence of users behaviors and parameters on the level of service of a bike-sharing
systems remains open. We propose an agent-based model of simulation in order
to represent and simulate the system from a bottom-up approach, considering
bikers and parking as stations as agents and representing their interactions and
evolutions in time. That allows to explore user-targeted strategies for an increase
of the level of service, as the incitation to use online information media or to
be more flexible on the destination point. Note that our work aims to explore
effects of user-based policies, but does not pretend to give recommendations to
system managers, since our approach stays technical and eludes crucial political
and human aspects that one should take into account in a broader system design
or management context.

The rest of the paper is organized as follows. The model and indicator used
to quantify its behavior are described in Section 2. Next, Section 3 presents
the implementation and results, including internal and external validations of
the model by sensitivity analysis and simplified calibration on real data, and
also exploration of possible bottom-up strategies for system management. We
conclude by a discussion on the applicability of results and on possible develop-
ments.

2 Presentation of the model

Introduction The granularity of the model is the scale of the individual biker
and of the stations where bikes are parked. A more integrated view such as
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flows would not be useful to our purpose since we want to study the impact
of the behavior of individuals on the overall performance of the system. The
global working scheme consists in agents embedded in the street infrastructure,
interacting with particular elements, what is inspired from the core structure
of the Miro model ([19]). Spatial scale is roughly the scale of the district; we
don’t consider the whole system for calculation power purposes (around 1300
stations on all the system of Paris, whereas an interesting district have around
100 stations), what should not be a problem as soon as in- and outflows allow to
reconstruct travels entering and getting out of the area. Tests on larger spatial
zones showed that generated travel were quite the same, justifying this choice of
scale. Focusing on some particular districts is important since issues with level
of service occur only in narrow areas. Time scale of a run is logically one full
day because of the cyclic nature of the process ([20]).
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Fig. 1: Flowchart of the decision
process of bikers, from the start of
their travel to the drop of the bike.

Formalisation The street network of the area
is an euclidian network (V ⊂ R2, E ⊂ V × V )
in a closed bounded part of R2. The time is
discretized on a day, so all temporal evolu-
tion are defined on T = [0, 24] ∩ τN with τ
time step (in hours). Docking stations S are
particular vertices of the network for which
constant capacities c(s ∈ S) are defined, and
that can contain a variable number of bikes
pb(s) ∈ {0, . . . , c}T . We suppose that tem-
poral fields O(x, y, t) and D(x, y, t) are de-
fined, corresponding respectively to probabili-
ties that a given point at a given time becomes
the expected departure (resp. the expected ar-
rival) of a new bike trip, knowing that a trip
starting (resp. arriving) at that time exists. Boundaries conditions are repre-
sented as a set of random variables (NI(i, t)). For each possible entry point i ∈ I
(I ⊂ V is a given set of boundaries points) and each time, NI(i, t) gives the
number of bikes trips entering the zone at point i and time t. For departures,
a random time-serie ND(t) represents the number of departures in the zone at
time t. Note that these random variables and probabilities fields are sufficient to
built the complete process of travel initiation at each time step. Parametrization
of the model will consist in proposing a consistent way to construct them from
real data.

Docking stations are fixed agents, only their functions pb will vary through
time. The other core agents are the bikers, for which the set B(t) is variable. A
biker b ∈ B(t) is represented by its mean speed v̄(b), a distance r(b) correspond-
ing to its “propensity to walk” and a boolean i(b) expressing the capacity of
having access to information on the whole system at any time (through a mobile
device and the dedicated application for example). The initial set of bikers B(0)
is taken empty, as t = 0 corresponds to 3a.m. when there is approximately no
travels on standard days.
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We define then the workflow of the model for one time step. The following
scheme is sequentially executed for each t ∈ T , representing the evolution of the
system on a day.

For each time step the evolution of the system follows this process :

– Starting new travels. For a travel within the area, if biker has information,
he will adapt his destination to the closest station of its destination with free
parking places, if not his destination is not changed.

• For each entry point, draw number of new traveler, associate to each a
destination according to D and characteristics (information drawn uni-
formly from proportion of information, speed according to fixed mean
speed, radius also).

• Draw new departures within the area according to O, associate either
destination within (in proportion to a fixed parameter pit, proportion of
internal travels) the area, or a boundary point (travel out of the area).
If the departure is empty, biker walks to an other station (with bikes if
has information, a random one if not) and will start his travel after a
time determined by mean walking speed and distance of the station.

• Make bikers waiting for start for which it is time begin their journey
(correspond to walkers for which a departure station was empty at a
given time step before)

– Make bikers advance of the distance corresponding to their speed. Travel
path is taken as the shortest path between origin and destination, as effective
paths are expected to have small deviation from the shortest one in urban
bike travels [8].

– Finish travels or redirect bikers

• if the biker was doing an out travel and is on a boundary point, travel
is finished (gets out of the area)

• if has no information, has reached destination and is not on a station,
go to a random station within r(b)

• if is on a station with free places, drop the bike

• if is on a station with no places, choose as new destination either the clos-
est station with free places if he has information, or a random one within
r(b) (excluding already visited ones, implying the memory of agents).

Fig. 1 shows the decision process for starting and arriving bikers. Note that
walking radius r(b) and information i(b) have implicitly great influence on the
output of the model, since dropping station is totally determined (through a
random process) by these two parameters when the destination is given.

Evaluation criteria In order to quantify the performance of the system, to com-
pare different realizations for different points in the parameter space or to evalu-
ate the fitness of a realization towards real data, we need to define some functions
of evaluation, proxies of what are considered as “qualities” of the system.
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Temporal evaluation functions These are criteria evaluated at each time step
and for which the output on the all shape of the time-series will be compared.

– Mean load factor l̄(t) = 1
|S|

∑
s∈S

pb(s)
c(s)

– Heterogeneity of bike distribution: we aggregate spatial heterogeneity of load
factors on each station through a standard normalized heterogeneity indica-

tor, defined by h(t) = 2∑
s 6=s′∈S

1
d(s,s′)

·
∑

s6=s′∈S

∣∣∣∣ pb(s,t)c(s)
− pb(s

′,t)
c(s′)

∣∣∣∣
d(s,s′)

Aggregated evaluation functions These are criteria aggregated on a all day quan-
tifying the level of service integrated on all travels. We note T the set of travels
for a realization of the system and A the set of travel for which an “adverse
event” occured, i. e. for which a potential dropping station was full or a starting
station was empty. For any travel v ∈ T , we denote by dth(v) the theoretical
distance (defined by the network distance between origin and initial destination)
and dr(v) the effective realized distance.

– Proportion of adverse events: proportion of users for which the quality of

service was doubtful. A = |A|
|T |

– Total quantity of detours: quantification of the deviation regarding an ideal

service Dtot = 1
|T | ·

∑
v∈T

dr(v)
dth(v)

We also define a fitness function used for calibration of the model on real data.
If we note (lf(s, t))s∈S,t∈T the real time-series extracted for a standard day by
a statistical analysis on real data, we calibrate on the mean-square error on all
time-series, defined for a realization of the model by

MSE =
1

|S| |T |
∑
t∈T

∑
s∈S

(
pb(s, t)

c(s)
− lf(s, t))2

3 Results

3.1 Implementation and parametrization

Implementation The model was implemented in NetLogo ([21]) including GIS
data through the GIS extension. Preliminary treatment of GIS data was done
with QGIS ([22]). Statistical pre-treatment of real temporal data was done
in R ([23]), using the NL-R extension ([24]) to import directly the data. For
complete reproducibility, source code (including data collection scripts, sta-
tistical R code and NetLogo agent-based modeling code) and data (raw and
processed) are available on the open git repository of the project at http:

//github.com/JusteRaimbault/CityBikes.
Concerning the choice of the level of representation in the graphical inter-

face, we followed Banos in [25] when he argues that such exploratory models
can really be exploited only if a feedback through the interface is possible. It is
necessary to find a good compromise for the quantity of information displayed in
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Fig. 2: Example of the graphical output of the model for a particular district (Chatelet).
The map shows docking stations, for each the color gradient from green to red gives
the current loading factor (green : empty, red : full).

the graphical interface. In our case, we represent a map of the district, on which
link width is proportional to current flows, stations display their load-factor by
a color code (color gradient from green, lf(s) = 0, to red, lf(s) = 1). Bikes are
also represented in real time, what is interesting thanks to an option that allow
to follow some individuals and visualize their decision process through arrows
representing original destination, provenance and new destination (should be im-
plemented in further work). This feature could be seen as superficial at this state
of the work but it appears as essential regarding possible further developments
of the project (see discussion section). Fig. 2 shows an example of the graphical
interface of the implementation of the model of simulation.

Data collection All used data are open data, in order to have good reproducibility
of the work. Road network vector layer was extracted from OpenStreetMap
([26]). Time-series of real stations statuts for Paris were collected automatically1

all 5 minutes during 6 month and were imported into R for treatment with [27]
and the point dataset of stations was created from the geographical coordinates
with [28].

Parametrization The model was designed in order to have real proxies for most of
parameters. Mean travel speed is taken as v̄ =14km.h−1 from [29], where data of
trips where studied for the bike system of the city of Lyon, France. To simplify, we

1 from the dedicated website api.jcdecaux.com
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take same speed for all bikers : v(b) = v̄. A possible extension with tiny gaussian
distribution around mean speed showed in experiments to bring nothing more. It
has been shown in [3] that profiles of use of bike systems stays approximatively
the same for european cities (but can be significantly different for cities as Rio or
Taipei), what justify the use of these inferred data in our case. We also use the
determined mean length of travel from [16] (here that parameter should be more
sensible to the topology so we prefer extract it from this second paper although
it seems to have subsequent methodological bias compared to the first rigorous
work on the system of Lyon), which is 2.3km, in order to determine the diameter
of the area on which our approach stays consistent. Indeed the model is built in
order to have emphasis on travels coming from the outside and on travels going
out, internal travels have to stay a small proportion of all travels. In our case,
a district of diameter 2km gives a proportion of internal travels pit ≈ 20%. We
will take districts of this size with this fixed proportion in the following.
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Fig. 3: Statistical analysis of outputs.
For some aggregated outputs (here the
overall quantity of detours and the pro-
portion of adverse events), we plotted his-
tograms of the statistical distribution of
the functions on many realizations of the
model for a point in the parameter space.
Two points of the parameter space, corre-
sponding to (r = 300, pinfo = 50, σ = 80)
(green histogram) and (r = 700, pinfo =
50, σ = 80) (red) are plotted here as exam-
ples. Gaussian fits are also drawn. The rela-
tive good fit shows the internal consistence
of the model and we are able to quantify the
typical number of repetitions needed when
applying the model : supposing normal dis-
tributions for the indicator and its mean, a
95% confidence interval of size σ/2 is ob-
tained with n = (2 · 2σ ·1.96/σ)2 ≈ 60

The crucial part of the parametriza-
tion is the construction of O,D fields
and random variables NI , ND from
real data. Daily data were reduced
through sampling of time-series of
load-factors of all stations and dimen-
sion of the representation of a day
was significantly reduced through a
k-means clustering procedures (classi-
cally used in time-series clustering as
it is described in [30]). These reduced
points were then clustered again in or-
der to isolate typical weekdays from
week-ends, where the use profiles are
typically different and from special
days such as ones with very bad cli-
mate or public transportation strikes.
That allowed to create the profile of a
“standard day” that was used to infer
O,D fields through a spatial Gaussian
multi-kernel estimation (see [31]). The
characteristic size of kernels 1/σ is an
essential parameter for which we have
no direct proxy, and that will have to
be fixed through a calibration proce-
dure. The laws for NI , ND were taken
as binomial: for an actual arrival, we
consider each possible travel and in-
crease the number of drawing of each binomial law of entries by 1 at the time
corresponding to mean travel time (depending on the travel distance) before
arrival time. Probabilities of binomial laws are 1/Card(I) since we assume in-
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dependence of travels. For departure, we just increase by one drawings of the
binomial law at current time for an actual departure.
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Fig. 4: Simplified calibration procedure.
We plot the surface of the mean-square er-
ror on time-series of load-factors as a func-
tion of the two parameters on which we
want to calibrate. For visibility purpose,
only one surface was represented out of
the different obtained for different values
of walking radius. The absolute minimum
obtained for very large kernel has no sense
since such value give quasi-uniform proba-
bilities because of total recovering of Gaus-
sian kernels. We take as best realization the
second minimum, which is located around a
kernel size of 50 and a quantity of informa-
tion of 30%, which seem to be reasonable
values afterwards.

What we call parameter space in
the following consists in the 3 dimen-
sional space of parameters that have
not been fixed by this parametriza-
tion, i. e. the walking radius r (taken
as constant on all bikers, as for the
speed), the information proportion
pinfo what is the probability for a
new biker to have information and the
”size” of the Gaussian kernels σ (note
that the spread of distributions is de-
creasing with σ).

3.2 Robustness assessment,
exploration and calibration

Internal consistence of the model Be-
fore using simulations of the model to
explore possible strategies, it is nec-
essary to assess that the results pro-
duced are internally consistent, i. e.
that the randomness introduced in the
parametrization and in the internal
rules do not lead to divergences in re-
sults. Simulations were launched on a
large number of repetitions for differ-
ent points in the parameter space and
statistical distribution of aggregated
outputs were plotted. Fig. 3 shows ex-
ample of these results. The relative
good gaussian fits and the small devi-
ation of distributions confirm the in-

ternal consistence of the model. We obtain the typical number of repetitions
needed to have a 95% confidence interval of length half of the standard devia-
tion, what is around 60, and we take that number in all following experiments
and applications. These experiments allowed a grid exploration of the parame-
ter space, confirming expected behavior of indicators. In particular, the shape
of MSE suggested to use the simplified calibration procedure presented in the
following.

Robustness regarding the study area The sensitivity of the model regarding ge-
ometry of the area was also tested. Experiments described afterwards were run
on comparable districts (Châtelet, Saint-Lazare and Montparnasse), leading to
the same conclusions, what confirms the external robustness of the model.
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Reduced calibration procedure Using experiments launched during the grid ex-
ploration of the parameter space, we are able to assess or the regularity of some
aggregated criteria, especially of the mean-square error on loads factors of sta-
tions. We calibrate on kernel size and quantity of information. For different
values of the walking radius, the obtained area for the location of the minimum
of the mean-square error stays quite the same for reasonable values of the ra-
dius (300-600m). Fig. 4 shows an example of the surface used for the simplified
calibration. We extract from that the values of around 50 for kernel size and 30
for information proportion. The most important is kernel size since we cannot
have real proxy for that parameter. We use these values for the explorations of
strategies in the following.

3.3 Investigation of user-based strategies

Influence of walking radius Taking for kernel-size and quantity of information
the values given by the calibration, we can test the influence of walking radius
on the performance of the system. Note that we make a strong assumption, that
is that the calibration stay valid for different values of the radius. As we stand
previously, this stays true as soon as we stay in a reasonable range of values (we
obtained 300m to 600m) for the radius. The influence of variations of walking
radius on indicators were tested. Most interesting results are shown in figure
5. Concerning the indicators evaluated on time-series (h and l̄(t)), it is hard
to have a significant conclusion since the small difference that one can observe
between curves lies inside errors bars of all curves. For A, we see a decreasing
of the indicator after a certain value (300m), what is significant if we consider
that radius under that value are not realistic, since a random place in the city
should be at least in mean over 300m from a bike station. However, the results
concerning the radius are not so concluding, what could be due to the presence
of periodic negative feedbacks: when the mean distance between two stations is
reached, repartitions concerns neighbor stations as expected, but the relation is
not necessarily positive, depending on the current status of the other station.
A deeper understanding and exploration of the behavior of the model regarding
radius should be the object of further work.

Influence of information For the quantity of information, we are on the contrary
able to draw significant conclusions. Again, behavior of indicators were studied
according to variations of pinfo. Most significant are shown on figure 6. Results
from time-series are also not concluding, but concerning aggregated indicators,
we have a constant and regular decrease for each and for different values of the
radius. We are able to quantify a critical value of the information for which
most of the progress concerning indicator A (adverse events) is done, that is
around 35%. We observe for this value an amelioration of 4% in the quantity of
adverse events, that is interesting when compared to the total number of bikers.
Regarding the management strategy for an increase in the level of service, that
implies an increase of the penetration rate of online information tools (mobile
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quantity of adverse events A. After 400m,
we observe a relative decrease of the pro-
portion. However, values under 300-400m
should be ignored since these are smaller
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to a station.

Fig. 5: Results on the influence of walking radius.

application e. g.) if that rate is below 50%. If it is over that value, we have shown
that efforts for an increase of penetration rate would be pointless.

4 Discussion

4.1 Applicability of the results

We have shown that increases of both walking radius and information quantity
could have positive consequences on the level of service of the system, by reducing
the overall number of adverse events and the quantity of detours especially in the
case of the information. However, we can question the possible applicability of the
results. Concerning walking radius, first a deeper investigation would be needed
for confirmation of the weak tendency we observed, and secondly it appears that
in reality, it should be infeasible to play on that parameter. The only way to
approach that would be to inform users of the potential increase in the level of
service if they are ready to make a little effort, but that is quite optimistic to
think that they will apply systematically the changes, either because they are
egoistic, because they won’t think about it, or because they will have no time.

Concerning the information proportion, we cannot also force users to have
information device (although a majority of population owns such a device, they
won’t necessarily install the needed software, especially if that one is not user-
friendly). We should proceed indirectly, for example by increasing the ergonomics
of the application. An other possibility would to improve information displayed
at docking stations that is currently difficult to use.
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Fig. 6: Results on the influence of proportion of information.

4.2 Possible developments

Other possible management strategies Concerning user parameters, other choices
could have been made, as including waiting time at a fixed place, either for a
parking or a bike. The parameters chosen are both possible to influence and quite
adapted to the behavioral heuristic used in the model, and therefore were consid-
ered. Including other parameters, or changing the behavioral model such as using
discrete choice models may be possible developments of our work. Furthermore,
only the role of user was so far explored. The object of further investigation
could be the role of the “behavior” of docking stations. For example, one could
fix rules to them, as close all parkings over a certain threshold of load-factor, or
allow only departures or parkings in given configurations, etc. Such intelligent
agents would surely bring new ways to influence the overall system, but will also
increase the level of complexity (in the sense of model complexity, see [32]), and
therefore that extension should be considered very carefully (that is the reason
why we did not integrate it in this first work).

Towards an online bottom-up pilotage of the bike-sharing system Making the
stations intelligent can imply making them communicate and behave as a self-
adapting system. If they give information to the user, the heterogeneity of the
nature and quantity of information provided could have strong impact on the
overall system. That raises of course ethical issues since we are lead to ask if
it is fair to give different quantities of information to different users. However,
the perspective of a bottom-up piloted system could be of great interest from
a theoretical and practical point of view. One could think of online adaptive
algorithms for ruling the local behavior of the self-adapting system, such as ant
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algorithms ([33]), in which bikers would depose virtual pheromones when they
visit a docking station (corresponding to their information on travel that is easy
to obtain), that would allow the system to take some local decisions of redirecting
bikers or closing stations for a short time in order to obtain an overall better level
of service. Such methods have already been studied to improve level of service
in other public transportation systems like buses [34].

Conclusion

This work is a first step of a new bottom-up approach of bike-sharing systems.
We have implemented, parametrized and calibrated a basic behavioral model
and obtained interesting results for user-based strategies for an increase of the
level of service. Further work will consist in a deeper validation of the model,
its application on other data. We suggest also to explore developments such as
extension to other types of agents (docking stations), or the study of possible
bottom-up online algorithm for an optimal pilotage of the system.
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8. Pierre Borgnat, Eric Fleury, Céline Robardet, Antoine Scherrer, et al. Spatial anal-
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