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Abstract—5G mobile networks encompass the capabilities of
hosting a variety of services such as mobile social networks,
multimedia delivery, healthcare, transportation, and public safety.
Therefore, the major challenge in designing the 5G networks
is how to support different types of users and applications
with different quality-of-service requirements under a single
physical network infrastructure. Recently, network slicing has
been introduced as a promising solution to address this challenge.
Network slicing allows programmable network instances which
match the service requirements by using network virtualization
technologies. However, how to efficiently allocate resources across
network slices has not been well studied in the literature.
Therefore, in this paper, we first introduce a model for orches-
trating network slices based on the service requirements and
available resources. Then, we propose a Markov decision process
framework to formulate and determine the optimal policy that
manages cross-slice admission control and resource allocation
for the 5G networks. Through simulation results, we show that
the proposed framework and solution are efficient not only in
providing slice-as-a-service based on the service requirements,
but also in maximizing the provider’s revenue.

Keywords- 5G networks, network slicing, Markov decision
processes, admission control.

I. INTRODUCTION

The fifth generation (5G) mobile network is currently at-
tracting tremendous research interest from both industry and
academia due to its significant benefits and huge market
potential. Compared to the current 4G network, the 5G network
is expected to achieve 1,000 times higher system throughput,
10 times higher spectral efficiency and data rates (i.e., the
peak data rate of 10 Gb/s and the user experienced rate
of 1Gb/s), 5 times reduction in end-to-end latency, and 100
times higher connectivity density [1]. In addition, different
from 4G networks where all mobile users are served by a
communication network, 5G networks need to tailor on diverse
mobile services with different demands and requirements.
Thus, network slicing technique has been emerging as an
enabling solution that allows mobile 5G network providers to
achieve such goals.

Specifically, network slicing is a new network virtualiza-
tion technique that splits a single physical infrastructure into
multiple virtual networks, i.e., slices (as illustrated in Fig. 1),
with functionalities designed to serving specific demands and
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Fig. 1. Architecture of 5G networks with slicing.

requirements [2]. The core idea of the network slicing is using
software defined networking (SDN) and network functions
virtualization (NFV) technologies for virtualizing the physical
infrastructure and controlling network operations. In particular,
SDN provides a separation between the network control and
data planes, improving flexibility of network function man-
agement and efficiency of data transfer. NFV allows various
network functions to be virtualized, i.e., in virtual machines.
As a result, the functions can be moved to different locations
and the corresponding virtual machines can be migrated to
run on commoditized hardware dynamically depending on the
demand and requirements. As such, SDN will play a significant
role in the control of the NFV infrastructure resources (both
physical and virtual) by enabling automatic network configu-
ration and policy control.

The key benefit of network slicing is to enable providers
to offer network services on an as-a-service basis which
enhances operational efficiency while reducing time-to-market
for new services [3]. However, orchestrate the slice requests
and manage the network resources are open challenges. Thus,
optimization techniques can be adopted to find decisions for
the provider given the service demands and available resources.
In this paper, we first introduce a system model which groups
network slices based on their demands. Then, we formulate the
cross slice admission control problem as a Markov decision
process (MDP) and adopt the value iteration algorithm to
find the optimal policy for the provider. Through simulation
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results, we demonstrate that the proposed model and solution
can achieve the best performance in term of average reward.
In addition, the simulation results also reveal impacts of
parameters, e.g., arrival and departure probabilities of requests,
to the system performance. This information is especially
important to the provider in controlling quality-of-service as
well as in maximizing its profits.

II. RELATED WORK

There are some research works related to designing, control-
ling, and orchestrating network slicing in 5G networks. In [4],
the author discussed design issues of network slicing in 3GPP
networks, and introduced a new network slicing architecture
to address three design problems including standardization,
network slice selection, and slice-independent functions. The
core idea of the proposed architecture is based on the top-
down design concept and the proposal of NextGen radio
resource control. However, the proposed architecture has a
high signaling overhead due to many exchanged messages.

The authors in [5] presented a framework for providing
customized network slices in 5G networks based on Quality-
of-Service identifier (QCI) and security requirements. In this
framework, a network slice will be allocated to the requested
user based on a service description document which contains
details of the services and their corresponding QCI, e.g., la-
tency, throughput, and security level. Moreover, this framework
allows the user to negotiate with the service provider to choose
the best service meeting the user’s demands. Service-based
slice selection was also studied in [6]. However, in [6] the
network slice selection is based on the requirements of service
groups rather than on the requirements of each individual user.
In some cases in practice, the requirements from different users
are overlapped, and thus the requirements can be naturally
grouped into a service group (as illustrated in Fig. 1). Under
the proposed solution, network efficiency and revenue for the
service provider can be greatly improved.

Spectrum sharing among slices with the same air interface
is a challenge because spectrum must be allocated not only
to meet the users’ demands, but also to achieve the best
performance without interference between slices. Although
frequency-division multiple access technique provides the best
isolation, it may result in resource under-utilization due to the
loss of statistical multiplexing gain [7]. Therefore, the authors
in [8] examined an approach using space-division multiple-
access technique to share spectrum resource among slices
according to the frequency and space dimensions, while taking
into account the performance difference between frequency
and spatial multiplexing. This solution can improve network
throughput for the provider, but it requires precoding processes
which may cause delay for providing services.

The closest work with our paper is [9] where the resource
allocation problem for 5G networks using network slicing was
studied. However, unlike [9] where the authors just focused
on spectrum resource allocation problem to meet the users’
Quality-of-Services (QoSs), in this paper, we jointly consider
the computing, storage, and spectrum resources in allocating
slices to services. Moreover, different from [9] where the

resources of slices are fixed and predetermined, in this paper,
we proposed a dynamic cross-slice admission control scheme
to allow providers to supply flexible services according to the
service demands. To the best of our knowledge, this is the first
work which proposes using the MDP framework to find the
optimal cross-slice orchestration policy in 5G networks.

III. SYSTEM MODEL

Fig. 2 describes the system model of a 5G network with
network slicing. In this model, when network service requests
arrive at the Service Management block, they are mapped to
slices with specific service requirements, then analyzed and
classified into two types of requests, i.e., guaranteed QoS
(GS) and best effort (BE) slices. For example, GS requests
are related to virtual reality services, while BE requests are
associated with more classical mobile broadband. The slice
requests are then stored and transferred to the corresponding
queues. At the end of each time slot, the requests that have
not been sent to the queues will be removed from the buffer.
Then, based on the requests in the two queues together with
the current state of the available network resources, the Cross-
Slice Resource Orchestrator makes a decision to choose the
slice to be admitted in the system. This decision is sent to the
Resource Controller that instantiates slices by allocating the
required physical resources.
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Fig. 2. Proposed System Model.

Based on the proposed system model, each time slot can
be divided into three phases as illustrated in Fig. 3. At the
beginning of each time slot, i.e., the decision making phase,
based on the current states of the two queues, and the current
available resources of the system, the Cross-Slice Orchestrator
will choose the slice requests to admit. Then, in the second
phase, i.e., the request processing phase, the Resource Con-
troller will allocate network resources to the selected requests.
Finally, in the last phase, i.e., the information updating phase,
the Cross-Slice Orchestrator updates the information related to
the active queues and available network resources.

At each time slot, we assume that there are ng and nb
slice requests for GS and BE services arriving at the system,
respectively. We denote ng ∈ Ng = {0, 1, . . . , Ng} and
nb ∈ Nb = {0, 1, . . . , Nb} where Ng and Nb are the maximum
numbers of arriving requests for the GS and BE services in
one time slot, respectively. In addition, we denote pgn and pbn
as the probabilities that there are ng and nb requests arriving
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at the system in one time slot. Then, we have
Ng∑
n=0

pgn = 1 and
Nb∑
n=0

pbn = 1. (1)

Similarly, we denote pgl ∈ (0, 1] and pbl ∈ (0, 1] as the
probabilities which a running slice ends in the current time
slot. Here, we note that after a slice life cycle is completed,
its request will be removed from the system, and at the same
time the corresponding resources will be released.

IV. OPTIMIZATION FORMULATION AND SOLUTION

In this section, we first formulate the cross-slice admission
control and resource allocation optimization problem as an
MDP, and then present the value iteration method to find the
corresponding optimal policy.

A. State Space

The state space of the system, denoted by S, includes the
states of the two queues and the state of the available network
resources, which are observed at the Cross-Slice Orchestrator,
and is defined as follows:

S , Sg × Sb × Sp, (2)

where Sg , Sb, and Sp are the state spaces of GS queue,
BE queue, and network resources, respectively. If we denote
sg , sb, and sp as the state of GS queue, BE queue, and
network resources, respectively, the composite state of the
system can be represented by s = (sg, sb, sp). Note that
sg ∈ Sg = {0, 1, . . . , Qg} and sb ∈ Sb = {0, 1, . . . , Qb},
where Qg and Qb are the maximum queue lengths of the GS
and BE queues, respectively.

In the system under consideration, the network resources
include radio, computing, and storage resources. Thus, if
we denote r, c, and δ as the states of the available radio,
computing, and storage resources, respectively, we can define
sp = (r, c, δ). Let denote R, C, and ∆ as the maximum
number of available radio resource units, computing resource
units, and storage resource units. We have r ∈ {0, 1, . . . , R},
c ∈ {0, 1, . . . , C}, and δ ∈ {0, 1, . . . ,∆}.

B. Action Space

In our considered system, at each time slot, the Cross-Slice
Orchestrator has to decide how many GS and BE slice requests
waiting in the queues will be admitted. Hence, if we denote ag

and ab as the number of chosen GS and BE requests, action
a and the action space A of the Cross-Slice Orchestrator are
defined as follows:

A , {a = (ag, ab)}. (3)

The system state may change over the time slots, and thus
the action at each time slot must be selected based on the
current system state under the following constraints:

ag(t) ≤ sg(t) and ab(t) ≤ sb(t), (4)

and
ag(t)d

g
r + ab(t)d

b
r ≤ r(t), (5)

ag(t)d
g
c + ab(t)d

b
c ≤ c(t), (6)

ag(t)d
g
δ + ab(t)d

b
δ ≤ δ(t), (7)

where dgr , dgc , and dgδ are the number of units of radio,
computing, and storage resources, respectively, required by a
GS slice request. Similarly, dbr, d

b
c, and dbδ are the number of

units of radio, computing, and storage resources, respectively,
required by a BE slice request. Eq. (4) means that the number
of admitted slices cannot exceed the number of requests
waiting in the queues. The conditions in (5), (6), and (7) ensure
that the resources required by the admitted slices do not exceed
the current available resources of the system.

C. Transaction Probability Matrix
We first express the transition probability matrix given

action a ∈ A as follows:

P(a)=


B0,0(a) B0,1(a) . . . B0,Qb

(a)
B1,0(a) B1,1(a) . . . B1,Qb

(a)
...

...
. . .

...
BQb,0(a) BQb,1(a) . . . BQb,Qb

(a)


← b = 0
← b = 1
...
← b = Qb

(8)
where each row of matrix P(a) corresponds to the number of
requests in the BE queue. The matrix Bb,b′(a) represents the
queue state transition probability from state b in the current
time slot to state b′ in the next time slot given action a. This
probability depends on the BE request arrival and the selected
action. For example, if Nb = 1, the current state sb = 0
and action a = 0 is taken (i.e., no request is accepted for
using slices), then the state of BE queue will transit to sb = 1
with probability pbn and stay at state sb = 0 with probability
(1− pbn).

Similarly, we can define the matrix Bb,b′(a) as follows:

Bb,b′(a) =


G0,0(a) G0,1(a) . . . G0,Qg (a)
G1,0(a) G1,1(a) . . . G1,Qg

(a)
...

...
. . .

...
GQg,0(a) GQg,1(a) . . . GQg,Qg (a)


← g = 0
← g = 1
...
← g = Qg

(9)
where each row of matrix Bb,b′(a) corresponds to the number
of requests in the GS queue, and Gg,g′(a) is defined by:

Gg,g′(a) =


R0,0(a) R0,1(a) . . . R0,R(a)
R1,0(a) R1,1(a) . . . R1,R(a)

...
...

. . .
...

RR,0(a) RR,1(a) . . . RR,R(a)


← r = 0
← r = 1
...
← r = R

(10)
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where each row of matrix Gg,g′(a) corresponds to the state
of radio resources, and Rr,r′(a) can be defined as follows:

Rr,r′(a) =


C0,0(a) C0,1(a) . . . C0,C(a)
C1,0(a) C1,1(a) . . . C1,C(a)

...
...

. . .
...

CC,0(a) CC,1(a) . . . CC,C(a)


← c = 0
← c = 1
...
← c = C

(11)
where each row of matrix Rr,r′(a) corresponds to the state of
computing resources, and Cc,c′(a) can be defined as follows:

Cc,c′(a) =


p0,0(a) p0,1(a) . . . p0,∆(a)
p1,0(a) p1,1(a) . . . p1,∆(a)

...
...

. . .
...

p∆,0(a) p∆,1(a) . . . p∆,∆(a)


← δ = 0
← δ = 1
...
← δ = ∆

(12)
where each row of matrix Cc,c′(a) corresponds to the state of
storage resources. Each element pδ,δ′(a) represents the state
transition probability of the storage resource from state δ to δ′

when action a is taken at state δ.
Here, we note that different from matrices P(a) and

Bb,b′(a) where transition probabilities depend on the arrival
process of requests and the action of the Network Orchestrator,
the transition probabilities of matrices Gg,g′(a), Rr,r′(a), and
Cc,c′(a), depend on the departure process of requests and the
action of the Network Orchestrator.

D. Reward Function
The proposed solution aims to maximize the revenue of the

provider in term of admitted slice requests. In particular, if we
denote rb and rg as the rewards (e.g., monetary values) which
the provider receives from the BE and GS services clients if
the provider serves a BE and GS request, respectively. Then,
the immediate reward function can be defined as follows:

R(t) = ag(t)rg + ab(t)rb. (13)

The goal is to choose an optimal policy π∗ that maximizes
the expected discounted sum over an infinite horizons:

max
π∗
R =

∞∑
t=0

γtR(st, π
∗(st)), (14)

where γ is the discount factor that satisfies γ ∈ (0, 1].

E. Value Iteration Algorithm
To find the optimal cross-slice orchestration policy, we adopt

the value iteration algorithm [10]. In particular, the value
iteration algorithm is an iterative procedure which calculates
the expected optimal value of each state. Value iterations stop
when the values calculated on two successive steps are close
enough, i.e.,

max
s
|Vk(s)− Vk−1(s)| < ε,∀s ∈ S (15)

where ε is a predefined threshold value. The smaller ε is, the
higher the precision of the algorithm is. The value iteration
algorithm then can be expressed as in Algorithm 1:

In Algorithm 1, Vk =
[
Vk(1), . . . ,Vk(|S|)

]>
, where Vk(s)

is the value of state s ∈ S at loop-k, |S| is the total number
of states in the state space S, and > is the transpose function.

Algorithm 1 Value iterative algorithm to obtain the optimal
policy for the provider.
1. Given:

1) Transition probability matrix P and reward function R.
2) Initiate the state value vector V0 = 0.

2. Iteration:
Repeat

For each state s, do for each action a
Qk(s, a) = R(s, a) + γ

∑
s′ Ps,s′(a)Vk−1(s)

π∗k(s) = argmaxaQk(s, a)
Vk(s) = Qk(s, π∗k(s))

end
Until |Vk(s)− Vk−1(s)| < ε,∀s ∈ S
3. Return:
π∗ =

[
π∗(1), . . . , π∗(s), . . . , π∗(|S|)

]>
.

F. Performance Analysis

After obtaining the optimal policy π∗, we can derive the
steady state probability of the system, i.e., φ, by solving the
following equation:

φP(π∗) = φ, (16)

where P(π∗) is the transition probability matrix of the sys-
tem under the optimal policy π∗. Here, we note that φ =[
φ(1), . . . , φ(s), . . . , φ(|S|)

]>
and

∑
s∈S φ(s) = 1. Then, the

average reward of the system and the dropping probabilities
of requests can be calculated as follows.
• Average reward: The average reward of the provider can

be obtained from

R =
∑
s∈S

φ(s)R(s, π∗(s)). (17)

• Dropping probability: Dropping probability is the prob-
ability in which a slice request arrives to the system
and is discarded because the queue is full. The dropping
probabilities of GS and BE requests, i.e., P gd and P bd ,
respectively, can be obtained as follows:

P gd = pgn
∑
s∈S1

φ(s), P bd = pbn
∑
s∈S2

φ(s), (18)

where S1 and S2 are sets of states in which the GS and
BE queues are full, respectively.

V. PERFORMANCE EVALUATION

A. Parameter Setting

We consider a 5G network in which the maximum number
of radio (R), computing (C), and storage (∆) resources are set
at 4 units. Each request from both GS and BE queues will
require d=2 units of radio, computing, and storage resources.
The maximum number of arriving BE requests is Nb = 1, the
maximum BE queue length is Qb = 4, the arrival and departure
probabilities of one BE request are set at pbn = pbl = 0.85, and
the immediate reward to allocate one slice to one BE request is
rb = 1 unit. The maximum number of arriving GS requests is
Ng = 1, the maximum GS queue length is Qg = 4, the arrival
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Fig. 4. Cross-slice Orchestrator Optimal Policy as a function of the GS (sg) and BE (sb) queues for (a) m=0, (b) m=1, and (c) m=2 deployed slices.

and departure probabilities of one GS request are set equal
to pgn = pgl = 0.35, and the immediate reward to allocate one
slice to one BE request is rg = 1.553 unit. In this way, we aim
to model the fact that the GS requests are more sporadic than
that of the BE ones, but they can potentially provide higher
revenues to the provider. The arrival and departure probabilities
of requests will be varied to evaluate the performance of the
proposed solution under different circumstances. For the value
iteration algorithm, the discount factor γ is set at 0.9.

B. Numerical Results
a) Optimal Policy: In Fig. 4, we show the optimal policy

of the Network Orchestrator obtained by the Algorithm 1.
Here, we denote m as the current number of deployed slices.
Given the parameter setting, the maximum number of slices is
2, and thus we have three cases corresponding to the cases
when m = 0, m = 1, and m = 2 (note that having
the number of deployed slices corresponds to observe the
resource availability). Since each slice request requires 2 units
of radio, computing, and storage resources, and the maximum
number of each of these resources is set to 4, we have
ab, ag ∈ {0, 1, 2}. Thus, there are 6 actions in the action
space in this case, i.e., a = {1, 2, 3, 4, 5, 6} corresponding to
(ab, ag) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}, respec-
tively.

In Fig. 4 (a), when m = 0 (i.e., there is no active slice in the
system), if the number of requests in the GS queue is large,
e.g., sg = 3 or 4, the Cross-Slice Orchestrator will accept
requests waiting in the GS queue as many as possible (a = 3).
However, when the number of requests in the GS queue is
small, e.g., sg = 1 or 2, and the number of requests in BE
queue is large, the Cross-Slice Orchestrator will accept one
request from BE queue and one request from the GS queue
(a = 5). When the number of requests in the GS queue is
very small and the number of requests in the BE queues is
very large, the Cross-Slice Orchestrator will accept requests
in the BE queue as many as possible (a = 6). In Fig. 4 (b),
when m = 1 (i.e., there is one request using one slice in the
system), the Cross-Slice Orchestrator will accept requests from
the BE queue (a = 4) only when the GS queue is empty or
when there is only one request in the GS queue and there
are more than 2 requests in the BE queue. Otherwise, the
Cross-Slice Orchestrator will choose a request from the GS

queue (a = 2). Finally, in Fig. 4 (c), when m = 2 (i.e.,
there are 2 active requests using slices in the system), the
Cross-Slice Orchestrator will accept no request (a = 1). As
expected, the obtained optimal policy implies that the requests
with higher rewards have greater opportunities to be allocated
network resources.

b) Performance Evaluation: We now vary the departure
probability of GS requests, the departure probability of BE
requests, and the arrival probability of BE requests to evaluate
the performance of the Cross-Slice Orchestrator in terms of the
average reward and the dropping probability of requests. In this
case, we will compare the results obtained from the optimal
solution with the results obtained from the greedy policy. For
the greedy policy, the Cross-Slice Orchestrator chooses the
action that maximizes its immediate reward.

In Fig. 5 (a) and Fig. 6 (a), as the departure probability of
BE requests increases, the average reward will increase and the
dropping probability will decrease for both policies. When the
departure probability of the BE requests is low, e.g., lower
than 0.6, the GS requests will have higher priorities since
they have higher rewards, and thus the optimal policy is the
same as the greedy policy, i.e., accept as many GS requests
as possible. However, when the departure probability of BE
requests is high, the BE requests will be preferable since given
a fixed time period, more BE requests can be served than GS
requests, yielding a higher overall reward for the provider. As
a result, the average reward obtained by the optimal policy will
be higher than that of the greedy policy when the departure
probability of BE requests is high.

In Fig. 5 (b) and Fig. 6 (b), we vary the request arrival
probability of BE requests and evaluate the average reward
and the dropping probability of the optimal policy. When
the arrival probability of BE requests is lower than 0.3, the
optimal policy is the greedy policy because now the system
is able to serve all requests arriving at the system, and thus
the average rewards obtained by both policies are the same.
However, when the arrival probability of BE requests is higher
than 0.3, the system does not have sufficient resources to serve
all incoming requests. Thus, the average reward obtained by
the optimal policy is greater than that of the greedy policy
since the optimal policy can balance between the immediate
and the long-term rewards.

In Fig. 5 (c), when the departure probability of the GS
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Fig. 6. Request dropping probability with the optimal and greedy policies as a function of the departure probability of BE requests, the arrival probability
of BE requests, and the departure probability of GS requests.

request is 0.1, the average reward obtained by the optimal
policy is nearly 2.8 times greater than that of the greedy
policy. The reason is that when the departure probability is
very low, if the GS requests are always accepted, there will
be no opportunity for BE requests to be served, and thus the
dropping probability of BE requests is very high, i.e., 0.78
(as shown in Fig. 6 (c)). However, for the optimal policy, the
Cross-Slice Orchestrator will balance BE and GS requests to
achieve the best performance. As a result, the average reward
obtained by the optimal policy is always greater than that of the
greedy policy when the departure probability of GS requests
is low, i.e., lower than 0.4. When the departure probability of
GS is high, the optimal policy will accept GS request as many
as possible, and thus the performances of the optimal policy
and greedy policy are identical. Results from Fig. 5 and Fig. 6
reveal that arrival and departure probabilities of requests are
also important factors which impact the optimal decision and
the performance of the system.

VI. SUMMARY

In this paper, we have introduced a system model which
allows the 5G network provider to provide slice-as-a-service
in a dynamic fashion based on the service requirements and
the resource availability. We have then formulated the cross-
slice admission control and resource allocation optimization
problem as the Markov decision process, and applied the
value iteration algorithm to find the corresponding optimal
policy. Simulation results have clearly shown that the proposed
solution can help the provider to maximize its revenue given its

resource constraints and the service requirements. In the future,
we will study online learning methods with linear function
approximation to deal with the curse-of-dimensionality and
the curse-of-model problems in 5G networks.
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