Federico Zenith Hydrogen energy storage and grid services in microgrids

SINTEF Mathematics & Cybernetics

2 July, 2019 Microgrids Summer School Belfort, France

HA 三 劣 L U S

Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

An Arctic Microgrid: Longyearbyen, Svalbard

HA 三 劣 L U S

Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

An Arctic Microgrid: Longyearbyen, Svalbard

Hydrogen

- The lightest element in nature: one proton, one electron
- In native state, H_2 is a very light gas: $12 \text{ Nm}^3/\text{kg}$
- Very reactive with a weak H-H bond
- Wide explosion range in air, 4 % to 75 %; can ignite w/o spark
- High energy density 33 kWh/kg for reaction with oxygen to give water
- The most common element in the universe...
- Yet, not to be found native on Earth: we have to make it!

H A 三 l L U S

Safety First

- Easily ignited
- No spark necessary, only static charge
- Invisible and non-radiating flame
- + Light gas will shoot for the sky
- + Composite tanks are very durable
 - Safer than diesel and gasoline...
 - ... if you know what you are doing!

Do you know how many survived this?

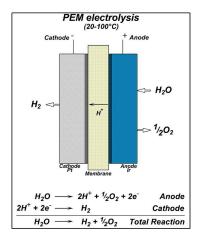
ӉA �� � L U S

Safety First

- Easily ignited
- No spark necessary, only static charge
- Invisible and non-radiating flame
- + Light gas will shoot for the sky
- + Composite tanks are very durable
 - · Safer than diesel and gasoline...
 - ... if you know what you are doing!

Do you know how many survived this? 62 of 97

ਸ਼ੑੑੑਸ਼ヹੴLUS



Hydrogen Production

- Most produced by NG reforming, but...
- *Electrolysis* is key for renewables: split H₂O with electricity into H₂ and O₂
- Two technologies: alkaline and PEM
- Alkaline: mature, efficient, proven
- PEM: flexible, fast, compact

 $HA \equiv \Im L U S$

- SO: high-temperature, in research
- 2020 targets: 52 kWh/kg, 2 M€/(t/d), 2 s hot start, 30 s cold start

Hydrogen Storage (1/2) Mobile & On-Board Storage

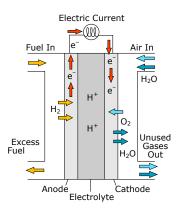
- Compressed gas (cH₂), 350 bar to 700 bar
 - No self-discharge, resilient
 - Requires compressor, 2 kWh/kg
 - Good for minor amounts
- Liquid hydrogen (LH₂)
 - Critical point 33 K@13 bar
 - Large plant required, 5 to 10 kWh/kg
 - Boil-off and large ATEX zone
 - Good for large amounts, maritime
- Metal hydrides (MH)
 - Volume as LH_2 , no odd p or T
 - High weight and cost
 - Only special applications (submarines)

ਸ਼ੵĂヹ��LUS

700 bar cH₂ tanks onboard Toyota Mirai

Hydrogen Storage (2/2) Stationary and Large-Scale Storage

- Low-pressure or cryogenic spheres
- PEM electrolysers produce at 30 bar
 - Can avoid compressor
- Bulk ships for long-range LH₂ export
- Chemical carriers (LOHC, NH₃, ...)
- Salt caverns (geology-dependent)



ਸ਼ੵAヹ�んLUS

Hydrogen Use

- Fuel cells: opposite of electrolysers
- Many types (also other fuels):
 - LT-PEM: most developed
 - HT-PEM: (a little) higher temperature
 - Alkaline: good, but CO₂-intolerant
 - Solid-oxide: high temperature
 - Methanol, formic acid, PAFC, ...
- Typical efficiency 50 % to 60 %

 $HA \equiv \Im L U S$

Caveat on Efficiency Lies, Damned Lies, Statistics and Efficiency Definitions

Thermodynamics of the reaction:

$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$$

- + $\Delta g_l^0 =$ 237 kJ/mol: maximum obtainable **work**, $V^{\mathrm{rev}} =$ 1.23 V
- + $\Delta h_g^0 = 242 \, \mathrm{kJ/mol}$: maximum obtainable **heat** (LHV), $V_{ heta}^{\mathrm{rev}} = 1.25 \, \mathrm{V}$
- + $\Delta h_l^0 =$ 286 kJ/mol: maximum obtainable **heat** (HHV), $V_{ heta}^{
 m rev} =$ 1.48 V
- If converting to power, use Δg ("second-law" efficiency)
- If converting to power and heat, it is debatable
- Some "cheat" by selecting most convenient definition

HAIstLUS

The Hydrogen Society Do you remember the early 2000s?

- An energy carrier, not a source
- Take over mobile energy storage
- Produce from renewables
- Use in zero-emission vehicles
- A lot of hype for H₂ cars in early 2000s
- Use in everything from mobile phones to power plants
- Technology was still immature

 $HA \equiv \Im L U S$

11

Hydrogen in Society Finding what hydrogen is good at

- · Batteries have been getting better
 - Private EVs will likely stay on batteries
- Hydrogen will focus on professional and heavy-duty uses
 - Taxis
 - Trucks
 - Ships
 - Trains
 - Planes (short- to mid-range)
 - Energy export

EV traffic jam in Oslo

12

Hydrogen vs. Batteries In Numbers & Facts

- CAPEX (note structure)
 - Batteries: 250 \$/kWh
 - Fuel cells: 1500 \$/kW
 - » mass production: 268 \$/kW
 - Hydrogen tanks: 20 \$/kWh
- Storage efficiency
 - Round-trip batteries: 90 %
 - with fast charging: 80 %
 - Hydrogen: 30 % to 40 %

- Lifetime
 - Batteries: \approx 1000 cycles
 - » Depends on type, usage
 - Fuel cells: up to 30 000 h
 - Hydrogen tanks: 20+ years
- Power tariffs (Norway)
 - Standard: 40 €/kW/y
 - Interruptible: 2€/kW/y

Hydrogen production can be dispatched, battery charging not

ਸ਼ੵੑ A ヹ ᢒ L U S

Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

An Arctic Microgrid: Longyearbyen, Svalbard

Hydrogen and Power Grids

- IEA HIA task 24 for "Wind Energy & Hydrogen Integration" identified 3 roles:
 - Mini-grids
 - Energy storage
 - Fuel production
- IEA HIA task 38 "Power-to-H₂ and H₂-to-X"
 - H₂ downstream uses
 - Grid services

ӉА҄҄҄҄҄З҄ℬ҄҄LUЅ

Utsira, experimental minigrid with 50 kW FC and 215 kg hydrogen storage

Flexibility of Power Generation

Baseload (inflexible, constant):

- Coal
- Nuclear
- Flexible:
 - Gas turbines
 - Hydro

New renewables:

- Tidal (scheduled)
- Solar (\approx predictable)
- Wind (almost random)

HA 三 釣 L U S

Flexibility of Power Generation

Baseload (inflexible, constant):

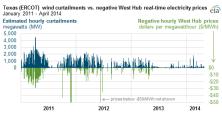
- Coal
- Nuclear

Flexible:

- Gas turbines
- Hydro

New renewables:

- Tidal (scheduled)
- Solar (\approx predictable)


 $HA \exists \Im LUS$

Wind (almost random)

More wind power:

 \Rightarrow Less predictable generation

Negative prices \Rightarrow

Flexibility of Power Generation

Baseload (inflexible, constant):

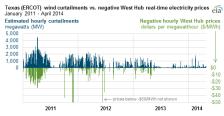
- Coal
- Nuclear

Flexible:

- Gas turbines
- Hydro

New renewables:

- Tidal (scheduled)
- Solar (\approx predictable)

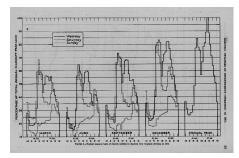

 $HA \equiv \Im L U S$

Wind (almost random)

More wind power:

 \Rightarrow Less predictable generation

Negative prices \Rightarrow

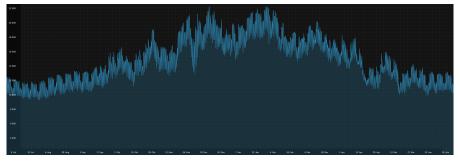


... What about the demand side?

Power Consumption Profiles

- An uncontrollable external input
- Production and import to match
- Periodicity due to:
 - Weekends
 - Power-intensive industry
 - Meal times
- Shape due to characteristics
 - Electricity or gas heating
 - Presence of industries
 - Climate

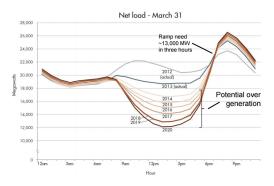
Load profiles for New England, 1919.



17

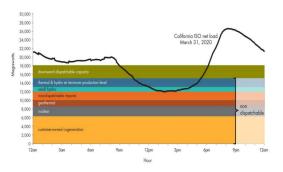
Norwegian Consumption Profile July 2018–June 2019

- Small weekly oscillations (electric heating)
- Significant seasonal oscillation (cold winter 2018-2019)



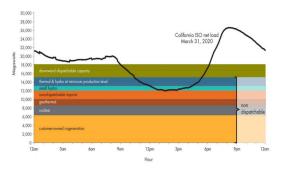
 $HA \exists \Im LUS$

Interplay of Consumption and Renewables The California Duck Curve


- Increasing solar power
- · Daily demand dip

Interplay of Consumption and Renewables The California Duck Curve

- Increasing solar power
- · Daily demand dip
- · Risk of curtailing



19

Interplay of Consumption and Renewables The California Duck Curve

- Increasing solar power
- Daily demand dip
- Risk of curtailing

Generation is becoming less flexible: what about flexible consumption?

19

Demand Flexibility

Hydrogen and Batteries

Batteries

- Store excess energy
- Compensate for wind
- Smooth power output
- High efficiency
- \Rightarrow Re-electrification
- Hydrogen
 - Store excess energy
 - Modulate production
 - Export hydrogen
 - High storage capacity
 - \Rightarrow Large scale

ਸ਼ੵĂヹ��LUS

Hornsdale Power Reserve 129 MWh, 100 MW, 56 M€

Grid Services

- Balancing markets
 - Keep frequency between 49.9 Hz to 50.1 Hz
- Primary reserves (FCR)
 - Automatic
 - Few seconds to start
- Secondary reserves (FRR-A)
 - Automatic
 - 30 seconds to start
- Tertiary reserves (FRR-M)
 - Manual

 $HA \equiv \Im LUS$

- Up to 15 minutes to start

Prices in some European countries (June-July 2019)

- FCR
 - Northern Norway:
 6-38 €/MW/h
 - Germany: 8 €/MW/h
 - France: 4 €/MW/h
- FRR-A
 - Northern Norway:
 0-10 €/MW/h
 - Germany: 1-7€/MW/h
 - France: 20 €/MW/h
- transparency.entsoe.eu

Hydrogen in the Big Picture

Stabilising the Grid by Dispatching Production

- Electrolysers are large consumers with fast dynamics (ms)
- Hydrogen production is not time-critical
- · Re-electrification is (usually) not economical
- Money-makers:
 - Hydrogen sales
 - » Hydrogen is an energy carrier for mobile applications
 - $\,\,{}^{\,\,}$ Over 25 % of energy worldwide is used for transport
 - Interruptible power supply tariff
 - Grid services in all time scales
 - Reactive power compensation

ਸ਼ੵĂヹ��LUS

Hydrogen in the Small Picture How does it Apply to Microgrids?

- · Centralised control vs. market economy
- · Power constraints instead of pricing
- Direct automatic frequency support
 - No contracts, bids, etc.
- · Re-electrification with fuel cells
- Different criteria for hydrogen storage sizing & security of supply

Longyearbyen, Svalbard: 2000 inhabitants and a microgrid

23

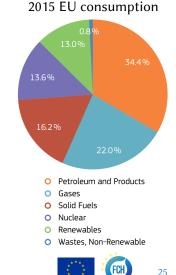
Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

An Arctic Microgrid: Longyearbyen, Svalbard



Motivation

- EU 2030 target: 27 % renewable energy consumption
 - In 2015 it was 13 %
 - Production is already 26.2 % (2015)
 - No renewables in energy imports
- Most renewables produce electricity
- Several are not controllable
- Some are unpredictable

ӉAヹ�のLUS

Constraints of Wind Power

- Hard to predict production
- Capacity factor about 33 %
- Need reserve capacity
- Often, good wind power is found where:
 - there is little hydro potential
 - few people live
 - the grid is weak

 $HA \equiv \Im LUS$

- accessibility is difficult
- · All this even more true for offshore wind!

The Connection between Hydrogen and Wind

- Beyond 20 % wind share, value plummets
 - Gonzalez et al., Ren. Ener., 29.4 (2003), 471-489
- Hydro is rarely possible
- Batteries are too expensive
- Hydrogen has lower efficiency
- IEA's HIA task 24 identified 3 main cases:
 - Energy storage
 - Mini-grid (e.g. islands)
 - Fuel production

 $HA \equiv \Im LUS$

· Grid services, reserves, target matching...

Utsira, Norway (2004)

27

The HAEOLUS Project http://haeolus.eu - @HaeolusProject

- A FCH2 JU Innovation Action
- Objectives:
 - Enable more wind power
 - Test multiple use cases
 - Demonstrate a 2.5 MW system
 - Demonstrate remote operation
 - Report & disseminate
- Key figures:
 - Budget: 7.6 M€ (5 M€ from EU)
 - Time frame 2018-2021
 - Capacity 1t/d

 $HA \exists \Im LUS$

- Production start: early 2020

Kick-off in Oslo, January 2018

The Wind Park

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

The Raggovidda wind park:

HAIstLUS

- 45 MW built of 200 MW concession
- Neighbour Hamnafjell: 50 MW / 120 MW
- Bottleneck to main grid is 95 MW
- Total Varanger resources about 2000 MW

The Wind Park

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW
- Capacity factor 50 %

HAIstLUS

- Local consumption max. 60 MW
- Local economy based on fishing
- Partner operator of park & grid:

The Electrolyser System's Site

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- Located beside Berlevåg harbour
- Compact 2.5 MW PEM electrolyser
- 100 kW fuel cell for re-electrification
- New 10 km power line from Raggovidda
- Virtually "inside the fence"
- · Accessibility by road or sea
- At least 120 t over 2.5 year

 $HA \equiv \Im LUS$

Partner electrolyser manufacturer:
 HYDROG(E)NICS
 SHIFT POWER | ENERGIZE YOUR WORLD

View of Berlevåg, site highlighted

Grid Services

 Wind energy production target match Currently: prediction outsourced 3rd party paid in % of production Easily quantifiable potential Adjust electrolyser to fulfil target
 Primary, secondary & tertiary reserves Electrolysers are easily ramped Can acquire slots in all reserves
Project partner: tecnalia

HA 王 ③ L U S

Hour	Price NOK/MW	Volume MW
1	180	33
2	139	34
3	139	34
4	139	34
:	:	÷
18	18	34
19	18	25
20	17	48
:	:	:

Price for primary reserves on Oct. 3, 2018, northern Norway.

Other Activities

- Remote operation
 - Relevant for many wind parks
 - Run demonstration from Italy
- Partner software developer:

- System prognostics
 - Reduce on-site inspections
 - Optimise maintenance
 - Avoid unscheduled stops
- Partner university:

- Dynamic modelling
 - Process model & optimisation
 - Control synthesis
- Partner university:

- University of Sannio
- Control implementation
- Integration with smart grids
- H₂ valorisation plan
- Coordinator:
 SINTEF

Expected Impact From Short to Long Term

- · Convince Varanger Kraft to expand hydrogen production
- Export model to other sites in Europe (other EU projects?)
- Allow deployment of wind power beyond 20 %
- · Push hydrogen utilisation in the area
 - Mobility, industry, etc.
- Contribute to EU renewable targets & energy independence

Public Deliverables

Reports (18):

- Raggovidda energy analysis
- Dynamic model & control
- Impact on energy systems, RCS
- Valorisation plan
- Business case analysis

 $HA \exists \Im LUS$

- Road to MAWP 2023 targets
- Techno-economic analysis
- Environmental performance
- Demonstration protocols & data

Other (15):

- Workshop at ECC2019 Naples
- Real-time demo on website
- Plant visit
- Academic seminars
- Student internship
- Presence at industrial fair

What to Do with the Hydrogen?

Valorisation Plan: Identified Opportunities

Action	Realism	Size	Gimmick
Svalbard energy supply	\checkmark	\checkmark	\checkmark
Coastal ships	(√)	\checkmark	\checkmark
Fishing boats	(√)	\checkmark	
Ammonia production	\checkmark	\checkmark	
Aquaculture	(√)	\checkmark	
Fast passenger boats	(√)	\checkmark	
Cars	\checkmark		\checkmark
Regional mini-buses	\checkmark		
Waste collection trucks	\checkmark		
Backup generators	\checkmark		
Snowmobiles			\checkmark
Regional planes		\checkmark	\checkmark
ZE steel production		\checkmark	
Mining and ore processing		\checkmark	

Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

An Arctic Microgrid: Longyearbyen, Svalbard

HA 三 劣 L U S

Last Holdout of Coal in Norway

- Uses about 120 MWh/year
- · Wasteful with district heating
- Max electrical load 8 MW
- 2 coal boilers, 6 diesel gensets
- Old coal plant should be replaced...
- Multiconsult: LNG is cheapest

HA 三 釣 L U S

Last Holdout of Coal in Norway

- Uses about 120 MWh/year
- · Wasteful with district heating
- Max electrical load 8 MW
- 2 coal boilers, 6 diesel gensets
- Old coal plant should be replaced...
- Multiconsult: LNG is cheapest
- Svalbard is a hot spot for climate change, common example
- Installing fossil generation is not politically viable

Hydrogen Import to Svalbard

- · Not considered in Multiconsult's report
- Can exploit better green H₂ sources
 - Wind in Finnmark
- H₂ can be readily imported
 - Container solutions available
 - (Initially) also non-green H₂?
- · Combined heat & power fuel cells
 - High efficiency (45 %+45 %)
 - Market ready

ӉA �� � L U S

Flexibility & Scalability in Deployment

- Fuel cells are modular
- Can be introduced gradually
 - Start with smaller pilot
 - Extend later: future-proof
 - LNG needs MW investment
- Can add local renewables later
- Distributed generation
 - Same efficiency

 $HA \equiv \Im LUS$

- E.g. replacing boilers FH1-6
- Better reliability and redundancy
- Can replace diesel generators

Hydrogenics "closet" with 4×33 kW fuel cells systems. Each can be replaced individually. Already deployed in 1 MW unit i Kolon, Korea (in a 40' container).

Data Sources

- Finnmark energy cost: 215 NOK/MWh¹
- Electrolyser: 9.3 MNOK/MW
 - OPEX 7 % thereof²
- Compressors: 6 MNOK/MW_{H2}
 - OPEX 4 % thereof²

 $HA \exists \Im LUS$

- 40' container, 780 kg_{H2}: 3 MNOK
- Transport logistics: 10 NOK/kg_{H₂}
- CHP fuel cells: 25 kNOK/kW, 22 years³

Sources:

- 1. Multiconsult LCOE calculation for Davvi wind power plant
- 2. Noack et al. (DLR, LBST, Fraunhofer, KBB)
- 3. FCH JU's Multi-Annual Implementation Plan

Full Deployment with only Imported Hydrogen All Items are NPV over 25 years with 4 % Discounting Rate

Energy cost	0.91 NOK/kWh	• It can land at about 2000 MNOK
Total	3423 MNOK	 Heat savings (-40 %)
FCs in Longyearbyen	212 MNOK	 What can improve in time? Fuel cell cost Electrolyser cost Cheaper H₂ storage
Logistics (25 years)	789 MNOK	
243 H ₂ containers	729 MNOK	
Compressor OPEX	70 MNOK	
Compressors	158 MNOK	• Burning some H ₂ for heat
Electrolyser OPEX	304 MNOK	• Extra 60 MW @ Raggovidda
30 MW Electrolysers	279 MNOK	Reasonable kWh price
Energy costs	882 MNOK	

HAIGLUS

Pilot Deployment in Conjunction with HAEOLUS Adapted to a 1 t/d production in Berlevåg

Investments

Compressor	8 MNOK
Fuel cells	16 MNOK
10 containers	30 MNOK
Total investments	54 MNOK
Yearly OPEX	
Energy	4.1 MNOK/y
Logistics	3.6 MNOK/y
Compressor OPEX	0.3 MNOK/y
Total OPEX	8 MNOK

- Budget within range of an EU project
 - Proceed in steps:
 - Replace diesel gensets
 - Supplement local renewables
 - Combine with battery storage
 - Gradually expand capacity
 - Optimise battery+hydrogen+import
 - · Finally, take coal plant offline

 $HA \exists \Im LUS$

Conclusion

- · Hydrogen can store large quantities of (renewable) energy
- · It can cooperate with batteries, different tasks
- · Grid services are critical for economy of electrolyser plants
- · Can ramp up and down fast in a microgrid
- Exploiting produced hydrogen is better than re-electrifying it

Conclusion

- · Hydrogen can store large quantities of (renewable) energy
- · It can cooperate with batteries, different tasks
- · Grid services are critical for economy of electrolyser plants
- · Can ramp up and down fast in a microgrid
- · Exploiting produced hydrogen is better than re-electrifying it

Thank you for your attention!

HAIstLUS

 $HA \equiv \odot LUS$

Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement № 779469.

Any contents herein reflect solely the authors' view.

The FCH 2 JU and the European Commission are not responsible for any use that may be made of the information herein contained.

