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Network Slicing Games: Enabling Customization in
Multi-Tenant Mobile Networks

Pablo Caballero, Albert Banchs, Senior Member, IEEE, Gustavo de Veciana, Fellow, IEEE,
and Xavier Costa-Pérez, Senior Member, IEEE

Abstract—Network slicing to enable resource sharing among
multiple tenants –network operators and/or services– is consid-
ered a key functionality for next generation mobile networks.
This paper provides an analysis of a well-known model for
resource sharing, the ‘share-constrained proportional allocation’
mechanism, to realize network slicing. This mechanism enables
tenants to reap the performance benefits of sharing, while
retaining the ability to customize their own users’ allocation. This
results in a network slicing game in which each tenant reacts to
the user allocations of the other tenants so as to maximize its own
utility. We show that, for elastic traffic, the game associated with
such strategic behavior converges to a Nash equilibrium. At the
Nash equilibrium, a tenant always achieves the same, or better,
performance than under a static partitioning of resources, hence
providing the same level of protection as such static partitioning.
We further analyze the efficiency and fairness of the resulting
allocations, providing tight bounds for the price of anarchy
and envy-freeness. Our analysis and extensive simulation results
confirm that the mechanism provides a comprehensive practical
solution to realize network slicing. Our theoretical results also
fill a gap in the literature regarding the analysis of this resource
allocation model under strategic players.

Index Terms—Wireless Networks, 5G, Network Slicing, Game
theory, Resource allocation, Multi-tenant networks.

I. INTRODUCTION

THERE is consensus among the relevant industry and
standardization communities [1], [2] that a key element

in 5G mobile networks will be network slicing. The idea is
to allow the mobile infrastructure to be “sliced” into logical
networks, which are operated by different entities and may be
tailored to support specific services. This provides a basis for
efficient infrastructure sharing among diverse entities, ranging
from classical or virtual mobile network operators to new
players that simply view connectivity as a service. Such new
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players could be, for instance, Over-The-Top (OTT) service
providers which use a network slice to ensure satisfactory
service to their customers (e.g., Amazon Kindle’s support
for downloading content or a pay TV channel including a
premium subscription). In the literature, the term tenant is
often used to refer to the owner of a network slice.

A network slice is a collection of resources and functions
that are orchestrated to support a specific service. This includes
software modules running at different locations as well as the
nodes’ computational resources, and communication resources
in the backhaul and radio network. The intention is to only
provide what is necessary for the service, avoiding unneces-
sary overheads and complexity. Thus, network slices enable
tenants to compete with each other using the same physical
infrastructure, but customizing their slices and network oper-
ation according to their market segment’s characteristics and
requirements. For instance, slices can be geared at supporting
various IoT or M2M applications, such as the connectivity
required to realize ‘intelligent’ vehicular systems.

A key problem underlying network slicing is enabling
efficient sharing of mobile network resources. One of the
frameworks considered in 3GPP suggests that resources could
be statically partitioned based on fixed ‘network shares’ asso-
ciated to each slice [3]. This framework fits very well some
scenarios like, e.g., the case where several operators jointly
contribute to a common infrastructure with a fraction of the
overall cost and share this infrastructure with the others while
being entitled to use an amount of resources that depends
on their monetary contribution. For other network slicing
scenarios, such as the case where some tenants only need to
use a fixed amount of network resources for some limited
period of time, other frameworks considered in the standards
may be more appropriate.

The focus of this paper is on network slicing for the share-
based framework mentioned above. However, given that slices’
loads may be spatially inhomogenous and time varying, rather
than statically partitioning the resources at each base station,
it is deemed desirable to allow resource allocations to be
dependent on the slices’ loads at different base stations. At
the same time, tenants should be protected from one another,
and retain the ability to autonomously manage their slice’s
resources, in order to better customize allocations to their cus-
tomers. To that end, it is desirable to adopt resource allocation
models in which tenants can communicate their preferences
to the infrastructure (say by dynamically subdividing their
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network share amongst their customers) and then have base
stations’ resources allocated according to their preferences
(e.g., proportionally to the customers’ shares).

Under such a dynamic resource allocation model, a tenant
might exhibit strategic behavior, by adjusting its preferences
depending on perceived congestion at resources, so as to max-
imize its own utility. Such behavior could in turn have adverse
effects on the network; for instance, the overall efficiency may
be harmed, or one may see instability in slice requests. The
focus of this paper is on (i) the analysis and performance of
this simple resource allocation model, and (ii) the validation
of its feasibility as a means to enable tenants to customize
resource allocation within their slice while protecting them
from one another. The analysis of this paper concentrates on
elastic traffic; the case of inelastic traffic has been addressed
by the authors in [4].

Related work

The resource allocation mechanism informally described
above, aligned with the fixed ‘network shares’ model con-
sidered in 3GPP, corresponds to a Fisher market. This is a
standard framework in economics; in such markets, buyers (in
our case slices) have fixed budgets (in our case network shares)
and (according to their preferences) bid for resources within
their budget, which are then allocated to buyers proportionally
to their bids. Analysis of the Fisher market shows that, as
long as buyers are price-taking (i.e., they do not anticipate the
impact of their bids on the price – in our case, the impact
of the slices’ preferences on the overall congestion), the Nash
equilibrium is socially optimal, and distributed algorithms can
be easily devised to reach it [5]. This assumption may be
reasonable for markets where the impact of a single buyer on
a resource’s price is negligible, but does not apply to our case
where a relatively small number of active tenants might be
sharing resources.

There is a substantial literature on Fisher markets with
strategic buyers, which, as will be studied in this paper,
anticipate the impact of their bids [6]. The analysis, so far, has
been limited to the case of buyers with linear utility functions
of the allocated resources, which can lead to extremely unfair
allocations. While such utility functions may be suitable for
goods, they are not an appropriate model for tenants wishing
to customize allocations amongst their customers. This paper
includes a comprehensive analysis for a wide set of slice
utility functions, including the convergence of best response
dynamics and other results which to our knowledge are new.

A related resource allocation model often considered in the
networking field is the so-called ‘Kelly’s mechanism’ [7]; this
mechanism allocates resources to players proportionally to
their bids and, assuming that they are price-taking, converges
to a social optimum. Follow-up work has considered price-
anticipating players in this setting; for example, [8] ana-
lyze efficiency losses, while [9] devise a scalar-parametrized
modification that is once again socially optimal for price-
anticipating players. However, in Kelly’s mechanism players
respond to their payoff (given by the utility minus cost)
whereas in our model tenants’ behavior is only driven by their

utilities (since they have a fixed budget: the network share).
Consequently, results on the analysis of Kelly’s mechanism
are not applicable to our setting

In the context of the existing resource allocation models
described above, this paper addresses the following gap in the
literature: the analysis of budget-constrained resource allo-
cation under price-anticipating users with nonlinear utilities.
This requires novel analysis that differs substantially from
previous work in the literature. Table I summarizes some of the
main resource allocation models for this problem, highlighting
the most relevant contributions for each case and situating the
contribution of this work.

TABLE I: Resource allocation models.

price taking price anticipating

scalar bid scalar bid vector bid

non [7] Kelly’s VCG-Kelly mechanism Johari/Tsitsiklis
fixed mechanism [9] Hajek/Yang [8] Efficiency of

budget (conv, efficiency) [10] Johari/Tsitsiklis congestion games

concave utilities linear utilities concave utilities

fixed [5] Zhang [6] Feldman This work
budget (convergence) (conv, efficiency) (conv, efficiency)

All the analyses mentioned above, as well as that conducted
in this paper, consider concave utility functions, which reflects
the behavior of elastic traffic [11]. In contrast to elastic ap-
plications, inelastic applications typically require a minimum
amount of resources to provide an acceptable experience to the
users, and their performance degrades drastically if resources
fall below this minimum. The case of inelastic traffic has been
addressed by the authors in [4], leading to quite different
outcomes; indeed, in contrast to the results obtained in this
paper, for inelastic traffic the existence of a Nash Equilibrium
is not guaranteed, best response dynamics may not converge
and the Price of Anarchy is not bounded.

Beyond the Fisher market model, there have been a number
of works in the literature that address game theory and α-
fairness, as we do in this paper. The work in [12] analyzes
the game resulting from allowing users to select the access
network, when resources in each network are allocated based
on α-fairness; in contrast, our game is played by selecting the
bid submitted by each tenant, rather than the access network.
In [13], the authors prove the convergence of games where
individual user choices are driven by a convex optimization
(as in our case); however, they require some properties not
met by our game. The analysis of [14] shows the convergence
of a game with some similarities to ours, building on potential
game theory which cannot be applied in our case. In [15], a
number of methodologies are proposed to analyze equilibria in
wireless games, yet none of those games coincides with ours.
To the best of our knowledge, even though there is a vast
literature addressing equilibria and convergence of wireless
games, none of the existing tools can be applied to the specific
problem addressed here.

In order to design algorithms that converge to a Nash Equi-
librium, some work in the literature has proposed leveraging
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reinforcement learning techniques [16]–[20]. A key advan-
tages of such approaches is that they do not require all the
knowledge involved in computing the best response. However,
while this is an essential feature for the systems addressed
by those papers, where best response requires substantial
information, in our system the best response requires only
limited information, and hence a practical approach can be
built based on best responses without having to resort to
reinforcement learning.

From a more practical perspective, multi-tenant sharing has
been studied from different points of view, including planning,
economics, coverage, performance, etc. [21], [22]. This paper
focuses specifically on the design of algorithms for resource
sharing among tenants, which has been previously addressed
by [23]–[26]. The work of [26] considers sharing via a bid-
based auction, which may incur substantial overhead and
complexity; in contrast, our approach relies on fixed (pre-
negotiated) network shares. The works of [23]–[25] also fix a
network share per slice, but consider approaches where the
infrastructure makes centralized decisions on the resources
allocated to each tenant’s customers; hence, these approaches
do not enable tenants to make their own decisions on how to
allocate resources to their customers.

Network slicing has emerged as a desirable feature for
5G [1]. 3GPP has started work on defining requirements for
network slicing [2], whereas the Next Generation Mobile
Network (NGMN) alliance has identified network sharing
among slices (the focus of this paper) as a key issue [27]. In
spite of these efforts, most of the work so far has addressed
architectural aspects with only a limited focus on resource
allocation algorithms [28], [29]. To the best of our knowledge,
this is the first work investigating how to enable tenants to
customize their allocations in a dynamic slicing model; there
is wide consensus that such an ability to custumize tenants’
allocations is needed to efficiently satisfy their very diverse
requirements (see, e.g., [30] for examples of vertical tenants).

Key contributions

The rest of the paper is organized as follows. After in-
troducing our system model (Section II), we show that with
the resource sharing model under study, each slice has the
ability to achieve the same or better utility than under static
resource slicing irrespective of how the other slices behave,
which confirms that this model effectively protects slices from
one another (Section IV-A). Next we show that if tenants
exhibit strategic behavior (i.e, optimize their utilities), then
(i) a Nash equilibrium exists under mild conditions; and (ii)
the system converges to such an equilibrium when tenants
sequentially take their best response (Sections III-B and III-C).
The resulting efficiency and fairness among tenants are then
studied, providing: (i) a tight bound on the Price of Anarchy of
the system, and (ii) a bound on the Envy-freeness (Section IV).
Our results are validated via simulation, confirming that the
approach provides substantial gains, protects network slices
from each other, operates close to optimal performance and is
effectively envy-free (Section V).

II. SYSTEM MODEL

We consider a wireless network consisting of a set of
resources B (the base stations or sectors) shared by a set
of network slices O (the tenants). At a given point in time,
each slice supports a set of users (the customers or devices).
The wireless network is operated by an infrastructure provider
(hereafter the ‘infrastructure’). Each tenant is the owner of a
slice and requests resources for this slice to the infrastructure
provider. The network resources allocated to the slice are
then shared among the users of that slice (according to the
preferences expressed by the tenant of the slice).

A. Resource allocation model
As indicated in the introduction, we focus on a well estab-

lished resource sharing model known in economics as a Fisher
market; we will refer to this model as the ‘Share-Constrained
Proportional Allocation’ (SCPA) mechanism.

Hereafter, we refer to the set of users supported by the
network as U , which can be divided into subsets Ub (the users
at base station b), Uo (the users of slice o) and Uob (their
intersection). For any user u ∈ U , we let b(u) denote the base
station it is currently associated with.

In our setting, each slice o is allocated a network share so
(corresponding to its budget) such that

∑
o∈O so = 1. The

slice is at liberty in turn to distribute its share amongst its
users, assigning them weights (corresponding to the bids): wu
for u ∈ Uo, such that

∑
u∈Uo wu = so. We let wo = (wu : u ∈

Uo) be the weights of slice o, w = (wu : u ∈ U) those of all
slices and w−o = (wu : u ∈ U \ Uo) the weights of all users
excluding those of slice o.

In this paper, we adopt a generic formulation for resources
that can be applied to a variety of technologies. The specific
definition of resource will depend on the underlying technol-
ogy; for instance, in LTE/LTE-A resources refer to physical
Resource Blocks, in FDM to bandwidth and in TDM to the
fraction of time. We shall assume users are allocated a fraction
of resources at their base station proportionally to their weights
wu. Thus, the rate of user u is given by

ru(w) =
wu∑

v∈Ub(u) wv
cu =

wu
lb(u)(w)

cu

where lb(w) =
∑
u∈Ub wu denotes the overall load at b and

cu is the user’s achievable rate, defined as the rate that the
user would see if she had the entire base station to herself.
Note that cu depends on the modulation and coding scheme
selected for the current radio conditions, which accounts for
noise as well as the interference from the neighboring base
stations. Following similar analyses in the literature (see, e.g.,
[23], [25]), we shall assume that cu is fixed for each user at
a given time.

To implement the above resource allocation, a slice needs to
communicate the weights of its users wo to the infrastructure.
In turn, the infrastructure needs to communicate to the slice
the overall load at each base station, so that the slice can select
the weights of its users.1 We argue that this is a relatively light

1Note that, even if the load was not communicated by the infrastructure, a
slice could infer it by varying its users’ weights and observing the resulting
resource allocations.
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exchange of information; as a matter of fact, there are already
some interfaces defined in 3GPP, such as the X2 interface,
which share this kind of information. Note that, by sharing
information in this way, the weights of a given tenant are not
disclosed to the others, but only the overall load at each base
station.

In the case where a slice o is the only one with users at a
given base station b, we shall assume that the slice’s users are
allocated the entire capacity at that base station independent
of their weights. Thus such a slice would set wu = 0 for these
users, allowing them to receive all the resources of this base
station without consuming any share. In order to avoid dealing
with this special case, and without loss of generality, we will
make the following assumption for the rest of the paper.

Assumption 1. (Competition at all resources) We assume that
all resources have active users from at least two slices.

B. Network Slice Utility and Service Differentiation

Network slices may support services and customers of
different types and needs. Alternatively, competing slices with
similar customer types may wish to differentiate the service
they provide. To that end, we assume each network slice has
a private utility that reflects the benefit obtained by the slice
from a given allocation and is given by

Uo(w) =
∑
u∈Uo

φufu(ru(w)), (1)

where φu is the relative priority of user u, with φu ≥ 0 and∑
u∈Uo φu = 1, and fu(·) is a utility function associated with

the user. In the sequel, we will often focus on the following
well-known class of utility functions [31]:

Definition 1. A network slice o has a homogenous αo-fair
utility if for all u ∈ Uo we have that

fu(ru) =

{
(ru)

1−αo

(1−αo) , αo 6= 1

log(ru), αo = 1.

With the above setting, a slice is free to choose different
fairness criteria in allocating resources across its users, by
selecting the appropriate αo parameter. Note that αo = 1 cor-
responds to the widely accepted proportional fairness criterion,
while αo = 2 corresponds to potential delay fairness, αo →∞
to max-min fairness and αo = 0 to linear sum utility.

Note that the chosen utility function fu(ru) is concave, with
a concavity level that can be adjusted with the αo parameter.
Such a utility is appropriate to represent the behavior of elastic
traffic, the performance of which mainly depends on rate
and exhibits diminishing utility improvements as throughput
increases [11].

C. Baseline allocations

Next, we introduce some resource allocation comparative
baselines.

a) Socially Optimal Allocations (SO): If slices were to
share their utility functions with a centralized authority, one
could in principle consider a socially optimal allocation of
weights and resources. These would be given by the maximizer
to the overall network utility U(w) given by (see [25]):

max
w≥0

U(w) :=
∑
o∈O

soU
o(w)

s.t. ru(w) =
wu

lb(u)(w)
cu, ∀u ∈ U ,∑

u∈Uo
wu = so, ∀o ∈ O.

Note that (as in [25]) we have weighted the slices’ utilities to
reflect their shares (thus prioritizing those with higher shares).
We shall denote the resulting optimal weight and resource
allocations under the socially optimal allocations by w∗ and
r∗ = (r∗u : u ∈ U), respectively.

b) Static Slicing (SS): By static slicing (also known as
static splitting [32]) we refer to a complete partitioning of
resources based on the network shares so, o ∈ O. In this
setting, each slice o receives a fixed fraction so of each
resource and can unilaterally optimize its weight allocation
as follows:

max
w0≥0

Uo(wo) =
∑
u∈Uo

φufu(ru(wo))

s.t. ru(wo) =
wu∑

v∈Uo
b(u)

wv
socu ∀u ∈ Uo,∑

u∈Uo
wu = so,

where we have abused notation to indicate that, in this case,
Uo and ru depend only on wo. We shall denote the resulting
optimal weight and resource allocations under static slicing
for all slices by wss and rss = (rssu : u ∈ U) respectively,
where

rssu =
wssu∑

v∈Uo
b(u)

wssv
socu ∀u ∈ Uo,∀o ∈ O. (2)

c) Optimal Dynamic Pricing: An alternative resource
allocation model to the one considered in Section II-A, where
slices have a fixed budget, is to let slices bid for individual
base station resources and let the infrastructure provider set a
price to the slices. Under such a model, the payoff obtained
by the slice is given by Πo = Uo−po, where Uo is the utility
obtained by slice o with the allocated resources, given by (1),
and po is the total price set to the slice for such resources.

A particularly interesting strategy within dynamic pricing is
the optimal dynamic pricing approach proposed in [8], which
sets the price for slice o equal to the total utility loss caused
to the other slices, i.e., po =

∑
o′∈O\o U

o′,−o − Uo′ , where
Uo
′,−o and Uo

′
are the utility of slice o′ with and without slice

o participating in the game, respectively. This strategy drives
the system to the social optimal (SO) allocation; thus, when
comparing the performance of our system against the SO in
Sections IV and V, the results also apply to the performance
attained by an optimal dynamic pricing approach.
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Slice 1

Slice 2

Static Slicing Social Optimal

1 21 2

Dynamic pricing

1 2

Fig. 1: Allocated resources for the three benchmark ap-
proaches.

While dynamic pricing may yield optimal system perfor-
mance, it also suffers from significant drawbacks as compared
to our model involving a fixed budget: (i) to set the optimal
prices, the infrastructure provider needs to know the utility
function of all slices, which involves a significant complexity
and overhead; and (ii) as argued in [33], for practical purposes
tenants typically prefer to deal with predictable pricing strate-
gies and costs driven by market considerations, rather than by
the instantaneous demands of the other tenants.

Figure 1 shows the allocation corresponding to each of the
above baseline allocations for a network with two base stations
and two slices with equal shares (s1 = s2 = 0.5). We observe
that static slicing allocates one half of each base stations’
resources to each slice, independent of the number of users of
each slice, while the other two allocations take into account
the number of users of the slices at each base station.

III. NETWORK SLICING GAME

Under the SCPA resource allocation model, it is reasonable
to assume that a player (network slice) would ‘strategically’
optimize the weight allocation of its users to maximize its own
utility (and thus the service delivered to its customers). In the
following, we analyze the game resulting from such a strategic
behavior.

A. Game formulation

Since the resources allocated to a user depend on the weight
allocations of the other slices, the behavior of a slice will be
predicated on the aggregate weight of the other slices at each
resource. From the point of view of slice o, the overall load
at resource b can be decomposed as

lb(w) = aob(w−o) + dob(wo)

where

aob(w−o) =
∑

o′∈O\{o}

∑
u∈Uo′b

wu and dob(wo) =
∑
u∈Uob

wu

correspond to the aggregate weight of the other slices and that
of slice o, respectively. In our model, each slice is informed
by the infrastructure of the overall load at each base station
l = (lb : b ∈ B); from this, the slice can obtain ao = (aob : b ∈
B), by subtracting dob from the lb values. Then, based on ao,

it can choose the weight setting wo that maximizes its utility.
This leads to the following game.

Definition 2. In the network slicing game, each slice o is
aware of the aggregated weight of the other slices at each
base station, ao = (aob : b ∈ B), and chooses the weight
allocation wo that maximizes its utility.

B. Existence and Uniqueness of Nash Equilibrium

Next we study whether there exists a Nash equilibrium (NE)
under which no slice can benefit by unilaterally changing its
weight allocation. To that end, we first characterize the best
response of a slice. Given the weights of the other slices, w−o,
the best response of slice o is the unique maximizer wo of its
utility, i.e.,

max
w′o≥0

∑
u∈Uo

φufu

(
w′ucu

aob(u)(w
−o) + dob(u)(w

′o)

)
s.t
∑
u∈Uo

w′u = so.

The following lemma characterizes the best response for a
network slice with homogenous αo-fair utility (see [6] for the
best response when αo = 0).

Lemma 1. Suppose slice o has a homogeneous αo-fair utility
(with αo > 0). Given the weights of the other slices w−o >
0, slice o’s best response wo is the unique solution to the
following nonlinear set of equations:

wu =

βu
(aob(u)(w

−o))
1
αo(

ao
b(u)

(w−o)+do
b(u)

(wo)
) 2
αo
−1

∑
v∈Uo

βv

(
ao
b(v)

(w−o)
) 1
αo(

ao
b(v)

(w−o)+do
b(v)

(wo)
) 2
αo
−1

so, ∀u ∈ Uo, (3)

where βu := (φu)
1
αo (cu)

1
αo
−1.

Note that slice o need only know ao(w−o) to compute
its best response. Building on this characterization, we will
study the game in which all slices choose to allocate their
weights based on their best response. The following theorem
proves that this game admits a Nash equilibrium, i.e., there is
a weight allocation w such that no slice can improve its utility
by modifying its weights unilaterally.2

Theorem 1. Suppose all slices have homogenous αo-fair
utilities (with possibly different αo > 0). Then, there exists
a (not necessarily unique) Nash equilibrium satisfying (3) for
each slice.

The above theorem covers any finite αo value, but leaves out
the case αo → ∞, which yields a utility function Uo(w) =
minu∈Uo (ru(w)) and corresponds to max-min fairness. The
following lemma shows that in this case the existence of a NE
is not guaranteed.

Lemma 2. Let Uo(w) = minu∈Uo (ru(w)) for two or more
slices. Then, the existence of a NE cannot be guaranteed.

2The existence of a NE had already been proven by [5] for the case αo =
0 ∀o. Here we extend this result to any combination of αo values.
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C. Convergence of Best Response Dynamics

Below, we will consider best response dynamics wherein
slices realize their best responses in rounds, either (i) updating
their weights (wo) sequentially, one at a time and in the same
fixed order, in response to the other slices’ weights (ao); or (ii)
having all slides update their weights simultaneously in each
round in response to the other slices’ weights in the previous
round.

Theorem 2. If slices have homogeneous αo-fair utilities,
possibly with different αo ∈ [1, 2] for o ∈ O, then the best
response game converges to a Nash equilibrium. This result
holds both for sequential and for simultaneous updates.

Note that the value of αo impacts a slice’s best response
and consequently the game dynamics. As seen in Lemma 1,
the best response weights are proportional to:

wu ∝ g(aob , d
o
b) :=

(aob)
1
αo

(aob + dob)
2
αo
−1
,

where we have suppressed the dependency of aob on w−o

and dob on wo. The function g(·, ·) has different properties
depending on αo which are shown in Table II. The regime
where 1 ≤ αo ≤ 2, considered in Theorem 2, is of particular
interest since it includes proportional (αo = 1) and potential
delay (αo = 2) fairness. It is known that convergence is
not ensured when αo = 0 for all slices (see [6]); for other
regimes, we resort to the simulations results of Section V,
which suggest convergence for any αo > 0 since they are
different problems in nature and therefore the analysis require
a distinct approach.

TABLE II: Impact of αo on slice’s Best Responses.

αo = 0 0 < αo < 1 1 ≤ αo ≤ 2 2 < αo <∞

g w.r.t. dob linear convex convex concave
g w.r.t. aob linear convex concave concave

NE existence X [6] XTheorem 1 for heterogeneous αo

convergence × [6] Xsimulations XTheorem 2 Xsimulations

Perhaps surprisingly, the above result is quite challenging to
show. The key challenge lies in the “price-anticipating” aspect
of the best response, in which players anticipate the impact of
their own allocation (indeed, as mentioned in the introduction,
there are very few results in the literature on the convergence
of price-anticipating best response dynamics).

IV. PERFORMANCE ANALYSIS

In this section we analyze the performance of the Nash
equilibrium in terms of: (i) the gain over static slicing, which
is the benchmark allocation where resources are statically
partitioned, (ii) the price of anarchy, which gives the loss
in overall utility resulting from slices’ strategic behavior, and
(iii) envy-freeness, which captures the degree to which a slice
would prefer another slice’s allocations across the network
resources. The first result holds for any utility function, while
the other two assume that slice utilities are 1-fair homogeneous
i.e., Uo(w) =

∑
u∈Uo φu log(ru(w)) ∀o ∈ O – a widely

accepted case leading to the well-known proportionally fair
allocations.

A. Protection: Gain over Static Slicing

We first analyze if strategic behavior on the part of network
slices may result in allocations that are worse that those under
static slicing. Note that static slicing provides complete iso-
lation among slices but potentially poor utilization. A critical
question is whether dynamic sharing, which achieves a higher
resource utilization, also provides the same level of protection.
This is confirmed by the following result.3

Lemma 3. Consider slice o and any feasible weight allocation
w−o for other slices satisfying the network share constraints.
Then, there exists a weight allocation wo for slice o, possibly
dependent on w−o, such that the resulting weight allocation
w satisfies ru(w) ≥ rssu for all u ∈ Uo.

The lemma is easily shown by choosing wo such that

wu =
wssu∑

u∈Uo
b(u)

wssu

aob(u)(w−o)∑
b′∈Bo a

o
b′(w−o)

so, ∀u ∈ Uo

where Bo is the set of base stations where slice o has users. The
intuitive interpretation for this choice is that by distributing its
weights proportionally to the load at each base station, slice
o can achieve the same resource allocation as static slicing at
each base station. Further, by redistributing these allocations
amongst its user in the same manner as static slicing, it
achieves at least as much rate per user.

It follows immediately from the above lemma that under
the SCPA resource allocation model, if all slices exhibit
strategic behavior attempting to maximize their utilities, they
necessarily achieve a higher utility than under static slicing.
This result does not require slices to have homogenous or
concave utilities, just that they be increasing in the users’ rate
allocations.

Theorem 3. If the game where each network slice maximizes
its utility has a Nash equilibrium, then each slice achieves a
higher utility than under static slicing.

The above results guarantee a form of resource isolation,
since they show that (i) a slice can always choose a weight
assignment that provides its users with the same or higher
rates than those provided by static slicing (i.e., full isolation),
and (ii) by choosing a smarter weight allocation, a slice is
guaranteed to experience better performance than that achieved
with full isolation.

B. Efficiency: Price of Anarchy

In the following, we analyze the price of anarchy for αo =
1 (i.e., 1-fair homogenous utilities). We define the price of
anarchy as the difference between the overall network utility
resulting from the socially optimal allocation, U(w∗), and that
obtained at a Nash equilibrium of the SCPA resource allocation
mechanism, U(w); such a notion captures the efficiency of the

3The proofs of all lemmas and theorems are provided in the Appendix or
as supplementary material.
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proposed approach as it shows how far it performs from the
optimal.4

The following result characterizes the socially optimal allo-
cation of resources considered in the above definition for the
price of anarchy (see [34]).

Fact 1. For slices with 1-fair homogenous utilities, the so-
cially optimal allocation of resources w∗ is such that w∗u =
φuso, ∀u ∈ Uo and ∀o ∈ O.

Building on the above result, the following theorem bounds
the price of anarchy – the proof is provided in the Appendix.

Theorem 4. If all slices have 1-fair homogenous utilities, then
the Price of Anarchy (PoA) associated with a Nash equilibrium
w satisfies

PoA := U(w∗)− U(w) ≤ log(e).

Furthermore, there exists a game instance for which this bound
is tight.

Note that, with 1-fair utilities, if we increase the capacity
of all resources by a factor ∆c, we have a utility increase
of log(∆c). Thus, the performance improvement achieved by
the socially optimal allocation over SCPA is (in the upper
bound) equivalent to having a capacity e times larger, i.e.,
almost the triple capacity. While there are some (pathological)
cases in which such a bound can be achieved, our simulation
results show that for practical scenarios the actual performance
difference between the two allocations is much smaller, con-
firming that (for αo = 1) the flexibility gained with the SCPA
mechanism comes at a very small price in performance.

C. Fairness: Envy-freeness

Next we consider a Nash equilibrium w and analyze
whether a slice, say o, with utility Uo(w), might have a better
utility if it were to exchange its resources with those of another
slice, say o′. To that end, we denote by w̃ the resulting weight
allocation when the users of slices o and o′ exchange their
allocated resources. It is easy to see that w̃o is such that

w̃ou =
φu∑
v∈Uob

φv
do
′

b (w) for all b ∈ B and all u ∈ Uob , (4)

i.e., slice o takes the aggregate weight of o′ at base station b
under the Nash equilibrium, do

′

b (w), and allocates it propor-
tionally to its user priorities. Clearly, w̃o′ is defined similarly
and the remaining slices weights remain unchanged under w̃.

We define the envy of slice o for o′’s resources under the
Nash equilibrium w by

Eo,o
′

:= Uo(w̃)− Uo(w).

Note that envy is a “directed” concept, i.e., it is defined from
slice o’s point of view. When Eo,o

′ ≤ 0, we say slice o is not
envious. The following theorem provides a bound on Eo,o

′
.

4Note that the price of anarchy is typically defined as the ratio of the social
optimal network utility and the network utility under the NE. However, since
with αo = 1 we have logarithmic shaped utilities, the utility loss in this case
is better expressed by the subtraction rather than by the ratio; as a matter of
fact, the ratio in linear scale corresponds to a subtraction in the logarithmic
scale.

Theorem 5. Consider a slice o with 1-fair homogeneous
utilities and the remaining slices O \ {o} with arbitrary slice
utilities. Consider a slice o′ such that so = so′ . Let w denote
a Nash equilibrium and w̃ denote the resulting weights when
o and o′ exchange their resources. Then, the envy of slice o
for o′ satisfies

Eo,o
′

= Uo(w̃)− Uo(w) ≤ 0.060.

Furthermore, there is a game instance where 0.041 ≤ Eo,o′ .

Given that, if one increases the rates of all users by a factor
∆r this yields a utility increase of log(∆r), one can interpret
this result as saying that, by exchanging resources with o′,
slice o may see a gain equivalent to increasing the rate of all
its users by a factor between 4.1% and 6.1% (given by the
lower and upper bounds of the above theorem). This is quite
low and, moreover, simulation results show that in practical
settings there is actually (almost) never any envy, confirming
that our system is (practically) envy-free.

V. PERFORMANCE EVALUATION

Next, we evaluate the performance of the SCPA resource
allocation mechanism via simulation. The mobile network
scenario considered is based on the IMT-A evaluation guide-
lines for dense ‘small cell’ deployments [35], which consider
base stations with an intersite distance of 200 meters in a
hexagonal cell layout with 3 sector antennas and a network
size |B| of 57 sectors.5 Unless otherwise stated, users move
according to the Random Waypoint Model (RWP) and user
association follows the strongest signal policy. The Signal
Interference to Noise Ratio of user u (SINRu) is computed
based on physical layer network model specified in [35]:
SINRu = Pbgub/(

∑
k∈B,k 6=b Pkguk + σ2), where Pb is the

transmit power and gub denotes the channel gain between user
u and base station b, which includes path loss, shadowing,
fast fading and antenna gain. Following [35], we set Pb = 41
dBm, σ2 = −104dB, a path loss equal to 36.7 log10(dist) +
22.7 + 26 log10(fc) for carrier frequency fc = 2.5GHz, and
an antenna gain of 17 dBi. The shadowing factor is given by
a log-normal function with a standard deviation of 8dB (as in
[36]) updated every second, and fast fading follows a Rayleigh
distribution dependent of the user speed and the angle of
incidence (as in [37]). Achievable rates are then computed with
the Shannon formula, BW log2(1 + SINRu), for the average
SINRu and a channel bandwidth of BW = 10MHz [38].
Finally, the modulation-coding scheme is selected according to
the SINRu thresholds reported in [39]. For all our simulation
results, we obtained 95% confidence intervals with relative
errors below 1% (not shown in the figures).

Given the nature of elastic traffic, the performance of which
mainly depends on rate, the evaluation conducted in this
section primarily focuses on this metric. However, we note that
as long as users are allocated a sufficiently high rate for the
traffic they generate, a slice can ensure low delays and drop
rates for its users. This can be achieved, e.g., by acquiring

5Note that, in this setting, users associate with sectors rather than the base
stations we used in the mechanism description and analysis.



8 IEEE/ACM TRANSACTIONS ON NETWORKING

3 5 7 9 11

30

20

10

0

10

20

30

40

50

Fig. 2: Average Gain over Static slicing and Loss against
Social optimum for different scenarios.

an appropriate share s0 and/or performing proper admission
control on the users entering the slice.

A. Overall performance

Throughout the paper we have used static slicing and the
socially optimal resource allocations as our baselines. In order
to confirm our analytical results and gain additional insights,
we have evaluated the performance of the SCPA mechanism
versus these two baselines via simulation. As an intuitive met-
ric for comparison, we have used the extra capacity required
by these baseline schemes to deliver the same performance
as SCPA: (i) Gain over SS: additional resources required by
static slicing to provide the same utility as SCPA (in %); and
(ii) Loss versus SO: additional resources required by SCPA to
provide the same utility as the socially optimal allocation (in
%). Note that the latter metric is closely related to the Price
of Anarchy analyzed in Section IV-B; indeed, while the Price
of Anarchy reflects the loss of efficiency in terms of utility,
the Loss versus SO reflects the loss of efficiency in terms of
resources.

The results shown in Figure 2 are for different user densi-
ties (|U|/|B|) and different slice utilities (αo parameter). As
expected, the SCPA mechanism always has a gain over static
slicing and a loss over the social optimal. However, for αo = 1
the loss is well below the bound given in Section IV-B. We
further observe that performance is particularly good as long
as αo does not exceed 1 (Gain over SS up to 50% and Loss
over SO below 5%), and it degrades mildly as αo increases.

B. Fairness

In addition to overall performance, it is of interest to
evaluate the fairness of the resulting allocations. While in
Section IV-C we derived analytically a bound on the envy,
we have further explored this via simulation by evaluating
up to 107 randomly generated scenarios, with parameters
drawn uniformly in the ranges: |O| ∈ [2, 12], |B| ∈ [10, 90],

|U|/|B| ∈ [3, 15], αo ∈ [0.01, 30] and φ vectors in the simplex.
Our results show that Eo,o

′
< 0 holds for all the cases

explored, confirming that in practice the system is envy-free.

C. Protection against other slices

One of the main objectives of our proposed framework is
to enable slices to customize their resource allocations. This
can be done by adjusting (i) the user priorities φu, and (ii)
the parameter αo, which regulates the desired level of fairness
among the slice’s users. In order to evaluate the impact that
these settings have amongst slices, we simulated a scenario
with three slices: Slice 1 has α1 = 1, Slice 2 has α2 = 4, and
Slice 3 has α3 with varying values. For simplicity, we set the
priorities φu equal for all users.

Figure 3 shows the rate distributions of the 3 slices. We
observe that the choice of α3 is effective in adjusting the level
of user fairness for Slice 3; indeed, as α3 grows, the rate
distribution becomes more homogeneous. Such customization
at Slice 3 has a higher impact on Slice 1 than on Slice 2. This
is the case because, as α2 is quite large, the distribution of
Slice 2’s rates remains homogeneous, making the slice fairly
insensitive to the choices of the other slices. As can be seen in
the subplots, the utilities of Slices 1 and 2 are not only larger
than the utility of static slicing, but remain fairly insensitive
to α3, showing that in both cases we have a good level of
protection between slices.

D. Gains over Static Slicing

In order to gain additional insight into the impact of the
various factors, Figure 4 displays the influence of the number
of slices (|O|) and the average load per base station sector
(|U|/|B|) on the gain over static slicing (given by the additional
resources in % required by static slicing to provide the same
performance as SCPA). The results show that the gains are
higher with a large number of slices and small load. This
is rather intuitive: (i) if the slice has a large number of
users, its multiplexing gain is already high without sharing
the infrastructure, and hence there is little gain from sharing,
and (ii) if we have a small number of slices, each of them
is already using a large fraction of the network resources and
the impact of sharing is smaller. It is also worth noting that
αo has a relatively small impact on the gains.

E. File download times

To provide additional insights on the achieved gains from
an end-user perspective, we compare the file download times
achieved by SCPA against the static slicing baseline, when
base stations have the same capacity in both cases and users
download and endless sequence of files of fixed size. Let
us define the file download time gain as GD = (DSS −
DSCPA)/DSS , where DSS is the average file download time
with the static slicing approach and DSCPA with the SCPA
approach. The gains achieved are shown in Figure 5 for a
file size of 20 Mb (results with other file sizes, not reported
here for space reasons, show a similar trend). We observe the
gains are substantial, and (as above) they are larger for low
user densities and a large number of slices.



CABALLERO et al.: NETWORK SLICING GAMES: ENABLING CUSTOMIZATION IN MULTI-TENANT MOBILE NETWORKS 9

rate
0 0.1 0.2 0.3

em
p
ir
ic
al

cd
f(
ra
te
)

0

0.2

0.4

0.6

0.8

1
Slice 1: α1 = 1

rate
0 0.1 0.2 0.3

em
p
ir
ic
al

cd
f(
ra
te
)

0

0.2

0.4

0.6

0.8

1
Slice 2: α2 = 4

rate
0 0.1 0.2 0.3

em
p
ir
ic
al

cd
f(
ra
te
)

0

0.2

0.4

0.6

0.8

1
Slice 3: α3 variable

α3 = 1
α3 = 1.5
α3 = 2
α3 = 5
α3 = 10
α3 = 20

α31 5 10 20

U2
×107

-3

-2

-1

0

SCPA
SS

α31 5 10 20

U1

-1200

-1000

-800

SCPA
SS

α3 = 1

α3 = 20 α3 = 1

α3 = 20

For all figures

Fig. 3: Impact of α3 decision on the slice rate distributions.

4 6 8 10 12 14 16 18
0

20

40

60

80

100

Fig. 4: Gains over static slicing for different settings.

5 10 15 20
0

10

20

30

40

50

60

70 75th percentile
mean download time
25th percentile

Fig. 5: Gains in terms of file download times.

F. Convergence speed

The existence of a Nash equilibrium and the convergence
of Best Response Dynamics are essential for the system
stability. While the existence of a Nash equilibrium has been
proven for all αo values, convergence has only been shown
for αo ∈ [1, 2]. In order to confirm the convergence for
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Fig. 6: Average number of rounds until convergence for
different scenarios.

other αo values, we have conducted extensive simulations
implementing sequential best response updates for up to 107

randomly generated scenarios within the same parameter space
as in Section V-B. Our results confirmed the convergence
of the best response game in all cases. Moreover, they also
showed that convergence speed mainly depends on αo, while
it is fairly insensitive to the user priorities and the network
size. According to the results, convergence is very quick for
αo ≤ 1 (about 8 rounds) and increases slightly as αo grows
(about 16 rounds for αo = 3). The average number of rounds
needed for the Best Response dynamics to converge are shown
in Figure 6.

G. Impact of user mobility
The above results assume a Random Waypoint mobility

model where users are (on average) uniformly distributed
across space. To understand the impact of other user dis-
tributions, we evaluated the Gain over SS for the following
user mobility patterns: (i) uniform: all slices with a uniform
spatial load distribution; (ii) overlapping hotspots: all slices
with the same non-uniform spatial load distribution; (iii)
non-overlapping hotspots: different slices with different non-
uniform spatial load distributions; and (iv) mixed: half of
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Fig. 7: Gain over Static slicing for different traffic models and
α values.

the slices with a uniform spatial load distribution and the
other half with a non-uniform one. In all cases, we have 4
slices with equal shares. The results, depicted in Figure 7,
show that the gains are larger for scenarios with uneven and
complementary traffic loads; indeed, in this case different
slices need their resources at different base stations and thus
there is a higher gain from dynamically sharing the resources.
We further observe that larger α values result in smaller gain;
this is due to the fact that slices are less elastic with larger α,
which limits the ability to exploit statistical multiplexing.

VI. CONCLUSIONS

In this paper we have analyzed a ‘share-constrained propor-
tional allocation’ framework for network slicing. The frame-
work allows slices to customize the resource allocation to
their users, leading to a network slicing game in which
each slice reacts to the settings of the others. Our main
conclusion is that the framework provides an effective and im-
plementable scheme for dynamically sharing resources across
slices. Indeed, this scheme involves simple operations at base
stations and incurs a limited signaling between the slices
and the infrastructure. Our results confirm system stability
(best response dynamics converge), substantial gains over
static slicing, and fairness of the allocations (envy-freeness).
Moreover, as long as the majority of the slices do not choose
αo values larger than 1 (i.e., they do not all demand very
homogeneous rate distributions), the overall performance is
close to optimal (price of anarchy is very small). Thus, in this
case the flexibility provided by this framework comes at no
cost. If a substantial number of slices choose higher αo’s, then
we pay a (small) price for enabling slice customization.

APPENDIX

In the following, we give the proofs of Lemma 3 and
Theorems 3, 4 and 5. The proofs of Lemmas 1 and 2 and
Theorems 1 and 2 have been provided as supplementary
material.

Proof of Lemma 3
Given the weight allocation under static slicing, wss, and

the weights of the other slices under dynamic sharing, w−o,
we consider the following weight allocation for slice o:

wu =
wssu∑

u∈Uo
b(u)

wssu

aob(u)(w−o)∑
b′∈Bo a

o
b′(w−o)

so, (5)

where Bo is the set of base stations where slice o has
customers.

We define ρou(wss) as the ratio between the weight of user
u under static slicing and the sum of the weights of all the
users of the same slice in the base station, i.e.,

ρou(wss)
.
=

wssu∑
u∈Uo

b(u)
wssu

where we have dropped the terms w−o and wss from
aob(u)(w−o) and ρou(wss) for readability purposes.

With the allocation given by (5), for two users u and u′ of
slice o it holds

wu
wu′

=
ρou
ρou′

aob(u)

aob(u′)
(6)

Furthermore, it also holds that

dob =
∑
u∈Uob

wu =
∑
u∈Uob

ρou
aob(u)∑

b′∈Bo
aob′

so =
aob(u)∑

b′∈Bo
aob′

so =
wu
ρou

for u ∈ Uob .
From the above expression, we have

ρoulb(u)(w)

ρou′ lb(u′)(w)
=

ρou

(
aob(u) + dob(u)

)
ρou′
(
aob(u′) + dob(u′)

) =
ρou

(
aob(u) + wu

ρou

)
ρou′
(
aob(u′) + wu′

ρo
u′

) ,
and combining this with (6):

ρoulb(u)(w)

ρou′ lb(u′)(w)
=

ρou

(
aob(u) +

aob(u)
ao
b(u′)

wu′
ρo
u′

)
ρou′
(
aob(u′) + wu′

ρo
u′

)

=

ρoua
o
b(u)

(
1 + wu′

ao
b(u′)ρ

o
u′

)
ρou′a

o
b(u′)

(
1 + wu′

ao
b(u′)ρ

o
u′

) =
ρoua

o
b(u)

ρou′a
o
b(u′)

From the above,

wu =
wu∑

u′∈Uo wu′
so =

so∑
u′∈Uo

wu′
wu

=

=
so∑

u′∈Uo

ρo
u′a

o
b(u′)

ρoua
o
b(u)

=
so∑

u′∈Uo

ρo
u′ lb(u′)(w)

ρoulb(u)(w)

=
ρoulb(u)(w)∑

u′∈Uo ρ
o
u′ lb(u′)(w)

so =
ρoulb(u)(w)∑
b′∈Bo lb′(w)

so

Since Bo ⊆ B: ∑
b∈Bo

lb(w) ≤
∑
b∈B

lb(w) = 1

and thus
wu ≥ ρoulb(u)(w)so,



CABALLERO et al.: NETWORK SLICING GAMES: ENABLING CUSTOMIZATION IN MULTI-TENANT MOBILE NETWORKS 11

from which

ru(w) =
wu

lb(u)(w)
cu ≥

ρoulb(u)(w)so

lb(u)(w)
cu = ρousocu = rssu .

The above holds for all u ∈ U , which proves the lemma.

Proof of Theorem 3
This result follows from Lemma 3. Given the configuration

of the other slices, there exists a configuration for a given slice
under which all its users obtain at least the same throughput
as with static slicing, and thus the slice’s utility with this
configuration is at least as high. As a consequence, in a NE
the slice will receive a utility no smaller than this value.

Proof of Theorem 4
We first show that an optimal (not necessarily unique)

solution to the centralized problem is given by w∗ which
assigns weights to all users of a given slice proportionally
to their priorities, i.e., w∗u = φuso, ∀u ∈ Uo. To prove this we
only need to show that U(w∗) ≥ U(w) for any other feasible
weight vector w . To that end, consider

U(w∗)− U(w) =
∑
o∈O

∑
u∈Uo

φu

(
log

(
w∗ucu
lb(w∗)

)
− log

(
wucu
lb(w)

))
Let us denote the distributions induced by w∗ and w

respectively as: pb(w) = (pbu(w) = wu
lb(w) : u ∈ Ub) and

pb(w∗) = (pbu(w∗) = wu
lb(w∗)

: u ∈ Ub). Since φ = w∗, we
have

U(w∗)− U(w) =
∑
b∈B

lb(w
∗)
∑
o∈O

∑
u∈Ubo

pbu(w∗) log

(
pbu(w∗)

pbu(w)

)
=
∑
b∈B

lb(w
∗)D(pb(w∗)||pb(w))

where D(pb(w∗)||pb(w)) is the Kullback-Leibler divergence,
between the distributions induced by w∗ and w respec-
tively, i.e., pb(w∗) and pb(w). It is known [40] that
D(pb(w∗)||pb(w)) ≥ 0 and 0 only when pb(w) = pb(w∗)
Hence it follows that w∗ is optimal.

We next show that U(w∗) − U(w) ≤ log(e) holds when
w is a Nash Equilibrium of the distributed resource allocation
game and w∗ an optimal solution. To show this, we proceed as
follows. Since in the Nash Equilibrium each slice maximizes
its utility given the allocation of the other slices,∑
u∈Uo

φu log

(
wu

lb(u)(w)

)
≥
∑
u∈Uo

φu log

(
w∗u

dob(u)(w
∗) + aob(u)(w)

)
Given that dob(u)(w

∗) + aob(u)(w) ≤ lb(u)(w) + lb(u)(w
∗),

∑
u∈Uo

φu log

(
wu

lb(u)(w)

)
≥
∑
u∈Uo

φu log

(
w∗u

lb(u)(w) + lb(u)(w∗)

)
From the above it follows that∑
u∈Uo

φu log(ru(w
∗))−

∑
u∈Uo

φu log(ru(w))

≤
∑

u∈Uo
φu log

(
w∗ucu

lb(u)(w
∗)

)
−
∑

u∈Uo
φu log

(
w∗ucu

lb(u)(w) + lb(u)(w
∗)

)

= −
∑

u∈Uo
φu log

(
lb(u)(w

∗)

lb(u)(w) + lb(u)(w
∗)

)
Summing the above over all slices weighted by the corre-

sponding shares yields

U(w∗)− U(w) ≤ −
∑
u∈U

φuso log

(
lb(u)(w

∗)

lb(u)(w) + lb(u)(w∗)

)
Given w∗u = φuso, we have

U(w∗)− U(w) ≤ −
∑
b∈B

log

(
lb(w

∗)

lb(w) + lb(w∗)

)∑
u∈Ub

w∗u

= −
∑
b∈B

∑
u∈Ub

wu log

(
lb(w

∗)

lb(w) + lb(w∗)

)∑
v∈Ub

w∗v∑
v∈Ub

wv

= −
∑
b∈B

∑
u∈Ub

wu log

(
lb(w

∗)/lb(w)

1 + lb(w∗)/lb(w)

) lb(w
∗)

lb(w)

and, given that (x/(1 + x))x > 1/e for x ≥ 0, this yields

U(w∗)− U(w) ≤
∑
b∈B

∑
u∈Ub

wu log(e) = log(e).

Finally, we show that there exists some scenario for which
U(w∗)−U(w) = log(e). Let us consider a scenario with two
slices with shares s1 and s2, respectively. There are two base
stations. Slice 1 has m+ 1 users, m associated to base station
1 and one associated to base station 2. Slice 2 has one user
associated to base station 2. All users have cub = 1. Under
the optimal allocation:

U(w∗) =
s1

m+ 1
m log

(
1

m

)
+

s1
m+ 1

log

(
s1
m+1

s1
(m+1) + s2

)

+ s2 log

(
s2

s1
(m+1) + s2

)
,

and under the Nash equilibrium

U(w) =
s1

m+ 1
m log

(
1

m

)
+

s1
m+ 1

log

(
s1

s1 + s2

)
+ s2 log

(
s2

s1 + s2

)
.

For m→∞ this yields U(w∗) = s1 log
(

1
m

)
+ s2 log(1) and

U(w) = s1 log
(

1
m

)
+ s2 log

(
s2

s1+s2

)
. From this,

U(w)− U(w∗) = s2 log

(
s2

s1 + s2

)
which tends to − log(e) when s1 → 1 and s2 → 0.

Proof of Theorem 5
Let us consider two slices, o and o′, that have the same

share so. Let the utility function of slice o be Uo =∑
u∈Uo φu log(ru). We first show that it holds

Uo(w̃o)− Uo(wo) ≤ 0.060

In order to bound the envy Uo(w̃)−Uo(w) at the NE, we
will construct a weight allocation m that satisfies Uo(m) ≤
Uo(w) and Uo(m̃) ≥ Uo(w̃) – where w̃ and m̃ are the
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allocations resulting from exchanging the resources of slices
o and o′ in w and m, respectively. It then follows that
Uo(m̃)− Uo(m) is an upper bound on the envy.

Specifically, the weight allocation m will be chosen such
that: (i) for all slices different from o, the weights remain the
same as in the NE, i.e, m−o = w−o; and (ii) the weights
of slice o are chosen so as to maximize Uo(m) subject to
dob(m

o) =
∑
u∈Uob

mu ≤ aob(m
−o) ∀b ∈ B and slice o’s

share constraint. Note that with this weight allocation we have
aob(u)(m

−o) = aob(u)(w
−o) – for readability purposes, we will

use just aob(u). Note also that the weights that slice o would
have with the resources of o′ remain the same, i.e. m̃o = w̃o.

By following a similar argument to that of Lemma 2, it
can be seen that the above leads to the weights mu for u ∈
Uo solving the set of equations below, which have a feasible
solution as long as so <

∑
u∈Uo a

o
b(u)(m

−o) (we deal with
the case

∑
b∈Bo a

o
b < so later).

mu =



aob(u)
φu∑

v∈Uo
b(u)

φv
, aob(u) = dob(u)(m

o)

φu
aob(u)

ao
b(u)

+do
b(u)

(mo)∑
v∈Ûo

φv
ao
b(v)

ao
b(v)

+do
b(v)

(mo)

s′o, aob(u) > dob(u)(m
o)

where Ûo is the set of users of slice o for which aob(u) >
dob(u)(m

o) and s′o = so −
∑
u∈Uo\Ûo mu.

It is clear that with this weight allocation we have Uo(m) ≤
Uo(w). Indeed, only the weights of slice o have changed and
(as mentioned before) wo is the best response of the slice o,
hence any other weight setting for this slice will provide a
lower utility.

To show Uo(m̃) ≥ Uo(w̃) we proceed as follows. The base
stations that initially had a load for operator o larger than aob
(dob(u)(m

o) > aob) decrease their load with the new allocation,
while the others increase it. Let us denote the first set of base
stations as B1 and the other set as B2. Since the base stations
of set B1 decrease their load in the new allocation and the
base stations of set B2 increase it, we can move from the
initial allocation to the new one by iteratively selecting one
base station of set B1 and one of set B2 and moving load
from the first one to the second until one of them reaches its
target load. When decreasing the load of base station b and
increasing that of base station b′ by δ we have

dUo(w̃)

dδ
= −

∑
u∈Uo

b′

φu

lb′(w̃)
+

∑
u∈Uob

φu

lb(w̃)

If we can show at the beginning (before increasing/decreasing
the load of any base station), for any b ∈ B1 and b′ ∈ B2 it
holds ∑

u∈Uob
φu

lb(w̃)
≥

∑
u∈Uo

b′

φu

lb′(w̃)
(7)

we will have the value of
∑
u∈Uob

φu
lb

for any base station of
set B1 will always be larger than for any base station of set
B2, since it are larger at the beginning and it increases in the
intermediate steps, while it decreases for a base station of B2.

With this, dUo(m̃)/dδ is positive at the beginning and will
continue to be positive in the intermediate steps, yielding to
an increase in dUo(m̃).

To show (7), we proceed as follows. It holds that

dob(m
o)

dob′
=

∑
u∈Uob

φu∑
u′∈Uo

b′
φu′

1
1+dob(m

o)/aob
1

1+do
b′ (m

o)/ao
b′

=

∑
u∈Uob

φu∑
u′∈Uo

b′
φu′

1 +
do
b′ (m

o)

ao
b′

1 +
dob(m

o)

aob


For b ∈ B1 and b′ ∈ B2 (since aob < dob(m

o) and aob′ >
dob′(m

o))
dob(m

o)

dob′(m
o)
<

∑
u∈Uob

φu∑
u′∈Uo

b′
φu′

and thus
lb∑

u∈Uob
φu

=
aob + dob(m

o)∑
u∈Uob

φu
<

2dob(m
o)∑

u∈Uob
φu

<
2dob′(m

o)∑
u∈Uo

b′
φu

≤ aob′ + dob′(m
o)∑

u∈Uo
b′
φu

=
lb′∑

u∈Uo
b′
φu

which proves (7), and thus Uo(m̃) ≥ Uo(w̃).
We now go back to the case

∑
b∈Bo a

o
b < so. Following the

above procedure, in this case we can find an allocation mo that
satisfies: (i) Uo(m) ≤ Uo(w), (ii) Uo(m̃) ≥ Uo(w̃) and (iii)
dob(m

o) ≥ aob ∀b. In this case we then have Uo(w̃)−Uo(w) ≤
Uo(m̃)− Uo(m) ≤ 0.

To find an upper bound on Uo(m̃)− Uo(m), recall that

Uo(m̃) =
∑
u∈Uo

φu log

(
m̃ucu
lb(m̃)

)
,

and
Uo(m) =

∑
u∈Uo

φu log

(
mucu
lb(m)

)
.

Given that lb(m̃) = lb(m) and m̃u = mu for u /∈ Ûo, this
yields

Uo(m̃)− Uo(m) =
∑
u∈Ûo

φu log(m̃u)−
∑
u∈Ûo

φu log(mu).

Since
∑
u∈Ûo log(m̃u) subject to

∑
u∈Ûo m̃u = s′o takes a

maximum at m̃u = φ̂us
′
o (where φ̂u = φu/

∑
v∈Ûo φv),

Uo(m̃)− Uo(m) ≤
∑
u∈Ûo

φu log(φ̂us
′
o)−

∑
u∈Ûo

φu log(mu)

≤
∑
u∈Ûo

φ̂u log(φ̂us
′
o)−

∑
u∈Ûo

φ̂u log(mu) (8)

In order to bound the term
∑
u∈Ûo φ̂u log(mu) above, we

look for a bound on mu
mv

. Given that aob ≥ dob(m
o) holds for

all b, we have for u, v ∈ Ûo:

mu

mv
=
φu
φv

aob(u)
ao
b(u)

+do
b(u)

(mo)

ao
b(v)

ao
b(v)

+do
b(v)

(mo)

>
φu
φv

aob(u)
ao
b(u)

+ao
b(u)

ao
b(v)

ao
b(v)

=
1

2

φ̂u

φ̂v
.

It can be seen that
∑
u∈Ûo φ̂u log(mu) subject to mu

mv
≥

1
2
φ̂u
φ̂v

and
∑
u∈Ûo φ̂u = 1 is maximized when the mu

φ̂u
of



CABALLERO et al.: NETWORK SLICING GAMES: ENABLING CUSTOMIZATION IN MULTI-TENANT MOBILE NETWORKS 13

all users but one is equal to the lower bound given by the
constraint, which yields

mu

φ̂u
=

1

2

mv

φ̂v
, ∀u 6= v. (9)

This is shown by contradiction. Let us imagine that in the
weight allocation that maximizes (8) there exists some other
user u for which mu

φ̂u
> mv

2φ̂v
, where v is the user with the

largest mv/φ̂v of that allocation. Then, if we increase mv by
δ and decrease mu by δ we have

d

dδ

∑
u∈Uo

φ̂u log

(
φ̂us
′
o

mu

)
= − φ̂v

mv
+
φ̂u
mu

> 0

and thus (8) increases, which contradicts our assumption that
(8) was already maximum. From (9) we have

mu =
φ̂uso∑

u′∈Uo\{v}
φ̂u + 2φ̂v

, and mv =
2φ̂vso∑

u′∈Uo\{v}
φ̂u + 2φ̂v

Combining this with (8) we obtain

Uo(w̃∗o)− Uo(w∗o) ≤
∑

u∈Uo\{v}

φ̂u log

 ∑
u′∈Uo\{v}

φ̂u + 2φ̂v


+ φ̂v log

1

2

∑
u′∈Uo\{v}

φ̂u + 2φ̂v


= log(1 + φ̂v) + φ̂v log(1/2)

If we now compute the φ̂v that maximizes this expression
we obtain φ̂v = 1

log 2 − 1, and substituting this value

Uo(w̃∗o)− Uo(w∗o) ≤ − log(log 2)−
(

1

log 2
− 1

)
log 2

As mentioned at the beginning, the above bounds also applies
to Uo(w̃o)− Uo(wo).

We next show that the worst case envy is lower bounded
by 0.041, by finding a game instance for which Uo(w̃o) −
Uo(wo) = 0.041. Let us consider a scenario with 2 base
stations. Let slice o have a share of so and one user at each
base station with priorities φ1 and φ2. Let the loads of the
other slices in these two base stations be a1 = 1− so−xφ2so
and a2 = xφ2so. for a fixed x > 0. Let so be sufficiently
small such that a1 > φ2so.

In this setting, the weights of slice o at each station are
given by

d11 =
soφ1

a1
a1+d11

φ1
a1

a1+d11
+ φ2

a2
a2+d12

, and d12 =
soφ2

a2
a2+d12

φ1
a1

a1+d11
+ φ2

a2
a2+d12

We distinguish the cases (i) x ≥ 1 and (ii) x < 1.
(i) For x ≥ 1, we consider slice o′ with share so′ = so with

priorities φ̃1 and φ̃2, where

φ̃1

φ̃2
=
φ1
φ2

a2−φ2so+d
1
2

a2+d12
a1−φ1so+d11

a1+d11

We further consider a third slice with only one user in the first
base station with s3 = a1 − φ1so and a fourth slice with a

one user in the second base station with s4 = a2−φ2so. This
leads to d21 = φ1so and d22 = φ2so.

If we now let so → 0,

d12 =
φ2xφ2so

φ1(xφ2so + d12) + φ2xφ2so
so = φ2

xφ2so
xφ2so + d12

so

From the above, d12 = x̂φ2so, where x̂ is the unique solution
to the equation x = (x+ x̂)x̂. Then, d11 = so − x̂φ2so. From
this, we have that in this case

Uo(w̃)− Uo(w) = φ1 log

(
φ1so

so − x̂φ2so

)
+ φ2 log

(
φ2so
x̂φ2so

)
= φ1 log

(
φ1

1− x̂+ x̂φ1

)
− (1− φ1) log(x̂)

(ii) In case that x < 1, we consider slice o′ has priorities
φ̃1 and φ̃2, where

φ̃1

φ̃2
=
φ1
φ2

a2−xφ2so+w2

a2+w2

a1−so−xφ2so+w1

a1+w1

which leads to w̃1 = (1 − xφ2)so and w̃2 = xφ2so. We
further consider a third slice in the first base station with
s3 = a1 − (1 − xφ2)so. If we now let so → 0, we have
the same expressions as above for w1 and w2, from which

Uo(w̃o)− Uo(wo) = φ1 log

(
so − xφ2so
so − x̂φ2so

)
+ φ2 log

(
xφ2so
x̂φ2so

)
= φ1 log

(
1− x+ xφ1

1− x̂+ x̂φ1

)
− (1− φ1) log

(x
x̂

)
By putting together the cases x ≥ 1 and x < 1, we can

obtain a lower bound for the worst-case envy by finding the
values of x and φ1 over x > 0 and φ1 ∈ [0, 1] that minimize
the following expressionφ1 log

(
φ1

1−x̂+x̂φ1

)
− (1− φ1) log(x̂), for x ≥ 1

φ1 log
(

1−x+xφ1

1−x̂+x̂φ1

)
− (1− φ1) log

(
x
x̂

)
, for x < 1

By performing the above search numerically, we find a
scenario with the following envy level:

Uo(w̃o)− Uo(wo) = 0.041

which terminates the proof of the theorem.
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